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Abstract: Tracking subjects with disease risks at multiple time points is an im-

portant objective for disease prevention and preventive medicine. Appropriate

statistical tracking models are essential for identifying risk factors that remain

persistent over time and the early detection of subjects with high disease risks.

Because disease risks are often defined by multivariate response variables, we

propose a class of bivariate risk-predictive probability models that quantify the

likelihood of an individual’s future disease risk. These models describe the rela-

tionships between bivariate risk outcomes at a later time point and covariates at

an early time point using a class of conditional quantile-based joint distribution

functions. We develop a simulation-based procedure under the stratified bivari-

ate time-varying quantile regression framework to estimate the conditional joint

distributions and risk-predictive probabilities. In addition, we use theoretical

and simulation studies to show that the estimation procedure yields consistent

estimates, and propose a statistical quantity that measures the relative risk to

identify high-risk individuals. Finally, we apply the proposed models and pro-

cedures to data from the National Growth and Health Study to identify early
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adolescent girls who are more likely to be diagnosed with hypertension at late

adolescence.

Key words and phrases: Bivariate longitudinal outcome; Conditional joint dis-

tributions; Nonparametric regression; Quantile regression; Time-varying coeffi-

cients.
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1. Introduction

Longitudinal tracking of disease risk factors over time is important for

guiding early preventive interventions in public health (e.g., Wilsgaard et

al., 2001; Obarzanek et al., 2010). A main objective of preventive medicine

is to reduce the incidence of future disease risks through early intervention

to individuals with high risk factors relative to the population. Thus, an

appropriate statistical model would play a critical role in identifying per-

sistent disease risk factors and individuals who will develop high disease

risks in the future. The past and present health status of a subject is likely

an important indicator of the development of a disease. In this study, we

develop a class of models for the risk-predictive probability (RPP), which

measures the likelihood of a disease occuring in the future, given an individ-

ual’s current condition. The RPP and its models can serve as an effective

tool for the early identification of persistent disease risk factors by identi-

fying high-risk groups relative to the population.

This work is motivated by an epidemiological study of pediatric car-

diac risk factors for children and adolescents, the National Growth and

Health Study (NGHS), conducted from 1986 to 1997. This prospective

cohort study was designed to explore the trend of cardiovascular risk fac-

tors in girls over an adolescent period. Various characteristics, including

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0127



Risk-predictive probability models 4

systolic and diastolic blood pressure (SBP, DBP), race, height, and body

mass index (BMI), were measured annually for 2379 African American and

Caucasian girls, up to 10 times. Kavey et al. (2003), Thompson et al.

(2007), and Obarzanek et al. (2010) studied the NGHS, raising the follow-

ing important question: What features in early adolescent girls affect the

presence of hypertension at late adolescence? Normal and abnormal levels

of blood pressure (BP) for children and adolescents are defined jointly by

the SBP and DBP percentiles (Flynn et al., 2017). Thus, a major obstacle

to answering this question is the lack of an appropriate statistical model

that describes the joint distributions of the bivariate longitudinal outcomes,

SBP and DBP at late adolescence, conditioning on their values and other

covariates at early adolescence.

Disease risk factors defined by bivariate (or, more generally, multivari-

ate) longitudinal outcomes are common in biomedical studies. For example,

in biomarker studies of human immunodeficiency viruses (HIV), the bivari-

ate outcome formed by CD4 cells and HIV viral load (HIV-RNA) in blood

is often used as a prognostic measure on HIV progression (Thiébaut et al.,

2002; Thiébaut et al., 2005; Ghosh et al., 2007); in cardiovascular studies,

Barter et al. (2007) showed that risks for cardiovascular events may be

jointly affected by the levels of high-density lipoprotein (HDL) cholesterol
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and low-density lipoprotein (LDL) cholesterol.

