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Abstract: In the context of a high-dimensional linear regression model, we propose

an empirical correlation-adaptive prior that uses information in the observed

predictor variable matrix to adaptively address high collinearity. We use this prior

to determine whether the parameters associated with the correlated predictors

should be shrunk together or kept apart. Under certain conditions, we prove

that our empirical Bayes posterior concentrates at the optimal rate. Therefore

the benefits of correlation-adaptation in finite samples can be achieved without

sacrificing asymptotic optimality. A version of the shotgun stochastic search

algorithm is employed to compute the posterior and facilitate variable selection.

Finally we demonstrate our method’s favorable performance compared with that

of existing methods using real and simulated data examples, even in ultrahigh-

dimensional settings.

Key words and phrases: Collinearity; empirical Bayes; posterior convergence rate;

stochastic search; variable selection.
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1. Introduction

Consider the standard linear regression model

Y = Xβ + ε,

where Y is an n × 1 vector of response variables, X is an n × p matrix of

predictor variables, β is a p× 1 vector of regression coefficients, and ε is a

vector of independent and identically distributed(i.i.d) N(0, σ2) errors. We

are interested in the high-dimensional case where p� n. Furthermore, we

assume that the true β is sparse in the sense that only a small subset of the

β coefficients are nonzero.

There are a variety of methods available for estimating β under a spar-

sity constraint. These include regularization-based methods such as the

Lasso (Tibshirani, 1996), adaptive Lasso (Zou, 2006), smoothly clipped ab-

solute deviations(SCAD) penalty (Fan and Li, 2001), and minimax concave

penalty(MCP) (Zhang, 2010); see Fan and Lv (2010) for a review. From a

Bayesian point of view, a variety of priors for regression coefficients and the

model space have been developed, leading to promising selection properties.

For the regression coefficients, β, the normal mixture prior is specified in

George and McCullogh (1993); George and Foster (2000) introduce empiri-

cal Bayes ideas; Ishwaran and Rao (2005) use spike-and-slab priors; Bondell

and Reich (2012) estimate β as the “most sparse” among those in a suit-
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able posterior credible region; Polson and Scott (2012) consider a horseshoe

prior; Narisetty and He (2014) use shrinking and diffusing priors; and Mar-

tin et al. (2017) consider an empirical Bayes version of the spike-and-slab.

Collinearity is unavoidable in high-dimensional settings. Methods such

as the Lasso tend to smooth away the regression coefficients of highly

collinear predictors and, hence, deter correlated covariates from being in-

cluded in the model simultaneously. This motivated Krishna et al. (2009)

to propose an adaptive-powered correlation prior that lets the data itself

decide how the collinear predictors are to be handled. However, their sug-

gested generalized Zellner’s prior is not applicable in the p > n scenario.

To overcome this, we adopt an empirical Bayes approach based on an em-

pirical correlation-adaptive prior (ECAP) that uses the data to decide how

to shrink the coefficients associated with the correlated predictors. In Sec-

tion 2, we present our empirical Bayes model and a motivating example

illustrating the effect of the correlation-adaptation in the prior. Asymp-

totic posterior concentration properties are derived in Section 3. In partic-

ular, the minimax optimal concentration rates are established for the mean

response, showing that the finite-sample benefits of correlation-adaptation

lead to no loss of asymptotic optimality. In Section 4, we recommend a shot-

gun stochastic search approach to compute the posterior distribution over
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the model space. Simulation experiments are presented in Section 5. Here

we demonstrate the benefits for variable selection of adaptively varying the

correlation structure in the prior, as compared with existing methods. The

real-data illustration in Section 6 highlights the improved predictive perfor-

mance, even in ultrahigh-dimensional settings, of the proposed correlation-

adaptive prior. All proofs are deferred to the Supplementary Material.

2. Model specification

2.1 The prior

Under assumed sparsity, it is natural to decompose β as (S, βS), where

S ⊆ {1, 2, . . . , p} is the set of nonzero coefficients, called the configuration

of β, and βS is the |S|-vector of nonzero values, with |S| denoting the

cardinality of S. We write XS for the sub-matrix of X corresponding to

the configuration S. With this decomposition of β, a hierarchical prior is

convenient, that is, a prior for S and a conditional prior for βS, given S.

First, for the prior π(S) for S, we follow Martin et al. (2017) and write

π(S) = π(S | |S| = s)fn(s),

where fn(s) is a prior on |S| and π(S | |S| = s) is a conditional prior on S,
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given |S|. Based on the recommendation in Castillo et al. (2015), we take

fn(s) ∝ c−sp−as, s = 0, 1, . . . , R, (2.1)

where a and c are positive constants, and R = rank(X) ≤ n. It is common

to take π(S | |S| = s) to be uniform, but here we break from this trend to

take collinearity into account. Let D(S) = |X>SXS| denote the determinant

of X>SXS, and consider the geometric mean of the eigenvalues, D(S)1/|S|,

as a measure of the “degree of collinearity” in model S. We set

πλ(S | |S| = s) =
D(S)−λ/(2s)1{κ(S) < Cpr}∑

S:|S|=sD(S)−λ/(2s)1{κ(S) < Cpr}
, λ ∈ R, (2.2)

where κ(S) is the condition number of X>SXS, and r and C are positive con-

stants, specified to exclude models with extremely ill-conditioned X>SXS.

