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Abstract: We propose several infinite classes of new uniform designs under the discrete discrep-

ancy criterion. The construction is based on combinatorial configurations, that is, partitionable

t-designs; hence, it dose not require a computer search. Moreover, we explore certain complex

structures within the proposed uniform designs. We find that some of the designs have nested

or sliced subdesigns that are also uniform designs under the discrete discrepancy. The proposed

uniform designs may find many applications in statistics, including computer experiments, se-

quential experiments, drug combination studies, and cross-validation.
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1. Introduction

Uniform designs have been widely applied in manufacturing, system engineering,

pharmaceutics, computer experiments, and many other fields since they were first de-

veloped in the 1980s (see Fang (1980), Santner, Williams, and Notz (2003), and Tan,

Fang, and Ross (2012)). Such designs have a number of desirable statistical properties,

such as admissibility, minimaxity, and robustness (Fang, Li, and Sudjianto (2006)). In

contrast to classical experimental designs such as orthogonal arrays, uniform designs
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are practically useful because they can investigate many high-level factors simultane-

ously using fairly economical experimental runs. In this sense, high-level designs are

the main focus of uniform designs, which makes their systematic construction difficult.

Over the last 20 years, two kinds of construction methods have been proposed: the

algorithmic optimization approach (see Fang et al. (2018, Ch. 4), and the references

therein), and combinatorial configurations (see Fang et al. (2018, Ch. 3.6), and the

references therein). The second method uses the properties of various combinatorial

configurations and construction techniques frequently used in design theory to obtain

uniform designs without needing a computer search.

Note that a uniform design is an important kind space-filling design, and a num-

ber of design criteria are used to measure the uniformity of a design. Here, we focus

on the discrete discrepancy criterion (DD), proposed by Hikernell and Liu (2002), as

the uniformity measure. The DD is closely related to many other conventional design

criteria, such as the non-orthogonal measure E(fNOD), generalized minimum aberra-

tion, centered L2-discrepancy, and wrap-around L2-discrepancy (Fang, Lin, and Liu

(2003); Fang et al. (2004); Sun, Chen, and Liu (2011)). This makes the DD popular

and justifies using it as a uniformity measure. In the past decade, different combina-

torial configurations have been used to construct many large, and even some infinite

classes of uniform designs under the DD. However, most existing studies are limited

to two classes of combinatorial configurations, namely resolvable designs and orthogo-

nal arrays, which restricts the spectrum of existing uniform designs. A comprehensive

overview of resolvable designs, orthogonal arrays, and their relationships with uniform
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designs can be found in Fang et al. (2018). In this study, we use an important class of

combinatorial configurations called partitionable t-(v, k, 1) designs to construct unifor-

m designs under the DD. The constructed uniform designs are newly obtained because

partitionability in design theory differs from resolvability and orthogonality (Colbourn

and Dinitz (2007)). Furthermore, we explore certain complex structures within the

proposed uniform designs. We find that some of the proposed uniform designs have

nested or sliced subdesigns that are also uniform designs under the DD. The proposed

uniform designs can be applied to routine and complex tasks in statistics, including fac-

torial experiments, computer experiments, sequential experiments, drug combination

studies, stochastic optimization, and cross-validation (e.g., see Fang, Li, and Sudjianto

(2006), Qian, Tang, and Wu (2009), Qian and Wu (2009) and Tan, Fang, and Ross

(2012)).

The remainder of this paper is organized as follows. Section 2 introduces some basic

concepts, including the DD, U -type design, uniform design, and partitionable t-design.

This section also provides a lower bound for the DD that can be used as a benchmark

when constructing uniform designs. A new construction method for uniform designs

under the DD is presented in Section 3. Construction methods for nested and sliced

uniform designs are given in Sections 4 and 5, respectively. Section 6 concludes the

paper. All technical proofs are provided in the Appendix.

2. Basic Concepts

A uniform design aims to choose a set of points over a design region such that

these points are uniformly scattered. The measure of uniformity plays a key role in
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the concept of a uniform design. In the literature, various discrepancies have been

proposed for measuring the uniformity of a design. In most cases, the discrepancies

are defined based on a type of design called a U -type design.

Definition 1. A U -type design with n runs and m factors, with levels q1, . . . , qm,

respectively, is an n × m matrix such that the qj levels in the jth column appear

equally often. This design is denoted by U(n; q1 × · · · × qm). When some qj are equal,

we denote this by U(n; qr11 ×· · ·×qrss ), with r1+· · ·+rs = m. If all qj are equal, denoted

by U(n; qm), the design is said to be symmetrical; otherwise, it is asymmetrical.

