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We thank Statistica Sinica for providing the venue for this paper and

its discussion, and all discussants for their many contributions, insights,

and thought-provoking questions. The area of dynamic treatment regimes

is developing rapidly, and we hope that our paper and the subsequent dis-

cussion will add further momentum to this exciting field. In this rejoinder,

we focus on the following four topics: (1) the nonregularity issue, when

neither treatment is more beneficial for a nontrivial subgroup (comments

by Lu; Qian and Cheng; Qiu et al.); (2) the linear decision boundary (com-

ments by He, Xu, and Wang; Lu; Qiu et al.); (3) extensions that incorporate

smooth weights, multiple classes, or a nonconvex loss (comments by Wager;

Kallus; Lu; Qian and Cheng; He et al.; Qiu et al.; Zhang and Laber); (4)

interpreting the p-value in a real application (comment by Wager).
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1. NONREGULARITY

1. Nonregularity

The nonregularity issue P (X∗Tt β0
t = 0) > 0 is a long-standing and challeng-

ing inference problem in estimations of dynamic treatment regimes. Our

assumption A3 rules out this situation; in particular, we allow a relatively

weak condition on the distribution decay near this boundary. Recent at-

tempts to address this issue include finding a probability upper bound,

regardless of this nonregularity (Laber et al., 2014), the m-out-of-n boot-

strap method (Chakraborty et al., 2013), data-adaptive hard-thresholding

(Zhu, Zeng, and Song, 2018), penalized Q-learning (Song et al. , 2014),

and adaptive Q-learning (Goldberg et al. , 2012). However, inferences

may be either conservative or unreliable in the case of small sample sizes.

Thus, there remains much scope for research on improving inferences with

nonregularity.

Although such inferences are theoretically interesting, the impact of

nonregularity on practical evaluations of optimal treatment regimes may

not be that significant. Essentially, the treatments work very similarly

near the boundary. Even if some patients near the decision boundary are

allocated to less beneficial treatments, owing to an incorrect inference, the

changes to the estimated value function and its inference are practically

negligible. This is observed in our numerical studies that demonstrate the
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2. LINEAR DECISION BOUNDARY

robustness of our methods. On the other hand, as suggested by Qiu et al., a

more realistic consideration is to test whether the treatment effect exceeds

a certain level (i.e., X∗t
Tβ0

t ≤ γ, for some γ > 0). Theoretically, we can

always choose some γ close to a clinically meaningful threshold such that

P (X∗Tt γ = 0) = 0 to void the nonregularity issue.

2. Linear decision boundary

Some discussants suggested there may be restrictions on the applicability of

the linear form of the treatment decision. Specifically, He et al. suggested

nonparametric treatment rules for entropy learning under the RKHS frame-

work, and Qiu et al. obtained nonparametric decision rules using the highly

adaptive LASSO approach. Many extensions to our rule are possible, fol-

lowing these suggestions. For example, a simple extension to our linear

rule is to incorporate quadratic terms in our estimation to capture possible

interactions between the feature covariates. Such ideas emerged recently

in the discrimination and regression analysis literature (Jiang et al., 2018;

Wang et al., 2019), and have enjoyed consistency for interaction detection.

Furthermore, we may consider smoothing splines to obtain fully nonpara-

metric rules, although the current inference results need to be adapted to

reflect the nature of a sieve estimation.
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3. EXTENSIONS TO INCORPORATE SMOOTH WEIGHTS,
MULTICLASS, OR NONCONVEX LOSS

We argue that linear decision rules themselves are still of consider-

able value in practice, owing to their simplicity and better interpretability.

Several discussants noted that the computational demand could become

prohibitively heavy when big data such as electronic transaction records or

medical images are present. In this case, the simple form of linear rules

coupled with a convex objective function, such as the entropy learning loss

in our work, becomes most appealing (Shi et al., 2018). Finally, partly

because of the dichotomous nature of the treatment rule, applying linear

rules to derive the value function may not be disadvantageous compared

with using rules that are more complex. However, further empirical and

theoretical investigation is necessary.

3. Extensions to incorporate smooth weights, multiclass, or non-

convex loss

While many discussants provided helpful suggestions, in this section, we

provide brief replies to selected issues; certainly, many deserve a much longer

explanation.