The constant λ is an important feature of the proposed model, and is dis-

cussed in more detail below. Because of the dependence on λ above, we

henceforth write πλ(S) for the prior of S.

In these high-dimensional problems, the properties of the posterior dis-

tribution are highly sensitive to the choice of prior. For example, Castillo

and van der Vaart (2012) show that, with thin-tailed Gaussian priors on the

coefficients, the posterior distribution might concentrate at a sub-optimal

rate. As such, they recommend using priors with heavier-than-Gaussian

tails. However, these heavy-tailed priors lack the desirable conjugacy prop-
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erties and, therefore, their use adds to the already substantial computa-

tional burden. This creates a dilemma: do we use a theoretically justified

heavy-tailed prior that makes the computation more difficult, or do we use a

computationally convenient thin-tailed prior with potentially sub-optimal

posterior convergence properties? Martin et al. (2017) observe that the

prior tails are less relevant if the center is chosen appropriately. Therefore,

to overcome the aforementioned dilemma, they propose using an empirical

prior with a data-driven centering. Following their general idea, as the prior

for βS, given S, we take

(βS | S, λ) ∼ N
(
φβ̂S, σ

2gkS(X>SXS)λ
)
. (2.3)

Here, β̂S is the least squares estimator corresponding to configuration S

and design matrix XS, φ ∈ (0, 1) is a shrinkage factor to be specified, g is

a parameter controlling the prior spread, (X>SXS)λ is an adaptive powered

correlation matrix, and

kS = tr{(X>SXS)−1}
/

tr{(X>SXS

)λ}
is a standardizing factor, as in Krishna et al. (2009), designed to control for

the scale corresponding to different values of λ. Let πλ(βS | S) denote this

prior density for βS, given S.

The power parameter λ on the prior covariance matrix can encourage
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or discourage the inclusion of correlated predictors. When λ > 0, the prior

shrinks the coefficients of the correlated predictors toward each other; when

λ < 0, they tend to be kept apart, with λ = −1 being the most familiar;

and, finally, λ = 0 implies prior independence. Therefore, a positive λ

would prefer larger models by capturing as many correlated predictors as

possible, while a negative λ tends to select models with less collinearity; see

Krishna et al. (2009) for a discussion of this phenomenon. Our data-driven

choice of λ, along with that of the other tuning parameters introduced here

and in the next subsection, is discussed in Section 4.2.

2.2 The posterior distribution

For this standard linear regression model, the likelihood function is

Ln(β) = (2πσ2)−
n
2 e−

1
2σ2
‖Y−Xβ‖2 , β ∈ Rp.

It is straightforward to include σ2 as an argument in this likelihood function,

introduce a prior for σ2, and obtain a full (β, σ2) posterior; see Martin and

Tang (2019). However, our intention is to use a plug-in estimator for σ2

in what follows. Hence, we omit the error variance as an argument to the

likelihood function.

Given a prior and the likelihood, we can combine the two using Bayes’

formula to obtain a posterior distribution for (S, βS) or, equivalently, for
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the p-vector β. However, the fact that our prior also depends on the data

changes the way we think about the posterior construction. Specifically,

updating the data-dependent prior using the full likelihood amounts to a

double-use of the data, and hence a risk of over-fitting. To avoid this risk,

some regularization is needed. While there are a number of ways to achieve

this regularization (Martin and Walker, 2019), arguably the simplest is to

apply Bayes’ formula, but using only a (large) portion of the likelihood. As

in the generalized Bayes literature (e.g., Martin and Walker, 2014; Grünwald

and van Ommen, 2017; Syring and Martin, 2019), we use a power likelihood

and define our posterior for (S, βS) as

πnλ(S, βS) ∝ Ln(βS+)α πλ(βS | S) πλ(S),

where βS+ is the p-vector obtained by entering zeros around βS in the

entries corresponding to Sc, and α ∈ (0, 1) is a regularization factor, which

can be taken arbitrarily close to one. It may be possible to handle the case

α = 1, making appropriate adjustments elsewhere. However, the proposed

approach achieves the optimal posterior concentration rate (see Section 3),

and hence will not be improved.

To summarize, the posterior distribution for β, denoted by Πn
λ, is ob-
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tained by summing over all configurations S; that is,

Πn
λ(A) ∝

∑
S

∫
{βS :βS+∈A}

πnλ(S, βS) dβS, A ⊆ Rp.

Because one of our primary objectives is variable selection, it is of interest

that we can obtain a closed-form expression for the posterior distribution of

S, up to a normalizing constant, a result of our use of a conjugate normal

prior for βS, given S. That is, we can integrate out βS to obtain a marginal

likelihood for Y ; that is,

mλ(Y | S) = (2πσ2)−nα/2
s∏
i=1

(
1 + αgkSd

λ+1
S,i

)−1/2
× exp

[
− α

2σ2

{
‖y − ŷS‖2 + (1− φ)2

s∑
i=1

dS,i

1 + αgkSd
λ+1
S,i

θ2S,i

}]
,

(2.4)

where ŷS is the least square estimate of y, given model S, dS,i is the ith

eigenvalue of X>SXS, ΓSΛSΓ>S is the spectral decomposition of X>SXS, with

ΛS = diag(dS,1, . . . , dS,s), and θS,i is the ith element of θS = Γ>S β̂S. Then,

it is straightforward to obtain the posterior distribution for S, as follows:

πnλ(S) ∝ mλ(Y | S) πλ(S). (2.5)

The variable selection method described in Section 4 and illustrated in

Sections 5–6 is based on this posterior distribution.
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2.3 A motivating example

We now give a simple example to illustrate the effects of incorporating

λ into (2.2) and (2.3). Consider a case with n = p = 5, and let X =

Xn×p have i.i.d. rows, each with a standard multivariate normal with first-

order autoregressive dependence and correlation parameter ρ. Given X, the

conditional distribution of the response is determined by the linear model

yi = xi1 + 0.8xi2 + εi, where ε1, . . . , ε5
iid∼ N(0, 1).