A U -type design is also called a balanced design or a lattice design (Fang, Li, and

Sudjianto (2006)). The set of all such U(n; q1× · · · × qm) is denoted by U(n; q1× · · · ×

qm). By using a reproducing kernel in a Hilbert space and choosing an appropriate

kernel function, the DD is defined on a U -type design, and measures how far apart the

empirical distribution of the design points is from the discrete uniform distribution on

the design region. For further details on the DD, see Fang, Li, and Sudjianto (2006). In

what follows, we use D(X; a, b) to denote the DD with parameters a and b (a > b > 0)

for a U -type design X. The condition a > b > 0 ensures that the chosen kernel function

is positive definite. Any choice for the parameters a and b satisfying such a condition

is feasible for the DD (i.e., they do not affect the ranks of the designs). If a U -type

design U(n; q1 × · · · × qm) takes the minimum of the DD over U(n; q1 × · · · × qm), it is

called a uniform design under the DD, and is denoted by Un(q1 × · · · × qm).

Let λij (i, j = 1, . . . , n, i 6= j) be the number of coincidences between the ith row

and the jth row of X. Then m−λij is the Hamming distance between these two rows.
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The following fact about the analytical expression and the lower bound of the DD on

U(n; q1 × · · · × qm) is extracted from page 76 of Fang, Li, and Sudjianto (2006).

Fact 1. Let X be a U -type design U(n; q1 × · · · × qm), λ = (
∑m

j=1 n/qj −m)/(n− 1)

and γ = bλc, where bxc denotes the integer part of x. Then,

D2(X; a, b) =
am

n
+
bm

n2

n∑
i,j=1,i6=j

(a
b

)λij
−

m∏
j=1

⌊
a+ (qj − 1)b

qj

⌋
,

n∑
i,j=1,i6=j

(a
b

)λij
≥ n(n− 1)

⌊
(γ + 1− λ)

(a
b

)γ
+ (λ− γ)

(a
b

)γ+1
⌋
, (2.1)

and the lower bound on the right-hand side of (2.1) can be achieved if and only if all

λij take the same value γ, or take only two values γ and γ + 1.

The necessary and sufficient condition stated in Fact 1 indicates that a uniform

design under the DD seeks a set of points with levels that are as different as possible.

Now, let us introduce the definition of a partitionable t-(v, k, 1) design.

Definition 2. A t-(v, k, 1) design is a pair (V,B), where V is a v-element set of points,

and B is a collection of k-element subsets of V (called blocks) with the property that

every t-element subset of V is contained in exactly one block. A t-(v, k, 1) design is

called partitionable if its block set B can be divided into several (t−1)-(v, k, 1) designs.

According to the above definition, it is easy to see that in a t-(v, k, 1) design,

there are exactly

(
v

t

)/(
k

t

)
, or

v(v − 1) · · · (v − t+ 1)

k(k − 1) · · · (k − t+ 1)
blocks. As a result, in a

partitionable t-(v, k, 1) design, there are exactly
v − t+ 1

k − t+ 1
(t−1)-(v, k, 1) designs, each

with

(
v

t− 1

)/(
k

t− 1

)
, or

v(v − 1) · · · (v − t+ 2)

k(k − 1) · · · (k − t+ 2)
blocks. For brevity, each (t − 1)-

(v, k, 1) design in a partitionable t-(v, k, 1) design is called a parallel class. Below is an

example.
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Example 1. Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8} be a nine-element set of points. Then,

the 84 blocks in Table 1 comprise a 3-(9, 3, 1) design. Furthermore, there are seven

parallel classes, denoted by P1, . . . ,P7, respectively, in this design. That is, the 12

blocks in column Pi comprise a 2-(9, 3, 1) design, for i = 1, . . . , 7. In other words,

Table 1 displays a partitionable 3-(9, 3, 1) design with seven 2-(9, 3, 1) designs as its

parallel classes. The design in Table 1 is obtained from Lu (1983).

Table 1: A partitionable 3-(9, 3, 1) design in Example 1.

P1 P2 P3 P4 P5 P6 P7

{1,2,4} {2,3,5} {3,4,6} {0,4,5} {1,5,6} {0,2,6} {0,1,3}

{3,5,6} {0,4,6} {0,1,5} {1,2,6} {0,2,3} {1,3,4} {2,4,5}

{1,5,7} {2,6,7} {0,3,7} {1,4,7} {2,5,7} {3,6,7} {0,4,7}

{2,6,8} {0,3,8} {1,4,8} {2,5,8} {3,6,8} {0,4,8} {1,5,8}

{0,3,4} {1,4,5} {2,5,6} {0,3,6} {0,1,4} {1,2,5} {2,3,6}

{2,3,7} {3,4,7} {4,5,7} {5,6,7} {0,6,7} {0,1,7} {1,2,7}

{4,5,8} {5,6,8} {0,6,8} {0,1,8} {1,2,8} {2,3,8} {3,4,8}

{0,1,6} {0,1,2} {1,2,3} {2,3,4} {3,4,5} {4,5,6} {0,5,6}

{4,6,7} {0,5,7} {1,6,7} {0,2,7} {1,3,7} {2,4,7} {3,5,7}

{1,3,8} {2,4,8} {3,5,8} {4,6,8} {0,5,8} {1,6,8} {0,2,8}

{0,2,5} {1,3,6} {0,2,4} {1,3,5} {2,4,6} {0,3,5} {1,4,6}

{0,7,8} {1,7,8} {2,7,8} {3,7,8} {4,7,8} {5,7,8} {6,7,8}

3. Construction of Uniform Designs

This section explores the relationship between partitionable t-designs and uniform

designs under the DD. A similar investigation was undertaken by Tang (2005). As

shown below, several infinite classes of symmetrical uniform designs that achieve the
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lower bound given in Fact 1 can be constructed from partitionable t-designs.