Using a conditional distribution-based longitudinal analysis, Wu and

Tian (2013a, 2013b) and Tian and Wu (2014) considered a statistical quan-

tity, the “rank-tracking probability” (RTP), to measure the tracking abili-

ties of disease risk factors over time. However, their statistical framework

is limited to univariate longitudinal outcomes. It cannot be applied to

joint distributions with bivariate outcomes because of the complexity of

the time-varying nonparametric modeling structures that are both clini-

cally meaningful and mathematically flexible (Wu and Tian, 2018, Sec-

tions 12.2 and 12.6). Most statistical methods for multivariate longitudi-

nal data have been studied under frameworks of conditional means and

variance-covariance structures. Examples of multivariate longitudinal anal-

yses include those of Rochon (1996), Chaganty and Naik (2002), Fieuws and

Verbeke (2006), Kim and Zimmerman (2012), Xu and Mackenzie (2012),

Xiang et al. (2013), Verbeke et al. (2014), Cho (2016), and Kohlia et al.

(2016), among others. These works model conditional means and variance-

covariance structures based on concurrently observed multivariate outcomes

and covariates. Kwak (2017a, 2017b) and Kürüm et al. (2018) considered

several copula-based models for evaluating conditional distribution func-

tions with multivariate longitudinal data. However, these models do not
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describe the dynamic relationships between the past and future variables

formed by the multivariate outcomes and covariates.

In contrast to existing multivariate longitudinal methods, we propose

a class of conditional distribution-based models to evaluate the “track-

ing” relationship between the bivariate response vector at a later time

point and the response and covariate values at an earlier time point. Let

(Y1(t), Y2(t)) be a bivariate vector of real-valued responses Y1(t) and Y2(t),

and let Z(t) = (X(t)T , Y1(t), Y2(t))T be a vector of covariates and responses

at any time point t ∈ T , where X(t) is a p ≥ 1 dimensional vector of covari-

ates and the time range T is a bounded subset of [0,∞). For any two time

points u < v in T , our goal is to model and estimate the conditional dis-

tribution function and the functional of (Y1(v), Y2(v)), given Z(u) = z(u).

Here, z(u) = (x(u)T , y1(u), y2(u))T represents the known “health status”

for a subject at time u, which, in general, includes both the covariate and

the response variables. As useful special cases of z(u), we may consider

the situations “without covariates,” that is, z(u) = (y1(u), y2(u))T , and

“without outcomes,” that is, z(u) = x(u). Note that u represents an early

time point of interest. Therefore, it is often used to denote an individual’s

current age or the most recent time point when the health status z(u) is

measured. Then, v represents a later time point of interest, so it is used to
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denote a specific future time, such as 10 years after u; that is, v = u+ 10.

In general, a completely unstructured nonparametric model of the con-

ditional distribution functions of (Y1(v), Y2(v)) given Z(u) is not mathemat-

ically tractable or biologically interpretable. Therefore, we propose a class

of structured nonparametric regression models for the RPPs (Section 2.1)

based on conditional quantiles. In order to focus on the main objective of

tracking the multivariate outcomes across the time range T , our nonpara-

metric quantile regression models link the outcomes and covariates at time

points (u, v) through linear structures with bivariate functional parameters.

This differs from the longitudinal quantile regressions in the literature, such

as those of Kim and Yang (2011) and Cho, Hong, and Kim (2016). There

are two main advantages to using this conditional quantile-based modeling

approach to evaluate the RPPs in order to track multivariate longitudinal

outcomes. First, the RPPs and the related conditional distributions can be

estimated simply based on the nonparametric estimators of the functional

quantile regression parameters using a simulation-based procedure. Second,

nonparametric conditional quantile models have natural interpretations for

applications in which health status is classified based on conditional quan-

tiles, such as the abnormal levels of blood pressure defined in Flynn et al.

(2017).
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In the main results, we first demonstrate that the joint condition dis-

tribution functions can be estimated using a simulation-based procedure

constructed based on Lemma 1 of Wei (2008) and a class of quantile re-

gression models with bivariate time-varying coefficients. Then, we show

that the RPP estimators obtained from the simulation-based procedure are

consistent under the bivariate time-varying coefficient models. For the prac-

tically interesting objective of determining whether an individual who was

“unhealthy” in the past is more likely to have a high future disease risk,

we propose a statistical inference procedure based on resampling-subject

bootstrapping. The inference procedure compares the RPP with the un-

conditional joint probability of the response variables at any v, without

knowing their values at any u < v. In our application to the NGHS data,

we estimate the RPPs of preadolescent girls with various BP and BMI levels

developing abnormal levels of BP at later adolescent years. Furthermore, in

a simulation study, we demonstrate the consistency of the RPP estimators

by comparing them with those obtained without imposing any modeling

structures.