The black, blue, and red curves in Figure 1 represent λ 7→ log πnλ(S), for

three different S configurations, namely, the true configuration S? = {1, 2},

S− = {1}, and S+ = {1, 2, 3}. Panel (a) corresponds to a high correlation

case, ρ = 0.8, and we see that the ECAP-based posterior prefers S? for

suitably large λ. Compare this to the choice λ ≡ −1 in Martin et al.

(2017), which prefers the smaller configuration S−. On the other hand,

when the correlation is relatively low, as in Panel (b), we see that a large

positive λ encourages a larger configuration, while the true configuration is

preferred for sufficiently large negative values of λ. The take-away message

is that, by allowing λ to vary, the ECAP-based model has the ability to

adjust to the correlation structure, which can be beneficial in identifying

the relevant variables.
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(a) ρ = 0.8 (b) ρ = 0.1

Figure 1: Plot of λ 7→ log πnλ(S) for three different S and two different ρ.

3. Posterior convergence properties

3.1 Setup and assumptions

We stick with the standard notation given previously; however, keep in

mind that Y n = (Y n
1 , Y

n
2 , ..., Y

n
n ) and Xn = ((Xn

ij)) are better understood

as triangular arrays. Therefore, we can have p, s? = |S?|, with S? denoting

the true configuration, and R all depend on n. We assume throughout

that s? ≤ R ≤ n � p; more precise conditions are given below. We also

assume that λ, g, and σ2 are fixed constants in this setting, not parameters

to be estimated/tuned. Therefore, to simplify the notation here and in the

proofs, we drop the subscript λ, and simply write Πn for the posterior for

β, instead of Πn
λ.
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When estimating the mean response, the minimax rate does not depend

on the correlation structure in X, so we cannot expect any improvements in

the rate by incorporating this correlation structure in our prior distribution.

Therefore, our goal here is simply to show that the minimax rates can still

be achieved, while leaving room to adjust for collinearity in finite samples.

The finite-sample benefits of the correlation-adaptive prior are shown in the

numerical results presented in Section 5.

We start by stating the basic assumptions for all the results that follow,

beginning with two assumptions about the asymptotic regime. In particu-

lar, relative to n, the true configuration, S?, is not too complex.

Assumption 1. The true complexity satisfies s? →∞, with s? = o(n).

The next assumption puts a very mild size condition on β?S? , that is,

the nonzero regression coefficients of the true β?, and on the user-specified

shrinkage factor φ = φn in the prior.

Assumption 2. The factor φ = φn ∈ (0, 1) satisfies n(1 − φn)2‖β?S?‖2 =

o(s?).

Assumption 2 includes a very mild condition on the true β?, that is, that

the “total signal” ‖β?S?‖ is not too small. There is, of course, no reason to

think that the individual signals would be vanishing with n. If they do not,

Statistica Sinica: Preprint 
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then we get s?{n‖β?S?‖}−1 → 0 automatically from Assumption 1. However,

it is not required that all of the signals are bounded away from zero; the

condition is related to the total signal; thus, it is enough that at least one

of the signals is away from zero. Even if we require that all nonzero signals

be lower-bounded, the condition above holds if minj∈S? |β?j | > n−1/2. In

addition, an even stronger beta-min condition—see (3.3) in Section 3.5—is

needed to establish variable selection consistency, both here and throughout

the literature on high-dimensional inference (e.g., Bühlmann and van de

Geer, 2011; Arias-Castro and Lounici, 2014).

This also provides some insight into the connection between φ and the

total signal; that is, φ controls the influence of the prior centering. When

the total signal is large, this influence is more important than when the

total signal is small. In Section 4.2.3, we present a data-driven choice of φ

that adapts to the total signal size.

Finally, we need to make some assumptions on the n× p design matrix

X. For a given configuration S, let λmin(S) and λmax(S) denote the smallest

and the largest eigenvalues of n−1X>SXS, respectively. Next, define

`(s) = min
S:|S|=s

λmin(S) and u(s) = max
S:|S|=s

λmax(S).

Recall that these depend (implicitly) on n because of the triangular ar-

ray formulation. It is also clear that `(s) and u(s) are nonincreasing
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3.2 Rates under prediction error loss14

and nondecreasing functions, respectively, of the complexity s. If κ(S) =

λmax(S)/λmin(S) is the condition number of n−1X>SXS, then we can define

ω(s) = max
S:|S|=s

κ(S),

and obtain the relation ω(s) ≤ u(s)/`(s).

Assumption 3. 0 < lim infn `(s
?) < lim supn u(s?) <∞.