Let (V,B) be a partitionable t-(v, k, 1) design and, without loss of generality, set

V = {0, 1, . . . , v − 1}. Denote

n =

(
v

t− 1

)
,m =

v − t+ 1

k − t+ 1
and q =

v(v − 1) · · · (v − t+ 2)

k(k − 1) · · · (k − t+ 2)
. (3.1)

Suppose B = P1 ∪ P2 ∪ · · · ∪ Pm, where each parallel class Pi = ∪j{Pij}, for i =

1, 2, . . . ,m, j = 1, 2, . . . , q, represents the blocks of a (t − 1)-(v, k, 1) design. Then, a

U -type design U(n; qm) can be constructed as follows.

Construction 1.

Step 1. Order the q blocks Pij in each Pi randomly, for j = 1, 2, . . . , q, and i =

1, 2, . . . ,m.

Step 2. Order the n (t−1)-subsets of V lexicographically; they will be used as the row

labels of the design.

Step 3. For each Pi, for i = 1, 2, . . . ,m, construct a corresponding n-vector xi, with

coordinate labelled by (l1, l2, . . . , lt−1) taking the value j, if the (t − 1)-subset

{l1, l2, . . . , lt−1} occurs together in the jth block of Pi.

Step 4. Column-juxtapose the xi to form an n×m matrix X = (x1,x2, . . . ,xm).

Example 2. The U -type design U(36; 127) listed in Table 2 is derived from the parti-

tionable 3-(9, 3, 1) design in Example 1 by using Construction 1.
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Table 2: A U-type design U(36; 127).

Run Row Run Row

number label
I II III IV V VI VII

number label
I II III IV V VI VII

1 (0,1) 8 8 2 7 5 6 1 19 (2,6) 4 3 5 2 11 1 5

2 (0,2) 11 8 11 9 2 1 10 20 (2,7) 6 3 12 9 3 9 6

3 (0,3) 5 4 3 5 2 11 1 21 (2,8) 4 10 12 4 7 7 10

4 (0,4) 5 2 11 1 5 4 3 22 (3,4) 5 6 1 8 8 2 7

5 (0,5) 11 9 2 1 10 11 8 23 (3,5) 2 1 10 11 8 11 9

6 (0,6) 8 2 7 5 6 1 8 24 (3,6) 2 11 1 5 4 3 5

7 (0,7) 12 9 3 9 6 6 3 25 (3,7) 6 6 3 12 9 3 9

8 (0,8) 12 4 7 7 10 4 10 26 (3,8) 10 4 10 12 4 7 7

9 (1,2) 1 8 8 2 7 5 6 27 (4,5) 7 5 6 1 8 8 2

10 (1,3) 10 11 8 11 9 2 1 28 (4,6) 9 2 1 10 11 8 11

11 (1,4) 1 5 4 3 5 2 11 29 (4,7) 9 6 6 3 12 9 3

12 (1,5) 3 5 2 11 1 5 4 30 (4,8) 7 10 4 10 12 4 7

13 (1,6) 8 11 9 2 1 10 11 31 (5,6) 2 7 5 6 1 8 8

14 (1,7) 3 12 9 3 9 6 6 32 (5,7) 3 9 6 6 3 12 9

15 (1,8) 10 12 4 7 7 10 4 33 (5,8) 7 7 10 4 10 12 4

16 (2,3) 6 1 8 8 2 7 5 34 (6,7) 9 3 9 6 6 3 12

17 (2,4) 1 10 11 8 11 9 2 35 (6,8) 4 7 7 10 4 10 12

18 (2,5) 11 1 5 4 3 5 2 36 (7,8) 12 12 12 12 12 12 12

We have the following theorem; the proof can be found in the Appendix.

Theorem 1. The U-type design U(n; qm) derived from a partitionable t-(v, k, 1) design

using Construction 1 is a uniform design under the DD. Moreover, any of the possible

level-combinations between any two columns appears at most once.

Theorem 1 makes it possible for the experimenter to use existing partitionable

t-designs to obtain corresponding uniform designs. From the rich literature on parti-

tionable t-designs, we have the following fact.

Fact 2. The following results are known:
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1. For v ≡ 3 (mod 6), there exists a partitionable 2-(v, 3, 1) design (Ray-Chauduri

and Wilson (1971));

2. For v ≡ 4 (mod 12), there exists a partitionable 2-(v, 4, 1) design (Hanani (1974));

3. For v ≡ 1 or 3 (mod 6), there exists a partitionable 3-(v, 3, 1)design (Lu (1983,

1984); Teirlinck (1991));

4. For any integer v, there exists a partitionable 3-(4v, 4, 1) design (Baker (1976);

Zaicev, Zinoviev, and Semakov (1973));

5. For any integer v, there exists a partitionable 3-(2 ·Kv + 2, 4, 1) design, where K

is equal to 7 or 31 (Teirlinck (1994)).