Statistica Sinica: Preprint 
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2. Methodology

2.1 Risk-predictive probability models

In this section, we introduce the RPP and present a simulation-based pro-

cedure for estimating the RPP. For any sets of events A1(v) ⊂ R and

A2(v) ⊂ R on the real line at time v, we define the RPP as

RPP{A1(v), A2(v)|z(u)} = P{Y1(v) ∈ A1(v), Y2(v) ∈ A2(v)|Z(u) = z(u)},(2.1)

which is the conditional joint probability of Y1(v) ∈ A1(v) and Y2(v) ∈

A2(v), given an individual’s health status, that is, the outcomes and co-

variates, at time u, Z(u) = z(u), where u < v. For any given covariate

values, the RPP defined in (2.1) is a function on the bivariate time scale

(u, v). Consequently, the estimator of (2.1) is a bivariate curve on (u, v),

which allows the investigator to evaluate the risk-predictive ability at any

time point pairs within the range of interest. The statistical objective is

to estimate the RPP based on a flexible and clinically meaningful struc-

tured nonparametric model. The RPP measures how likely it is that a

subject with health status z(u) at a earlier time u belongs to the event

{Y1(v) ∈ A1(v), Y2(v) ∈ A2(v)} at a later time v. Thus, it provides a direct

statistical index that tracks subjects who are likely to have the event in the

future.

Statistica Sinica: Preprint 
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In practice, proper choices of A1(v) and A2(v) are determined by the

study objectives. For example, for the study of adolescent BP levels, the

probability of having an “abnormal BP level defined by the 95th percentiles”

(Flynn et al., 2017) at time v, given the subject’s BP and other covariates

at time u, is

RPPabnormal BP(v|u) = 1− RPP{(−∞, Q.95{Y1(v)}), (−∞, Q.95{Y2(v)})|z(u)},(2.2)

where RPP{(−∞, Q.95{Y1(v)}), (−∞, Q.95{Y2(v)})|z(u)} is the probability

of not having an “abnormal BP level” at time v, given z(u), Y1(t) and Y2(t)

denote the SBP and DBP, respectively, at time t, and Qτk{Yk(t)} is the

τk × 100th quantile of Yk(t), for k = 1, 2. Note that, in this example, A1(v)

and A2(v) are defined using percentiles of the response variables, but, in

general, they can be defined using predetermined values. For adult BP

studies (Chobanian et al., 2013), the RPP of having hypertension can be

defined as RPPabnormal BP(v|u) = 1− RPP{(−∞, 140), (−∞, 90)|z(u)}.

Comparing the RPP with the unconditional joint probability

P{A1(v), A2(v)} = P{Y1(v) ∈ A1(v), Y2(v) ∈ A2(v)},

we can examine how the occurrence of the event at time v is influenced by

the observed health status at time u. Suppose that a subject is classified

as having a “high disease risk” at time v if the bivariate outcomes are in the

Statistica Sinica: Preprint 
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event {Y1(v) ∈ A1(v), Y2(v) ∈ A2(v)}. If the subject’s RPP{A1(v), A2(v)|z(u)}

is greater than P{A1(v), A2(v)}, the subject is more likely to have a “higher

disease risk” than that of the population of interest because of his/her health

status z(u) at time u. The magnitude of the increased disease risk is quan-

tified by the ratio of the RPP to the benchmark P{A1(v), A2(v)}

RR{A1(v), A2(v)|z(u)} =
RPP{A1(v), A2(v)|z(u)}

P{A1(v), A2(v)}
, (2.3)

which we refer to as the relative risk (RR). Note that a subject with RR > 1

is more likely to have “higher disease risk” than that of the population of

interest.

2.2 Nonparametric dynamic conditional quantile models

When the sample size is very large, we can estimate the RPP using a

smoothing method without imposing any modeling structures. However, an

unstructured smoothing for the RPP is usually infeasible in practice because

of the well-known “curse of dimensionality”; see Wu and Tian (2018, Section

1.3.3). A useful alternative is to consider a modeling structure for the RPP

that is sufficiently flexible. Using a structured nonparametric approach, we

consider a class of time-varying coefficient quantile regression models with

some structural assumptions between (Y1(v), Y2(v)) and Z(u).