This assumption roughly states, that every submatrix XS, for |S| ≤ s?,

is of full rank. This is implied by, for example, the sparse Riesz condition

of order s? in Zhang and Huang (2008).

3.2 Rates under prediction error loss

Ideally, we expect the posterior for β to concentrate asymptotically around

values of β such that ‖Xβ −Xβ?‖ is relatively small. The following theo-

rem states this result precisely. Recall the definitions of the prior and, in

particular, the quantities a and r.

Theorem 1. Under Assumptions 1–3, there exists a constant M such that

supEβ?{Πn(β ∈ Rp : ‖Xβ −Xβ?‖2 > Mεn)} → 0, n→∞,

where the supremum is over all β?, such that |Sβ?| = s?,

εn = max{q(R, λ, r, a), s? log(p/s?)},
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and

q(R, λ, r, a) =



R{r(1 + λ)− a} log p if λ ∈ [0,∞)

R(r − a) log p if λ ∈ [−1, 0)

R(−rλ− a) log p if λ ∈ (−∞,−1).

Proof. See Section S2.1 in the Supplementary Material.

In the so-called ordinary high-dimensional regime (e.g., Rigollet and

Tsybakov, 2012), s? log(p/s?) is the minimax concentration rate. Thus,

our proposed ECAP posterior attains the minimax optimal rate, as long as

(a, r) in (2.1) and (2.2) are chosen such that a > rmax{1 + λ, 1,−λ}.

3.3 Effective posterior dimension

Theorem 1 suggests that the posterior for β concentrates near the true β?,

in a certain sense. However, because β? is sparse, we might ask whether the

posterior is also concentrated on a roughly s?-dimensional subset of Rp. The

following theorem gives an affirmative answer to this question. Aside from

the economical benefits of having an effectively low-dimensional posterior,

Theorem 2 aids in the proofs of the remaining results.

Theorem 2. Suppose that the prior π(S) has parameters (a, r) that satisfy

Statistica Sinica: Preprint 
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the condition a > rmax{1 + λ, 1,−λ}, and define

ρ0 =
a+ 1

a− rmax{1 + λ, 1,−λ}
> 1. (3.1)

Then, under Assumptions 1–3, for any ρ > ρ0, we have

supEβ?{Πn(β ∈ Rp : |Sβ| ≥ ρs?)} → 0, as n→∞,

where the supremum is over all s?-sparse β?.

Proof. See Section S2.2 in the Supplementary Material.

3.4 Rates under the estimation error loss

Following on from the result in Section 3.2 on the posterior concentration

with respect to the mean response difference, we might ask whether the

concentration holds similarly with respect to a metric relevant to the esti-

mation of β, namely, ‖β−β?‖. The following theorem establishes this rate,

which turns out to be optimal as well.

Theorem 3. Suppose that the prior π(S) has parameters (a, r) that satisfy

the condition a > rmax{1 +λ, 1,−λ}, and let ρ be greater than ρ0 in (3.1).

Under Assumptions 1–3, there exists a constant M > 0 such that

supEβ?{Πn(β ∈ Rp : ‖β − β?‖2 > Mδn)} → 0, as n→∞,
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3.5 Variable selection consistency17

where the supremum is over all s?-sparse β? and

δn =
s? log(p/s?)

n`(ρs? + s?)
. (3.2)

Proof. See Section S2.3 in the Supplementary Material.

Under Assumptions 1 and 3, `(ρs? + s?) is bounded with probability

one. Hence, our rate, n−1s? log(p/s?), is optimal in the so-called ordinary

high-dimensional regime considered by Rigollet and Tsybakov (2012), where

s? log(p/s?) < R, with R the rank of X.

3.5 Variable selection consistency

One of our primary objectives in introducing the λ-dependent prior distri-

bution to account for the collinearity structure in the design matrix is to

achieve a more effective variable selection. Thus, it is imperative that we can

show, at least asymptotically, that our posterior distribution concentrates

around the correct configuration S?. The following theorem establishes this

variable selection consistency property.

Theorem 4. In addition to Assumptions 1–3, assume that the constant a

in the prior π(S) is such that a > 1 and pa � s?eGs
?
, where G = (1 −

α) log 2 +m and

m = 1
2

log{1 + αgκ(S?)max{λ+1,1,−λ}} = O(1).
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3.5 Variable selection consistency18

Then,

supEβ?{Πn(β ∈ Rp : Sβ ⊃ Sβ?)} → 0, n→∞,

where the supremum is over all β? that are s?-sparse. Furthermore, if

min
j∈S?
|β?j | ≥ %n :=

{ 2Mσ2

n`(s?)α(1− α)
log p

}1/2

, (3.3)

where M > a+ 1 and pM−(a+1) � eGs
?
, then

Eβ?{Πn(β ∈ Rp : Sβ 6⊇ Sβ?)} → 0, n→∞.

If both sets of conditions hold, then variable selection consistency holds; that

is,

Eβ?
[
Πn(β ∈ Rp : Sβ = Sβ?)} → 1, n→∞.

Proof. See Section S2.4 in the Supplementary Material.