Kallus suggested replacing the indicator functions in the estimation

equations (e.g., equation (2.8)) with optimal balancing weights to avoid

omitting too many samples when T is large. The balanced approach is in-
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3. EXTENSIONS TO INCORPORATE SMOOTH WEIGHTS,
MULTICLASS, OR NONCONVEX LOSS

teresting, and can produce better estimation results than those of outcome-

weighted approaches. Here, recent research has led to a greater understand-

ing of the theoretical properties of covariate balancing in causal inferences

(Zhao, 2019). However, because the weights are data-driven, it is often diffi-

cult to conduct inferences, and the computational complexity might be high

for particularly big data. Nevertheless, we agree that it would be mean-

ingful to replace the indicator functions in some early stages with optimal

balancing weights. This will enable proper inferences in the later stages,

and alleviate the issue of omitting too many samples during the backward

estimation procedure. On the other hand, with appropriate smoothness

assumptions, it is also possible to obtain valid inferences, with extra effort

required to take care of the kernel approximation bias.

Dr. Lu inquired whether E-learning is adaptable to treatments with

multiple categories at each stage. Our answer is yes. Note that for the

two-class case, the minimizer of (2.4) is log E[R|A=1,X=x]
E[R|A=−1,X=x]

, which attains a

form similar to that of an odds ratio. Mimicking this form, we may adopt

a simple approach to, for example, set the first treatment option as the

baseline, and then estimate the pairwise contrast for the other option versus

the first option. This operation is similar to the extension of the classical

binary logistic regression model to the multiclass logistic regression model.
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4. INTERPRETATION OF P-VALUES

In addition to E-learning, proposed in this work, many learning ap-

proaches for individual treatment selection have been established under

various objective (see the introduction for further examples). Subsequent to

this work being accepted for publication, we were informed that C-learning

(Zhang and Zhang , 2018; Hager et al., 2018), augmented O-learning (Liu

et al., 2018), concordance assisted learning (Fan et al., 2017; Liang et al.,

2018), maximin projection learning (Shi et al., 2018), and quantile optimal

treatment regimes (Wang et al. , 2018) had since been proposed, among

many others. In this discussion, discussants continued to suggest further

modifications. Qian and Cheng provided theoretical results for the excess

risk and excess value of entropy learning, based on the construction in

Bartlett et al. (2006). Qiu et al. studied the behavior of entropy learning

under model misspecification, proposing a framework for nonparametric

decision rules. Zhang and Laber developed a direct search approach, in

which they replace the 0-1 loss with a nonconvex surrogate, to estimate an

authentic linear rule that ensures value optimization.

4. Interpretation of p-values

Dr. Wager raised a concern on how to interpret the p-values from the

regression tables. We agree that when more than one linear rule leads to
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4. INTERPRETATION OF P-VALUES

the same optimal value, as demonstrated in his numerical example, using a

p-value to conclude an important feature for a treatment decision could be

misleading.

However, information contained in p-values usually cannot be recovered

by other measures. As such, we may not want to completely retire them,

for the following detailed reasons:

(a) For an estimated linear rule, such as that in our application, p-values

can be used to assess statistical evidence on whether a feature contributes

to a rule. However, identifying an important feature does not necessarily

imply its utility in the treatment decision for value improvement. This sig-

nificance is useful in practice when examining the uncertainty of a rule in

a finite sample.

(b) The p-values given in the tables provide a computationally simple way

to assess the importance of features in the estimated optimal treatment

rule. Thus, it is potentially useful for screening out noisy features in the

high-dimensional data settings (for example, Zhu, Zeng, and Song (2018)).

In contrast, using value-based methods to select important features may be

computationally intensive or unstable, especially when more than one rule

yields the same optimal value.

(c) The p-values given in the tables are associated with the particular sur-
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E-Learning for DTR

rogate loss (entropy loss) we used. In this sense, each inference used to

test a feature’s contribution is unique and reliable, in practice. However,

value-based inferences are infeasible owing to a lack of uniqueness.

Finally, we believe that the best way to assess the importance of features

is a combination of our approach and a value-based method. The former

yields an unambiguous treatment rule and associated inference, which is

useful in practice. The latter ensures that the selected features truly lead

to clinically meaningful benefits.
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