The following lemma of Wei (2008) describes a useful relationship be-
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tween the marginal, conditional, and joint distributions of multivariate ran-

dom variables. This lemma suggests that in order to estimate the con-

ditional distributions of (Y1(v), Y2(v)) given Z(u), we need to model the

conditional distributions of Y1(v) given Z(u) and Y2(v) given (Z(u), Y1(v)).

Lemma 1. Suppose that (Y1, Y2) is a pair of random variables with abso-

lute continuous joint distribution FY1,Y2, and let U1 and U2 be independent

random variables uniformly distributed on (0,1). Then

(F−1
Y1

(U1), F−1
U2|U1

(U2|U1)) ∼ FY1,Y2 ,

where FY1(A1) is the marginal distribution of Y1, and FY2|Y1 is the condi-

tional distribution of Y2, given Y1.

The inverse function of a cumulative distribution function (CDF) is

a quantile function. Therefore, Lemma 1 ensures that a bivariate random

sample generated sequentially fromQτ{Y1(v)|Z(u)} andQτ{Y2(v)|Z(u), Y1(v)}

follows the conditional distribution of (Y1(v), Y2(v)), given Z(u). By impos-

ing a linear modeling structure with coefficients as time-varying curves, we

propose the following dynamic models forQτ{Y1(v)|Z(u)} andQτ{Y2(v)|Z(u), Y1(v)},

such that

Qτ{Y1(v)|Z(u)} = ατ,1(v|u) + ZT (u)ατ,2(v|u) and (2.4)

Qτ{Y2(v)|Z(u), Y1(v)} = βτ,1(v|u) + ZT (u)βτ,2(v|u) + βτ,3(v|u)Y1(v),(2.5)

Statistica Sinica: Preprint 
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where ατ,1(v|u), ατ,2(v|u), βτ,1(v|u), βτ,2(v|u), and βτ,3(v|u) are unknown co-

efficient functions of both u and v. Intuitively, (2.4) shows that, for any

0 < τ < 1 and a pair of time points (u, v), the τth quantile of Y1(v) de-

pends on Z(u) through a linear relationship with the time-varying regres-

sion quantiles ατ,1(v|u) and ατ,2(v|u). Because the functional coefficients

can vary with two distinct time points, the above models can be used to

explore the dynamic relationship between the bivariate response variables

and covariates measured at different time points across the quantiles. In

addition, these functional parameters determine the conditional quantiles

and, hence, the conditional distribution functions. Consequently, the esti-

mates of these functional parameters can be used to estimate the conditional

distribution functions.

2.3 Estimation of the dynamic conditional distributions

If the dynamic conditional quantiles of models (2.4) and (2.5) are available,

Lemma 1 suggests that RPP{A1(v), A2(v)|z(u)} can be estimated using the

following simulation-based procedure:

1. Draw q1 from a uniform distribution on (0, 1), and obtain the condi-

tional q1th quantile of Y1(v) given z(u), denoted by Y ∗1 (v), from an

estimated model of (2.4).
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2. Draw q2 from a uniform random variable on (0, 1), and obtain the

conditional q2th quantile of Y2(v) given z(u) and Y ∗1 (v), denoted by

Y ∗2 (v), from an estimated model of (2.5).

3. Generate a sufficiently large number of (Y ∗1 (v), Y ∗2 (v)) by repeating

steps 1–2 many times.

4. Estimate the RPP by computing the proportion of the simulated pairs

within Y ∗1 (v) ∈ A1(v) and Y ∗2 (v) ∈ A2(v).

Note that the bivariate random sample of Y ∗1 (v) and Y ∗2 (v) can also be

obtained by switching the order of Y1(t) and Y2(t). Unless there is a natural

ordering between Y1(t) and Y2(t), we can, in practice, simulate the data in

both orders and use the combined data to estimate the conditional joint

distribution.