Interested readers are referred to the corresponding references for how to construct

the above partitionable t-designs. In particular, some partitionable t-designs are tabu-

lated in the book by Colbourn and Dinitz (2007). Combining Theorem 1 and Fact 2,

we have the following theorem.

Theorem 2. If the parameters satisfy one of the conditions below, then there exists a

uniform design Un(qm) under the DD:

1. n ≡ 3 (mod 6), m = n−1
2

, q = n
3
;

2. n ≡ 4 (mod 12), m = n−1
3

, q = n
4
;

3. n =
(
v
2

)
, m = v − 2, q = v(v−1)

6
, where v ≡ 1 or 3 (mod 6);

4. n =
(
l
2

)
, m = l−2

2
, q = l(l−1)

12
, where l ≡ 0 (mod 4v), and v is a positive integer;
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5. n =
(
l
2

)
, m = l−2

2
, q = l(l−1)

12
, where l ≡ 2 (mod 2 · 7v or 2 · 31v), and v is a

positive integer.

Remark 1. From the proof of Theorem 1, it can be easily seen that the coincidence

number between any two rows of the design constructed using Construction 1 is

zero or one. This indicates that for a uniform design Un(qm) in Theorem 2, its any

sub-column design, say Un(qm
∗
) with 1 < m∗ < m, is still a uniform design under the

DD. For given n,m,m∗, and q, with 1 < m∗ < m, there are
(
m
m∗

)
sub-column uniform

designs of a Un(qm). In this case, the experimenter may adopt other design criteria,

such as the generalized minimum aberration or centered L2-discrepancy, to further

discriminate them.

4. Construction of Nested Uniform Designs

Nested space-filling designs are useful for multi-fidelity computer experiments, se-

quential experiments, and stochastic optimization (e.g., see Qian (2009), Qian, Tang,

and Wu (2009), Qian, Ai, and Wu (2009), Sun, Yin, and Liu (2013), Sun, Liu, and

Qian (2014), Yang, Liu, and Lin (2014), and Yang et al. (2016b)). In the previous

section, we derived several infinite classes of new uniform designs under the DD. In this

section, we further explore nested uniform designs under the DD. Here, we find that

nested uniform designs with two layers can be obtained from partitionable 3-(v, 3, 1)

designs, while nested uniform designs with more than two layers can be obtained from

partitionable t-(v, k, 1) designs with t ≥ 4.

For simplicity of exposition, we use the notation NUn1,n2,...,nl
(qm1 , q

m
2 , . . . , q

m
l ) to

denote a symmetrical nested uniform design with l layers; that is, for i = 1, . . . , l, each
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Uni
(qmi ) is a symmetrical uniform design such that Unj

(qmj ) is a subdesign of Unk
(qmk ),

for j < k. The following construction and theorem reveal that an NUn1,n2(q
m
1 , q

m
2 )

with n1 = v − 1, q1 = (v − 1)/2, n2 = v(v − 1)/2, q2 = v(v − 1)/6, and m = v − 2 can

be obtained based on a partitionable 3-(v, 3, 1) design. The proof can be found in the

Appendix.

Construction 2.

Step 1. Based on a partitionable 3-(v, 3, 1) design, a uniform design Un2(q
m
2 ) with

n2 = v(v−1)/2, q2 = v(v−1)/6, andm = v−2 can be obtained using Construction

1. For brevity, denote the resulting uniform design by X.

Step 2. Collect the first v−1 rows of X as a subdesign of X. For brevity, denote such

a subdesign by X1.

Theorem 3. The design X1 is a uniform design Un1(q
m
1 ) under the DD and, therefore,

the design X is a nested uniform design NUn1,n2(q
m
1 , q

m
2 ), where

n1 = v − 1, q1 =
v − 1

2
, n2 =

v(v − 1)

2
, q2 =

v(v − 1)

6
and m = v − 2.

Example 3. The first eight rows of the design in Table 2 comprise a U -type design

U(8; 47), denoted by X1, that is a uniform design under the DD. Therefore, the design

listed in Table 2 is a nested uniform design NU8,36(4
7, 127), denoted by X. By setting

a = 2 and b = 1, we have that D2(X; a, b) = 1764, which achieves the lower bound

given in Fact 1. In addition, D2(X1; a, b) = 112, which also achieves the lower bound

of the DD.
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Remark 2. (i) According to the proof of Theorem 3, it is not difficult to see that there

are as many as v subdesigns of X, all of which are uniform designs under the DD. These

subdesigns respectively correspond to the row labels containing i, for i = 0, . . . , v − 1.