The extra conditions on (p, s?) in Theorem 4 effectively require that the

true configuration size, s?, is small relative to log p and, furthermore, that

the constant a in (2.1) is large enough that fn(s) concentrates around com-

paratively small configurations. In addition, the nonzero β? values are more

difficult to detect if their magnitudes are small. This is intuitively clear, and

shows up in our simulation results for Cases 1–2 in Section 5. Theorem 4

gives a mathematical explanation for this intuition, stating that the variable

selection based on our empirical Bayes posterior is correct asymptotically

if condition (3.3) is satisfied.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0133



19

4. Implementation details

4.1 Stochastic search of the configuration space

In order to compute the posterior probability for a configuration S, we need

to evaluate πλ(S | |S| = s) in (2.2), which can be rewritten as

D(S)−λ/(2s)1{κ(S) < Cpr}(
p
s

) {(p
s

)−1 ∑
S:|S|=s

D(S)−λ/(2s)1{κ(S) < Cpr}
}−1

.

The difficulty comes from the term in curly braces, namely,(
p

s

)−1 ∑
S:|S|=s

D(S)−λ/2s1{κ(S) < Cpr},

where, again, D(S) = |X>SXS| is the determinant. Here C and r can be

chosen sufficiently large that only the few extremely ill-conditioned cases

are excluded. This leaves approximately
(
p
s

)
terms in the above summation,

making brute-force computation a challenge. Given that the eigenvalues of

X>SXS, for S with |S| ≈ s?, are assumed to be bounded from above and

below, the geometric mean, D(S)1/s, of those eigenvalues should depend

on the particular XS, but not on s. Therefore, the quantity in the above

expression, the average of these geometric means, is roughly constant in

both S and s. As such, it is not unreasonable to approximate πλ(S | |S| = s)

in (2.2) with

D(S)−λ/(2s)1{κ(S) < Cpr}(
p
s

) .
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4.1 Stochastic search of the configuration space20

This approximation is exact in the case of λ = 0 if all S are included, and

our numerical experiments suggest that it is stable across a range of p, s,

and λ. Using this approximation, the posterior distribution for S we use is

given by

πnλ(S) ∝ mλ(Y | S)D(S)−
λ

2|S|

(
p

|S|

)−1
fn(|S|)1{κ(S) < Cpr}. (4.4)

In practice, C is chosen to be large enough that no configurations, S, are

excluded, which effectively removes the indicator function.

Markov chain Monte Carlo (MCMC) methods can be used to compute

this posterior, but this tends to be inefficient in high-dimensional problems.

As an alternative, we employ a version of the shotgun stochastic search

algorithm (SSS, Hans et al., 2007) to explore our posterior distribution. In

contrast to the traditional MCMC method, the SSS does not attempt to

approximate the posterior distribution of S; instead, it only tries to explore

high posterior probability regions as thoroughly as possible.

Our SSS algorithm is summarized as follows. Let S be a configuration

of size s, with πnλ(S) its corresponding (unnormalized) posterior. Define

the neighborhood of S as nbd(S) = {S+, S0, S−}, where S+ is the set

containing all (s + 1)-dimensional configurations that include S, S0 is the

set containing all s-dimensional configurations that have only one variable

different from those in S, and S− is the set containing all (s−1)-dimensional
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configurations nested in S. The tth iteration of the SSS goes as follows:

1. Given St, compute πnλ(S), for all S ∈ nbd(St) = {St+, St0 , St−}.

2. Sample St1, S
t
2 and St3 respectively from St+, St0 and St−, with prob-

abilities ∝ πnλ(St· ).

3. Sample St+1 from {St1, St2, St3}, with probabilities proportional to πnλ(St+),

πnλ(St0), and πnλ(St−), obtained by summing.

All visited configurations are recorded. The final chosen configuration can

be the maximum a posteriori model, median probability model (the model

that includes those variables with a marginal inclusion probability not less

than 0.5), or something else. For our simulations in Section 5, the selected

configuration Ŝ is the median probability model.

Although the SSS can explore many more high posterior configurations

than the MCMC can, it is still computationally expensive, especially in

high-dimensional cases. When p, the number of candidate predictors, is

large and the true dimension s? is small, the cost of exhausting all pos-

sible configurations in S+ can be tremendous. Therefore, we adopt the

simplified SSS algorithm with screening of Shin et al. (S5, 2018), which

uses a screening technique to significantly decrease the computational cost.

More specifically, when considering candidate models with an additional
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predictor, instead of calculating the posterior probabilities for all possible

configurations, we first calculate the partial correlation between response

Y and each of the remaining p− s predictors, conditioning on all variables

in the current model St. Then, we select only the top K predictors with

the highest correlations to form S+ and S0. In the simulation, we choose

K = 20.

4.2 Choice of tuning parameters

4.2.1 Choice of λ

An “ideal” value λ? of λ is one that minimizes the Kullback–Leibler diver-

gence of the marginal distribution mλ(y) =
∑

Smλ(y | S)πλ(S) from the

true distribution of Y or, equivalently, one that maximizes the expected log

marginal likelihood; that is,

λ? = arg max
λ

E{logmλ(Y )}.

Unfortunately, the ideal value λ? is not available, because we do not know

the true distribution of Y , nor can we estimate it using an empirical distri-

bution. However, a reasonable estimate of the ideal λ is

λ̂ = arg max
λ

logmλ(Y ).
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Figure 2: Dotted lines are λ 7→ logmλ(Y ) for different Y samples, and the

solid line is the point-wise average, which approximates λ 7→ E{logmλ(Y )}.