Statistical inferences for the RPP and RR can be constructed using the

resampling-subject bootstrap approach for longitudinal data (e.g., Hoover

et al., 1998). In addition to the RPP, statistical inferences for the RR have

clinical implications for identifying individuals who are more likely to have

“high disease risks” in the future relative to others in the population. In

particular, we would like to determine if RR > 1 for the time range of

interest. Using the aforementioned bootstrap procedure, we construct the

Statistica Sinica: Preprint 
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one-sided pointwise confidence interval for the RR. This procedure relies on

three steps: (a) generating B bootstrap samples by resampling the subjects

with replacement; (b) estimating the corresponding RRs from each of the

B bootstrap samples; and (c) computing the (100×α)th empirical quantile

of the estimated RRs from the B bootstrap samples as the lower bound of

the one-sided α-level confidence interval.

2.4 Estimation of the time-varying regression quantiles

In this section, we propose a novel estimation procedure for the time-varying

regression quantiles in (2.4) and (2.5) based on the following longitudinal

sample, which consists of n randomly selected subjects. The ith subject, for

1 ≤ i ≤ n, has mi ≥ 1 measurements at time points tij, for j = 1, . . . ,mi,

such that (Y1,ij, Y2,ij) and Xij are the bivariate outcome and a vector of p

covariates, respectively, at time tij.

To clarify the relationship between the response and the covariates at

different time points, it is convenient to denote the longitudinal observations

as follows. Within each subject i, for any j < j′, Yij′ = (Y1,ij′ , Y2,ij′) is a pair

of future response variables relative to Zij = (Yij, X
T
ij). The longitudinal

data are then expressed as (Yij′ , Zij, tij′ , tij), for i = 1, . . . , n, j = 1, . . . ,mi−

1, and j′ = j + 1, . . . ,mi, so that the future response variables are paired
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with the past outcomes and covariates. For example, if the first subject,

(i.e., i = 1) is measured four times, then the subject’s data used to estimate

the coefficients in (2.4) and (2.5) are

(Y12, Z11), (Y13, Z11), (Y13, Z12), (Y14, Z11), (Y14, Z12), (Y14, Z13),

where Yij′ = (Y1,1j′ , Y2,1j′) and Zij = (Y1,ij, Y2,ij, X
T
ij). Because Zij is the

available observation for the ith subject at time tij, it could include both

the covariates Xij and the bivariate outcomes Yij. However, for practical

reasons, some longitudinal studies may not have observed outcomes at every

visit. For instance, if Y12 and Y14 are measured during four visits, while all

the covariates are measured at every visit of subject i = 1, then the subject’s

observations are

(Y12, Z11), (Y14, Z11), (Y14, Z12), (Y14, Z13),

where Zij = Xij. Similarly, when the covariates are not available at time

tij, we have Zij = Yij.

Note that model (2.4) is a special case of model (2.5), which depends on

the ordering between Y1(t) and Y2(t). On the other hand, Y1(v) and Y2(v)

in (2.5) are exchangeable. Thus, it suffices to present only the estima-

tion and the asymptotic properties of the quantile regression model (2.5).

Without loss of generality, we suppose that the response and the covari-
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ates are measured on each visit. For any j < j′, Y2,ij′ is a future response

variable in view of a predictor Zijj′ = (1, Y1,ij, Y2,ij, X
T
1,ij, Y1,ij′), such that

the longitudinal data are expressed as (Y2,ij′ , Zijj′ , tij′ , tij), for i = 1, . . . , n,

j = 1, . . . ,mi−1, and j′ = j+1, . . . ,mi. The notation can be reconstructed

similarly for other cases.

Let θτ (v|u) = (βτ,1(v|u), βτ,2(v|u)T , βτ,3(v|u))T be a vector of functional

parameters that depends on two distinct time points u < v. A local esti-

mator of θτ (v|u), denoted by θ̂τ (v|u), is obtained by minimizing the local

linear quantile regression criterion

(
θ̂τ (v|u), θ̂∗τ (v|u), θ̂#

τ (v|u)
)

= argmin
θ,θ∗,θ#

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

[
ρτ

(
Y2,ij′ − ZT

ijj′θ − ZT
ijj′{θ∗(tij − u) + θ#(tij′ − v)}

)
×K

(tij − u
b1

)
K
(tij′ − v

b2

)]
,

where ρτ (u) = u{τ − 1(u < 0)} is the check function with an indicator

function 1(·), K(·) is a kernel function with bandwidths b1 and b2, and

θ∗(v|u) and θ#(v|u) are the first partial derivatives of θ(v|u) with respect

to u and v, respectively. Here, the kernel function assigns more weight to

longitudinal observations with time points (tij, tij′) that are closer to the

target time points (u, v). If (tij, tij′) moves away from (u, v), the contribu-

tion of this observation to the quantile estimator diminishes, reducing the

Statistica Sinica: Preprint 
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potential estimation bias.