For instance, the rows 9–15 together with the first row in Table 2 also comprise a

uniform design U8(4
7). We choose the first v − 1 rows of X as the nested subde-

sign, just for convenience. In practice, the experimenter may adopt other design

criteria, such as the centered L2-discrepancy, to further discriminate these v subde-

signs. (ii) It is possible to conduct a level permutation to each column of a nested

uniform design so that the level symbols appearing in the nested subdesign are con-

sistent for each column, and the levels are distributed as uniformly as possible for

each dimension. For instance, one may randomly choose a level from each of the sets

{1, 2, 3}, {3, 5, 6}, {7, 8, 9}, and {10, 11, 12}, say 2, 6, 7, and 12, and conduct the lev-

el permutation (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)→ (1, 5, 3, 4, 2, 8, 11, 6, 9, 10, 7, 12) to the

first column of the design in Table 2, such that the four levels 2, 6, 7, and 12 appear

in the first column of the first eight rows. Similar practices may be applied to the

remaining columns (see Table 3).

Theorem 3 indicates that there is a (v−1)-run uniform design nested in a v(v−1)/2-

run uniform design. The following construction and theorem further reveal that several

uniform designs with larger run sizes than v − 1 are also nested in the v(v − 1)/2-run

uniform design. The proof can be found in the Appendix.

Construction 3.

Step 1. Based on a partitionable 3-(v, 3, 1) design, a uniform design Un2(q
m
2 ) with n2 =

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0173
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Table 3: A nested uniform design NU8,36(4
7, 127).

Run Row Run Row

number label
I II III IV V VI VII

number label
I II III IV V VI VII

1 (0,1) 6 7 2 7 6 7 2 19 (2,6) 4 3 5 1 11 2 5

2 (0,2) 7 7 12 12 2 2 12 20 (2,7) 8 3 11 12 3 9 3

3 (0,3) 2 6 6 6 2 12 2 21 (2,8) 4 10 11 4 5 4 12

4 (0,4) 2 2 12 2 6 6 6 22 (3,4) 2 4 1 8 8 1 8

5 (0,5) 7 12 2 2 12 12 7 23 (3,5) 5 1 10 11 8 12 9

6 (0,6) 6 2 7 6 7 2 7 24 (3,6) 5 11 1 6 4 3 5

7 (0,7) 12 12 6 12 7 7 6 25 (3,7) 8 4 6 9 9 3 9

8 (0,8) 12 6 7 7 12 6 12 26 (3,8) 10 6 10 9 4 4 8

9 (1,2) 1 7 8 1 5 5 3 27 (4,5) 11 5 3 2 8 8 1

10 (1,3) 10 11 8 11 9 1 2 28 (4,6) 9 2 1 10 11 8 11

11 (1,4) 1 5 4 3 6 1 11 29 (4,7) 9 4 3 3 10 9 6

12 (1,5) 3 5 2 11 1 5 4 30 (4,8) 11 10 4 10 10 6 8

13 (1,6) 6 11 9 1 1 10 11 31 (5,6) 5 8 5 5 1 8 7

14 (1,7) 3 9 9 3 9 7 3 32 (5,7) 3 12 3 5 3 11 9

15 (1,8) 10 9 4 7 5 10 4 33 (5,8) 11 8 10 4 12 11 4

16 (2,3) 8 1 8 8 2 4 5 34 (6,7) 9 3 9 5 7 3 10

17 (2,4) 1 10 12 8 11 9 1 35 (6,8) 4 8 7 10 4 10 10

18 (2,5) 7 1 5 4 3 5 1 36 (7,8) 12 9 11 9 10 11 10

• This design is obtained by permuting the factor levels in Table 2.

v(v − 1)/2, q2 = v(v − 1)/6, and m = v − 2 can be obtained using Construction

1. Denote the resulting uniform design by X.

Step 2. For each i ∈ {2, . . . , (v + 1)/2 − 1}, denote Ri = {1, . . . , iv − i(i + 1)/2},

Rid = {[(i− k)− 1]v − (i− k)[(i− k)− 1]/2 + 1, . . . , [(i− k)− 1]v − (i− k)[(i−

k)− 1]/2 + k : k ∈ {1, . . . , i− 1}}, and ∇i = Ri/Rid; let Xi be the subdesign of

X with run numbers that are those in ∇i.

Theorem 4. For each i ∈ {2, . . . , (v + 1)/2 − 1}, the design Xi constructed using

Construction 3 is a uniform design Uni
(qmi ) under the DD and, therefore, the design
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X can be viewed as a nested uniform design NUni,n(qmi , q
m), where

ni = iv − i2, qi =
iv − i2

2
, n =

v(v − 1)

2
, q =

v(v − 1)

6
, and m = v − 2.

Example 4. In addition to the eight-run subdesign identified in Example 3, there are

three further subdesigns with larger run sizes nested in Table 2: (1) the first 15 runs,

with the first run removed, comprise a U -type design U(14; 77); (2) the first 21 runs,

with the first, second, and ninth runs removed, comprise a U -type design U(18; 97); and

(3) the first 26 runs, with the first, second, third, ninth, 10th, and 16th runs removed,

comprise a U -type design U(20; 107). Setting a = 2 and b = 1, the DD values of the

above three subdesigns are 280, 432, and 520, respectively, all of which achieve the

lower bound given in Fact 1.

The following construction and theorem reveal that a nested uniform design with

more than two layers can be constructed based on a partitionable t-(v, k, 1) design with

t ≥ 4. The proof can be found in the Appendix.