Indeed, Figure 2 shows logmλ(Y ) for several different Y samples, along with

an approximation of E{logmλ(Y )} based on point-wise averaging. Note

that the individual log marginal likelihoods are maximized very close to

where the expectation is maximized.

There is still one more obstacle in obtaining λ̂, namely, that we cannot

directly compute the summation involved in mλ(Y ), owing to the large

number of configurations S. Fortunately, we can employ an importance

sampling strategy to overcome this. Specifically, we have

mλ(Y ) =

∑
Smλ(Y | S)D(S)−λ/2|S|fn(|S|)

(
p
|S|

)−1∑
S D(S)−λ/2|S|fn(|S|)

(
p
|S|

)−1
≈
∑N

`=1mλ(Y | S`)D(S`)
−λ/2|S`|∑N

`=1D(S`)−λ/2|S`|
,
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where {S` : ` = 1, . . . , N} are samples from π0(S) ∝ fn(|S|)
(
p
|S|

)−1
. In our

numerical results, we use this mλ(Y ) to estimate λ̂.

As discussed in Section 2.3, λ plays an important role in both the

model prior and the coefficient prior. That is, for a fixed size s, a positive

λ favors models that include predictors with relatively high correlations,

and a negative λ favors models that include predictors with relatively low

correlations. When λ is equal to zero, the models are treated equally,

regardless of their predictors’ correlation structure. The λ in the conditional

prior for βS, given S, has a similar effect; see Krishna et al. (2009). Thus, a

“good” estimate of λ should be such that it reflects the correlation structure

in X.

To help see this, consider a few examples, each with X of dimension

n = 100 and p = 500, having an AR(1) correlation structure with varying

correlation ρ and true configuration S?. In particular, we consider two

configurations:

S?1 = {11, . . . , 15, 31, . . . , 35}

S?2 = {1, 51, 100, 151, 200, 251, 300, 351, 400, 451}.

Figure 3 shows λ̂ chosen by maximizing the marginal likelihood in three

different cases, and we argue that λ̂ is at least in the “right direction.” In

particular, when the true predictors are highly correlated, as in Panel (a),
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(a) ρ = 0.8, S? = S?1 (b) ρ = 0.1, S? = S?1 (c) ρ = 0.8, S? = S?2

Figure 3: Expected log marginal likelihood versus λ, for φ = 0, under

different correlation structures of true configurations S?; see the text for

definitions of S?1 and S?2 .

λ̂ tends to be positive, which encourages the selection of highly correlated

predictors. When the true predictors have low correlation, as in Panel (b),

the estimate of λ is close to zero; hence, we have a nearly uniform prior for

S. The situation in Panel (c) is different because the true predictors are

minimally correlated, while unimportant predictors are highly correlated.

In this case, λ̂ tends to be negative, which discourages the selection of the

highly correlated ones that are likely unimportant.

4.2.2 Choice of g

Now, recall that g determines the magnitude of the prior variance of βS.

If g is sufficiently large, the conditional prior for βS is effectively flat; if
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g is extremely tiny, then the posterior probability for βS will concentrate

around the prior center φnβ̂S. Kass and Wasserman (1995) proposed the

unit information criterion, which amounts to taking g = n in the regression

setting with Zellner’s prior. Foster and George (1994) suggest a choice of

g = p2. Here, we use a local empirical Bayes estimator for g. That is, for

given S and λ, we choose a g that maximizes the local marginal likelihood;

that is,

ĝS = arg max
g
mλ(y | S).

In the special case where φn = 0 and λ = −1, and there is a conjugate prior

for σ2, Feng et al. (2008) showed that ĝS = max{FS − 1, 0}, where FS is

the usual F statistic under model S used to test βS = 0. In general, our

estimator, ĝS must be computed numerically.

4.2.3 Choice of φ

In our choice of φ = φn, we seek to employ a meaningful amount of shrink-

age, while still maintaining the condition in Assumption 2. To this end,

if we view φβ̂S? as a shrinkage estimator, then it is possible to choose φn

so that the corresponding James–Stein-type estimate has a smaller mean

squared error. In particular, this is achieved by

φn = 1− 2E‖β̂S? − β?S?‖2

‖β?S?‖2 + E‖β̂S? − β?S?‖2
,
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and, moreover, it can be shown that 1 − φn = O(s?{n‖β?S?‖2}−1); see Sec-

tion S3 in the Supplementary Material for details. Unfortunately, this φn

still depends on S? and β?S? , so we need to use a data-driven proxy. We

recommend first estimating S? using Ŝ from the adaptive Lasso, with β̂Ŝ

and σ̂2 the corresponding least squares estimators, and then setting

φ̂n =
[
1−

2σ̂2tr{(X>
Ŝ
XŜ)−1}

‖β̂Ŝ‖2 + σ̂2tr{(X>
Ŝ
XŜ)−1}

]+
.

In practice, the variable selection results are not sensitive to the choice

of φ, unless it is too close to one. That is, according to Figure 4, we

see good curvature in the log marginal likelihood for λ, with roughly the

same maximizer, for a range of φ. The curves flatten out when φ is too

close to one, but that “too close” cutoff gets larger with n. To ensure

identifiability of λ, we manually keep our estimate of φ away from one,

taking φ̃n = min{φ̂n, 0.7}.