2.5 Asymptotic properties of kernel estimators

For simplicity, we focus here on the asymptotic properties of θ̂τ (v|u) for

the case that the response variables are observed at all measurement times.

Similar derivations, with more tedious calculations, can be extended to

those cases in which the outcome variables not completely observed at all

measurement times for all subjects. The asymptotic properties of θ̂τ (v|u)

are established under the following regularity assumptions:

1. For any u, v ∈ T , ΓZ(u, v) = E{Z(u, v)Z(u, v)T} is positive definite

and differentiable, where Z(u, v) = (1, Y1(u), Y2(u), X(u)T , Y1(v))T .

2. Let N =
∑n

i=1 mi(mi − 1)/2. As n → ∞, Nb1b2 → ∞, Nb1b2(b6
1 +

b6
2)→ 0, and

∑n
i=1 m

4
i

(
1/
√
N3b1b2 + (b2

1 + b2
2)/N

)
→ 0.

3. The time-varying coefficient function θ(v|u) and the bivariate density

function of (u, v), denoted by p(·, ·), are twice continuously differen-

tiable.

4. The kernel function K(·) is symmetric with bounded support and

bounded derivative. Write µK =
∫
u2K(u2)du and ϕK =

∫
K2(u)du.

5. Let ξijj′ = Y2,ij′−Qτ (Y2,ij′ |Zijj′). Denote by fξ(·) and Fξ(·) the density
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and distribution functions of ξijj′ , respectively. Here, fξ(·) is bounded,

positive, and twice continuously differentiable on {v : 0 < Fξ(v) < 1}.

The above assumptions are comparable to those used in kernel estima-

tions with longitudinal data (e.g., Hoover et al., 1998; Wu and Tian, 2013b).

In particular, Assumption 2 specifies the necessary conditions with respect

to the number of within-subject measurements and bandwidths. For ease

of presentation, we consider the special case of mi = m, for all i, such that

Assumption 2 reduces to nm2b1b2 →∞, nm2b1b2(b6
1 + b6

2)→ 0, and

nm4
(

1
/√

n3m6b1b2 + (b2
1 + b2

2)/nm2
)

= m
/√

nb1b2 +m(b1 + b2)→ 0.

In particular, if b1 = O(N−1/6) and b2 = O(N−1/6) are used, we have

that nm2b1b2 → ∞ and nm2b1b2(b6
1 + b6

2) → 0 always hold. However,

in addition, m = o(n1/4) is needed to ensure that mb1 → 0, mb2 → 0,

and m/
√
nb1b2 → 0. Therefore, the data types specified by Assumption

2 include both sparse (i.e., m is bounded) and some dense (m = nγ, for

γ < 1/4) longitudinal data.

Theorem 1. Let u < v be two fixed time points in the interior of T .

If Assumptions 1 to 5 hold, then, for any given τ ∈ (0, 1), we have the

following asymptotic normality result for θ̂τ (v|u):

√
Nb1b2

{
θ̂τ (v|u)− θτ (v|u) +

µK
2

(∂2θτ (v|u)

∂u2
b2

1 +
∂2θτ (v|u)

∂v2
b2

2

)}
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d→ N

(
0,
τ(1− τ)ϕ2

K

p(u, v)f 2
ξ (0)

Γ−1
Z (u, v)

)
, (2.6)

as n→∞, where “
d→ ”denotes convergence in distribution.

A direct conclusion of Theorem 1 is that, under the mild regularity

conditions, the local linear quantile regression method leads to a consistent

estimator of θτ (v|u). If the linearity assumptions on the conditional quantile

functions in (2.4) and (2.5) are satisfied, zT θ̂τ (v|u) is a consistent estima-

tor of the τth conditional quantile of Y2(v), given z = (1, z(u)T , y1(y2))T .

This consistency result suggests that the model-based simulation procedure

described in Section 2.1 provides a consistent estimate of the RPP. Further-

more, if the outcomes are not observed at every visit, Theorem 1 still holds,

but the convergence rate in Theorem 1 is affected, because N , the total

number of observations used in the estimation, decreases.