Construction 4.

Step 1. Based on a partitionable t-(v, k, 1) design with t ≥ 4, a uniform design Unt−1(q
m
t−1)

with

nt−1 =

(
v

t− 1

)
,m =

v − t+ 1

k − t+ 1
, and qt−1 =

v(v − 1) · · · (v − t+ 2)

k(k − 1) · · · (k − t+ 2)

can be obtained using Construction 1. Denote the resulting uniform design by

Xt−1.

Step 2. For i = 1, . . . , t− 2, let Xi be the first

(
v − (t− 1) + i

i

)
rows of Xt−1.
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Theorem 5. For i = 1, . . . , t − 1, the design Xi constructed using Construction 4 is

a uniform design Uni
(qmi ) under the DD and, therefore, the design Xt−1 is a nested

uniform design NUn1,...,nt−1(q
m
1 , . . . , q

m
t−1), where

ni =

(
v − (t− 1) + i

i

)
, qi =

(
v − (t− 1) + i

i

)/(
k − (t− 1) + i

i

)
, and m =

v − t+ 1

k − t+ 1
.

Remark 3. From the proof of Theorem 5, it is not difficult to see that a two-layer

nested uniform design can also be obtained using Construction 4 when t = 3. In

general, finding a partitionable t-(v, k, 1) design with t ≥ 4 is not easy, as shown by

the paucity of literature on design theory. As a result, nested uniform designs with

two layers may be the most commonly used in practice.

5. Construction of Sliced Uniform Designs

Sliced space-filling designs are useful for computer experiments with both quali-

tative and quantitative variables, ensembles of multiple computer models, and cross-

validation (e.g., see Qian and Wu (2009), Xu, Haaland, and Qian (2011), Qian (2012),

and Yang et al. (2016a)). In this section, we focus on sliced uniform designs under

the DD. We find that such a design can be generated based on a special partitionable

3-(v, 3, 1) design in which each of the parallel classes is a partitionable 2-(v, 3, 1) design.

In contrast to the nested subdesigns in the previous section, the sliced subdesigns in

this section are asymmetrical uniform designs.

For simplicity of exposition, the notation SUn(qm; s, n1, q1 × · · · × qm) is used to

denote a sliced uniform design; that is, it is a uniform design Un(qm) that can be

partitioned into s slices, each of which is a uniform design Un1(q1×· · ·×qm). Obviously,
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we have the relation n = sn1. The following construction and theorem reveal that an

SUn(qm; s, n1, q1×nm−11 ) can be constructed based on a partitionable 3-(v, 3, 1) design

in which each parallel class is a partitionable 2-(v, 3, 1) design. The proof can be found

in the Appendix.

Construction 5.

Step 1. Based on a partitionable 3-(v, 3, 1) design in which each parallel class is a

partitionable 2-(v, 3, 1) design, a uniform design Un(qm) with n = v(v−1)/2, q =

v(v − 1)/6, and m = v − 2 can be generated using Construction 1. Denote the

resulting uniform design by X.

Step 2. Suppose that P1 (a partitionable 2-(v, 3, 1) design) is the first parallel class of

the partitionable 3-(v, 3, 1) design, and let U1, . . . ,Uh be the h parallel classes in

P1, where h = (v − 1)/2, and there are u = v/3 blocks in each Ui.

Step 3. Permute the rows of X such that the row labels corresponding to the (iv− v+

1)th, . . . , ivth runs are two-subsets contained in the blocks of Ui, for i = 1, . . . , h.

Denote the subdesign corresponding to the (iv − v + 1)th, . . . , ivth runs as Xi.

Theorem 6. For each i ∈ {1, . . . , h}, the design Xi constructed using Construction

5 is a uniform design Uv(q1 × vm−1) under the DD and, therefore, the design X is a

sliced uniform design SUn(qm; s, v, q1 × vm−1), where

n =
v(v − 1)

2
, q =

v(v − 1)

6
,m = v − 2, s =

v − 1

2
, and q1 =

v

3
.

Example 5. It is not difficult to check that each Pi in Table 1 is a partitionable

2-(9, 3, 1) design with the first, second, and 12th blocks, the third, fourth, and fifth
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blocks, the sixth, seventh, and eighth blocks, and the ninth, 10th, and 11th blocks as

its four parallel classes. Hence, the block design in Table 1 is a partitionable 3-(9, 3, 1)

design, with each parallel class being a partitionable 2-(9, 3, 1) design. Let

U1 = {{0, 7, 8}, {1, 2, 4}, {3, 5, 6}} ,

U2 = {{1, 5, 7}, {2, 6, 8}, {0, 3, 4}} ,

U3 = {{2, 3, 7}, {4, 5, 8}, {0, 1, 6}} , and

U4 = {{4, 6, 7}, {1, 3, 8}, {0, 2, 5}}

be the four parallel classes of P1. Let X1 be the subdesign with row labels (0, 7), (0, 8),