4.2.4 Specification of remaining parameters

It remains to specify the likelihood power α, the tuning parameters (a, c),

specifying the prior on the configuration size, the tuning parameter (C, r),

specifying the prior on the collinearity of the configurations, given a fixed

size, and a plug-in estimator for the error variance σ2. As in Martin et al.

(2017), we take α = 0.999, a = 0.05, and c = 1. We let C and r be
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Figure 4: Approximated log marginal likelihood for different values of φ,

with sample size n = 100, 500, 1000, 5000 and p = 500, under Scenario 2, as

described in Section 5. The value of φ is 0.99, 0.95, 0.9, 0.7, 0.5, 0 from top

to bottom for all of the four plots above.

sufficiently large, so that, in practice, no models are excluded owing to the

ill-conditioness. For the error variance, we use the adaptive Lasso to select

a configuration, and set σ̂2 equal to the mean squared error of the selected

configuration. A prior for σ2 was used by Martin and Tang (2019) in this

empirical Bayes framework for a simpler model formulation; their results
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were similar to those of the plug-in approach adopted here.

5. Simulation experiments

Here, we investigate the variable selection performance of different methods

in five simulated data settings. In each setting, n = 100 and p = 500,

and the error variance σ2 is set to one. The first two settings have severe

collinearity. We employ the first-order autoregressive structure with ρ =

0.8 as the covariance structure of the n × p design matrix X. The true

configuration S? includes two blocks of variables; the first block contains

the 11th to the 15th variables, and the second block contains the 31st to the

35th variables. We explored both large and small signal cases, as follows:

1. βS? = (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95)>

2. βS? = (1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5)>

3. In this case, we consider a block covariance setting, which is the same

as Case 4 in Narisetty and He (2014). In this setting, interesting vari-

ables have common correlation ρ1 = 0.25; uninteresting variables have

common correlation ρ2 = 0.75 and the common correlation between

the interesting and uninteresting variables is ρ3 = 0.5. The coefficients

of the interesting variables are βS? = (0.6, 1.2, 1.8, 2.4, 3.0)>.
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4. This case is similar to Case 3, but let ρ1 = 0.75, ρ2 = 0.25, and

ρ3 = 0.4. In addition, a larger βS? = (1, 1.5, 2.0, 2.5, 3.0)> is adopted.

5. This is a low correlation case, set the same as Case 2 in Narisetty

and He (2014). All variables are set to have common correlation

ρ = 0.25, and the coefficients of the interesting variables are βS? =

(0.6, 1.2, 1.8, 2.4, 3.0)>.

For each case, 1000 data sets are generated. Denoting the chosen con-

figuration as Ŝ, we compute P(Ŝ = S?) and P(Ŝ ⊇ S?) in these 1000

iterations to measure the performance of our method, denoted by ECAP.

For comparison purposes, we also consider the Lasso (Tibshirani, 1996), the

adaptive Lasso (Zou, 2006), the SCAD (Fan and Li, 2001), the elastic net

(EN, Zou and Hastie, 2005), and an empirical Bayes approach (EB, Martin

et al., 2017). The tuning parameters in the first four methods are chosen

using the BIC. The results are summarized in Table 1.

Case Method P(Ŝ = S?) P(Ŝ ⊇ S?) Average |Ŝ|

1 lasso 0.082 0.996 13.61 (0.09)

alasso 0.397 0.930 10.73 (0.04)

EN 0.133 0.983 13.24 (0.20)

SCAD 0 0.001 12.36 (0.15)
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EB 0.165 0.215 9.56 (0.17)

ECAP 0.263 0.342 9.65 (0.15)

2 lasso 0.297 1 11.65 (0.05)

alasso 0.356 0.412 9.33 (0.03)

EN 0.557 0.816 10.25 (0.07)

SCAD 0 0 7.93 (0.04)

EB 0.815 1 11.27 (0.91)

ECAP 0.994 1 10.00 (0.00)

3 lasso 0 0.874 18.67 (0.12)

alasso 0.002 0.277 11.26 (0.10)

EN 0 0.945 19.82 (0.22)

SCAD 0.882 0.958 5.05 (0.01)

EB 0.560 0.670 4.69 (0.05)

ECAP 0.760 0.778 4.90 (0.08)

4 lasso 0.135 1 8.08 (0.09)

alasso 0.701 0.940 5.34 (0.03)

EN 0.327 0.997 7.33 (0.13)

SCAD 0.070 0.148 4.45 (0.04)

EB 0.793 0.822 4.87 (0.04)
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ECAP 0.861 0.940 5.05 (0.07)

5 lasso 0.001 0.990 17.55 (0.15)

alasso 0.057 0.693 8.63 (0.11)

EN 0.005 0.991 17.04 (0.28)

SCAD 0.419 0.908 5.88 (0.04)

EB 0.680 0.795 4.82 (0.04)

ECAP 0.827 0.919 4.95 (0.05)

Table 1: Simulation results for Cases 1–5. (The best score among the six

methods is shown in bold.)