(7, 8), (1, 2), (1, 4), (2, 4), (5, 6), (3, 5), and (3, 6). Let X2 be the subdesign with row

labels (1, 5), (1, 7), (5, 7), (2, 6), (2, 8), (6, 8), (0, 3), (0, 4), and (3, 4). Let X3 be the sub-

design with row labels (2, 3), (2, 7), (3, 7), (4, 5), (4, 8), (5, 8), (0, 1), (0, 6), and (1, 6). Let

X4 be the subdesign with row labels (4, 6), (4, 7), (6, 7), (1, 3), (1, 8), (3, 8), (0, 2), (0, 5),

and (2, 5). Then, one can obtain the design in Table 4 by permuting the rows in Table

2, where in Table 4, each Xi corresponds to a sliced subdesign. It is easy to verify

that each Xi is a U -type design U(9; 3× 96). In addition, by setting a = 2 and b = 1,

we have that D2(X1; a, b) = D2(X2; a, b) = D2(X3; a, b) = D2(X4; a, b) = 90, which

achieves the lower bound of the DD.

Remark 4. (i) The first column of each slice has replicated levels. Therefore, the

first column of the design may be assigned to the factor that is believed to be the

most important. (ii) Unlike the nested designs in the previous section, it is almost

impossible to find level permutations for our sliced design such that the factor levels are

consistent for each slice and achieve maximum univariate stratification. Therefore, the
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Table 4: A sliced uniform design SU36(127; 4, 3× 96).

Row Row

label
I II III IV V VI VII

label
I II III IV V VI VII

(0,7) 12 9 3 9 6 6 3 (2,3) 6 1 8 8 2 7 5

(0,8) 12 4 7 7 10 4 10 (2,7) 6 3 12 9 3 9 6

(7,8) 12 12 12 12 12 12 12 (3,7) 6 6 3 12 9 3 9

(1,2) 1 8 8 2 7 5 6 (4,5) 7 5 6 1 8 8 2

X1 (1,4) 1 5 4 3 5 2 11 X3 (4,8) 7 10 4 10 12 4 7

(2,4) 1 10 11 8 11 9 2 (5,8) 7 7 10 4 10 12 4

(5,6) 2 7 5 6 1 8 8 (0,1) 8 8 2 7 5 6 1

(3,5) 2 1 10 11 8 11 9 (0,6) 8 2 7 5 6 1 8

(3,6) 2 11 1 5 4 3 5 (1,6) 8 11 9 2 1 10 11

(1,5) 3 5 2 11 1 5 4 (4,6) 9 2 1 10 11 8 11

(1,7) 3 12 9 3 9 6 6 (4,7) 9 6 6 3 12 9 3

(5,7) 3 9 6 6 3 12 9 (6,7) 9 3 9 6 6 3 12

(2,6) 4 3 5 2 11 1 5 (1,3) 10 11 8 11 9 2 1

X2 (2,8) 4 10 12 4 7 7 10 X4 (1,8) 10 12 4 7 7 10 4

(6,8) 4 7 7 10 4 10 12 (3,8) 10 4 10 12 4 7 7

(0,3) 5 4 3 5 2 11 1 (0,2) 11 8 11 9 2 1 10

(0,4) 5 2 11 1 5 4 3 (0,5) 11 9 2 1 10 11 8

(3,4) 5 6 1 8 8 2 7 (2,5) 11 1 5 4 3 5 2

sliced designs constructed using Construction 5 may only be suitable for experiments

with qualitative factors. (iii) For further details on the existence and construction of

partitionable 3-(v, 3, 1) designs in which each parallel class is a partitionable 2-(v, 3, 1)

design, refer to Lu (1983, 1984) and Teirlinck (1991).

6. Conclusion

Combinatorial configurations have received much attention, with numerous con-

struction methods now available. In this study, we identify a strong relationship

between uniform designs under the DD and partitionable t-designs. This can help
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experimenters directly obtain the corresponding uniform designs, nested uniform de-

signs, and sliced uniform designs by using existing combinatorial configurations with

specific properties. The combinatorial construction methods presented here are easy to

implement, and have been proved to be effective. Future work may consider partition-

able t-(v, k, λ) designs with λ ≥ 2. It is possible that additional uniform designs and

complex-structured uniform designs may be obtained based on such configurations.
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Appendix: Proofs of Theorems

A.1. Proof of Theorem 1

Since k < v, then q > 1 and q > m, which implies that the value of γ in Fact 1 is 0.

According to Fact 1, it suffices to prove that the Hamming distance between any two

distinct rows take the same value m, or take only two values m and m − 1. Consider

two different rows labelled by (l
(1)
1 , l

(1)
2 , . . . , l

(1)
t−1) and (l

(2)
1 , l

(2)
2 , . . . , l

(2)
t−1). Regarding these

two labels as two subsets of the point set V , then the union of them, denoted by S,

contains at least t distinct points. From the definition of a t-(v, k, 1) design, S as a

whole can occur at most in one block. Thus the Hamming distance can only take value

m or m − 1, which also indicates that any of the possible level-combinations between

any two columns appears at most once.

A.2. Proof of Theorem 3

It it sufficient to prove that X1 is a U -type design U(n1; q
m
1 ). This is because X is

a uniform design according to Theorem 1, which implies that the Hamming distance

between any two distinct rows of X can only take value m or m − 1. Obviously, the

Hamming distance between any two distinct rows of X1 can only take value m or m−1

because X1 is a subdesign of X. Therefore, in order to prove X1 is a uniform design

we just need to verify that X1 is a U -type design.

Since X1 is the first v−1 rows of X and the row labels of X, i.e., 2-subsets of V are

ordered lexicographically, it is easy to see that the row labels of X1 are those 2-tuples

leading by 0. On the other hand, each parallel class of a partitionable 3-(v, 3, 1) design
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is a 2-(v, 3, 1) design. Therefore, for each parallel class there are exactly q1 = (v− 1)/2

blocks containing 0. This indicates that X1 is a q1-level design with each level appearing

(v − 1)/q1 = 2 times in each column. In other words, X1 is a U -type design U(n1; q
m
1 )

with

n1 = v − 1, q1 =
v − 1

2
and m = v − 2.

A.3. Proof of Theorem 4

It suffices to prove that Xi is a U -type design U(ni; q
m
i ) for each i ∈ {2, . . . , (v +

1)/2− 1}. For each parallel class, let Bj be the set of blocks that contain the element

j, j = 1, . . . , v. As demonstrated in the proof of Theorem 3, each Bj contains (v−1)/2

blocks. Furthermore, the intersection Bj∩Bl(j 6= l) contains only one block; otherwise,

the 2-subset {j, k} would occur in more than one block, which contradicts the fact that

each parallel class of a partitionable 3-(v, 3, 1) design is a 2-(v, 3, 1) design.

Now consider the first 2v − 3 rows of X whose row labels are leading by 0 and 1.

Since the intersection B1 ∩ B2 contains only one block, each column of the first 2v − 3

rows has a level appearing 3 times while each of the remaining levels appears 2 times.

Consequently, if we delete the first row whose row label is (0, 1), then the remaining

rows (rows 2 to 2v − 3) comprise a U -type design U(2v − 4; (2v − 4)/2). Similarly, if

we consider the first iv − i(i+ 1)/2 rows of X for i > 2, then the row labels are those

leading by 0 to i− 1 and there are as many as C2
i = i(i− 1)/2 levels appearing 3 times

in each column of the first iv−i(i+1)/2 rows while each of the remaining levels appears

only 2 times. Hence, if we delete the rows labeled by {(j, k) : 0 ≤ j < k ≤ i− 1} from

the the first iv− i(i+ 1)/2 rows, the reduced design is a U -type design with each level
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occurring 2 times in each column. In other words, for each i ∈ {2, . . . , (v + 1)/2− 1},

denote

Ri = {1, . . . , iv − i(i+ 1)

2
},

Rid = {[(i− k)− 1]v − (i− k)[(i− k)− 1]

2
+ 1,

. . . , [(i− k)− 1]v − (i− k)[(i− k)− 1]

2
+ k : k ∈ {1, . . . , i− 1}} and

∇i = Ri −Rid,

and let Xi be the subdesign of X whose row numbers are those in ∇i, then Xi is a

U -type design U(ni; q
m
i ) with

ni = iv − i2 and qi =
iv − i2

2
.

A.4. Proof of Theorem 5

It suffices to prove that Xi is a U -type design U(ni; q
m
i ) for each i ∈ {1, . . . , t− 2}.

Note that the row labels of Xi are those leading by 0, 1, . . . , t − 2 − i. On the other

hand, for each parallel class there are

(
v − (t− 1) + i

i

)/(
k − (t− 1) + i

i

)
blocks

containing the set {0, 1, . . . , t − 2 − i}. As a result, Xi is a U -type design U(ni; q
m
i )

with

ni =

(
v − (t− 1) + i

i

)
and qi =

(
v − (t− 1) + i

i

)/(
k − (t− 1) + i

i

)
.

A.5. Proof of Theorem 6

It suffices to prove that Xi is a U -type design U(v; q1×vm−1) for i = 1, . . . , (v−1)/2.

Consider the first column of Xi, it is easy to see that there are v/3 levels each of which
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occurs 3 times in the first column because the row labels of Xi are those 2-subsets

contained in the blocks of Ui. Now consider the jth column of Xi for j ∈ {2, . . . ,m−1}.

Note that Ui is a partitionable 2-(v, 3, 1) design, which implies that the union of any

two row labels of Xi is a 3-subset that is contained in Ui or it is a 4-subset of V . As a

consequence, if there is level occurring more than once in the jth column, then there

is a 3-subset occurring at least twice in the 3-(v, 3, 1) design or there is a 4-subset

occurring at least once in the 3-(v, 3, 1) design. This contradicts the definition of a

3-(v, 3, 1) design. Therefore, there are v distinct levels in the jth column of Xi for

j ∈ {2, . . . ,m − 1}. In other words, the uniform design X is a sliced uniform design

SUn(qm; s, v, q1 × vm−1) where

n =
v(v − 1)

2
, q =

v(v − 1)

6
,m = v − 2, s =

v − 1

2
, and q1 =

v

3
.
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