According to these results, ECAP performs significantly better than

the Lasso, SCAD, and EN in terms of the probability of choosing the true

configuration. It also has uniformly better performance compared with

that of the EB, which is expected because the ECAP method takes the

correlation information into account. However, when considering P(Ŝ ⊇

S?), the ECAP is not always the highest(e.g., Case 1). Note that P(Ŝ = S?)

and P(Ŝ ⊇ S?) for the ECAP are always close to each other, which is not

the case for the Lasso or EN. This is because the ECAP method is more

likely to shrink the coefficients of unimportant predictors to zero, which is

desirable if the goal is to find the true S?.
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6. Real-data illustration

Here, we examine our method in a real, data example to evaluate its per-

formance against that of other prevalent approaches, including the Lasso,

SCAD, and penalized credible region approach in Bondell and Reich (2012).

We use data from an experiment conducted by Lan et al. (2006) that stud-

ies the genetics of two inbred mouse populations (B6 and BTBR). The data

include 22575 gene expressions of 31 female and 29 male mice. Some phe-

notypes, including phosphoenopiruvate (PEPCK) and glycerol-3-phosphate

acyltransferase (GPAT), were also measured using quatitative real-time

PCR. The data are available at the Gene Expression Omnibus data repos-

itory (http://www.ncbi.nlm.nih.gov/geo; accession number GSE3330).

We choose PEPCK and GPAT as the response variables. Given that

this is an ultrahigh-dimensional problem, we use the marginal correlation-

based screening method to screen down from 22575 genes to 1999 genes.

Combining the screened 1999 genes with the sex variable, the final dimen-

sion of the predictor matrix is p = 2000. After screening, we apply our

method to the data, and select the best subset of predictors Ŝ. Then, we

use the posterior mean of βS as the estimator for β, for given Ŝ and y. The
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posterior distribution for βS is normal, with

mean =
(
X>
Ŝ
XŜ + V −1

Ŝ

)−1(
X>
Ŝ
y + φV −1

Ŝ
β̂Ŝ
)

covariance = σ2
(
X>
Ŝ
XŜ + V −1

Ŝ

)−1
,

where VŜ = gkŜ
(
X>
Ŝ
XŜ

)λ
. For the hyperparameters λ, φ, and g, we can

plug in their corresponding estimators, given in Section 4.

In order to evaluate the performance of our approach, we randomly

split the sample into a training data set of size 55 and a test set of size five.

First, we apply our variable selection method to the training set and ob-

tain the selected variables. Then, conditioning on this model, we estimate

the regression coefficients using the above method. Based on the estimated

regression coefficient, we predict the remaining five observations and cal-

culate the prediction loss. This process is repeated 100 times, and we can

compute an estimated mean squared prediction error (MSPE), along with

its standard error; see Table 2.

In Table 2, BCR.joint and BCR.marginal denote methods using joint

credible sets and marginal credible sets, respectively, for details, see Bondell

and Reich (2012). The first four rows correspond to the ECAP, the Lasso,

BCR.joint, and BCR.marginal, applied to the screened data with dimension

p = 2000. The fifth row shows sure independence screening (SIS) combined

with the SCAD, applied to the full data p = 22575, and the last row is based
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Table 2: Mean squared prediction error (MSPE) and average configuration

size in the real-data example of Section 6; numbers in parentheses are stan-

dard errors. The results except for the ECAP are from Bondell and Reich

(2012).

PEPCK GPAT

Method MSPE Model Size MSPE Model Size

ECAP (p = 2000) 1.02 (0.07) 5.04 (0.19) 2.26 (0.18) 8.34 (0.33)

lasso (p = 2000) 3.03 (0.19) 7.70 (0.96) 5.03 (0.42) 3.30 (0.79)

BCR.joint (p = 2000) 2.03 (0.14) 9.60 (0.46) 3.83 (0.34) 4.20 (0.43)

BCR.marginal (p = 2000) 1.84 (0.14) 23.3 (0.67) 5.33 (0.41) 21.8 (0.72)

SIS+SCAD (p = 22575) 2.82 (0.18) 2.30 (0.09) 5.88 (0.44) 2.60 (0.10)

ECAP (p = 22575) 0.72 (0.07) 4.93 (0.30) 1.66 (0.52) 7.92 (0.73)

on directly applying the ECAP to the unscreened data. The stopping rules

for the Lasso, the SCAD, BCR.joint, and BCR.marginal are based on the

BIC.

In terms of the MSPE, the ECAP outperforms the other methods sig-

nificantly in both the PEPCK and the GPAT cases, given the estimated
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standard errors. Moreover, the MSPE from the ECAP is even smaller for

the full data set than it is for the screened data. For the model size, on av-

erage, the ECAP, the Lasso, BCR.joint, and the SIS+SCAD select models

with comparable sizes, while BCR.marginal always chooses larger models.

Overall, the ECAP performs very well in this real data example compared

with these other methods in terms of both the MSPE and the model size.

Supplementary Material

The online Supplementary Material contains proofs of the theorems

presented in Section 3, along with details about our choice of φ and some

additional simulation experiments.

Acknowledgements

The authors thank the editor, associate editor, and two reviewers for

their helpful feedback. The work presented herein was partially supported

by the U.S. National Science Foundation, grant DMS–1737933.

References

Arias-Castro, E. and K. Lounici (2014). Estimation and variable selection with exponential

weights. Electron. J. Statist. 8 (1), 328–354.

Bondell, H. D. and B. J. Reich (2012). Consistent high-dimensional Bayesian variable selection

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0133



REFERENCES37

via penalized credible regions. J. Amer. Statist. Assoc. 107, 1610–1624.
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