2.6 Smoothing estimators and cross-validation bandwidths

Similarly to kernel-type local smoothing, the choice of bandwidths plays a

crucial role in the appropriateness of the smoothing estimators. We present

here a “leave-one-subject-out cross-validation” (LSCV) method for selecting

the data-driven bandwidths b1 and b2 for the local smoothing estimators of

the time-varying regression quantiles and RR{A1(v), A2(v)|z(u)}.
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2.6 Smoothing estimators and cross-validation bandwidths21

Suppose that the bandwidths b1 and b2 have the same order of mag-

nitude. It follows directly from the asymptotic distribution in Theorem 1

that the optimal bandwidths, which minimize the mean squared error of

θ̂τ (v|u), are of order O(N−1/6). Following the bandwidth selection strategy

described in Yu and Jones (1998), the bandwidths are selected as

bi = hi[τ(1− τ)/φ2{Φ−1(τ)}]1/6, i = 1, 2, (2.7)

where φ and Φ are the standard normal density and distribution functions,

respectively, and h1 and h2 are bandwidths selected for the corresponding

regression mean estimation, which minimizes

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

[
Y2,ij′ − ZT

ijj′θ − ZT
ijj′{θ∗(tij − u) + θ#(tij′ − v)}

]2

×K
(tij − u

h1

)
K
(tij′ − v

h2

)
. (2.8)

To select the data-driven bandwidths h1 and h2, we use the LSCV band-

widths (Rice and Silverman, 1991) given by

(h1, h2) = argmin
h∗1,h

∗
2

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

{
Y2,ij − ZT

ijj′ θ̂
−i(tij′ |tij;h∗1, h∗2)

}2

,

where θ̂−i(·|·;h∗1, h∗2) is the estimator of the mean regression coefficients

based on the remaining data, with all observations of the ith subject deleted.

From (2.3), RR{A1(v), A2(v)|z(u)} depends on P{A1(v), A2(v)} as its

denominator. Therefore, we would like to estimate P{A1(v), A2(v)} using
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the kernel estimator

P̂{A1(v), A2(v)} =

∑n
i=1

∑mi
j=1 1{Y1,ij ∈ A1(v), Y2,ij ∈ A2(v)}K

(
tij−v
h

)
∑n

i=1

∑mi
j=1K

(
tij−v
h

)
with the same kernel function K(·) as in (2.8) and a bandwidth h > 0. The

data-driven bandwidth of h can be selected using the LSCV procedure,

which is given by

h = argmin
h∗

n∑
i=1

mi∑
j=1

[
1{Y1,ij ∈ A1(v), Y2,ij ∈ A2(v)} − P̂−i{A1(v), A2(v);h∗}

]2

,

where P̂−i{A1(v), A2(v);h∗} is the kernel estimator of P{A1(v), A2(v)} based

on the remaining data, with all observations of the ith subject deleted. The

resulting estimator of RR{A1(v), A2(v)|z(u)} is

R̂R{A1(v), A2(v)|z(u)} =
R̂PP{A1(v), A2(v)|z(u)}

P̂{A1(v), A2(v)}
,

which is obtained by substituting the corresponding estimators into (2.3).

3. Application to the NGHS BP Data

We apply our estimation and inference procedures to the NGHS to evaluate

the predictive probabilities of the bivariate BP outcomes, SBP and DBP,

during adolescent years, with race, BMI percentile, and height percentile

as covariates. As discussed in the introduction, the NGHS is a prospective

cohort study of the cardiovascular risk factors of 1166 Caucasian and 1213
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African American girls. These girls were enrolled in the study at either 9

or 10 years of age and had up to an annual physical examination until 18

or 19 years old. For further details and statistical analyses of this study,

see Wu and Tian (2018, Sections 1.2 and 13.4). Because some study par-

ticipants have missing measurements for reasons unrelated to the study or

their health status, it is reasonable to assume that these data are miss-

ing completely at random. Therefore, after deleting the missing data, our

analysis uses the longitudinal observations from 1164 Caucasian and 1212

African American girls. The number of repeated measurements has a range

of 1 to 10 with a median of 9.0, a mean of 8.3, and a standard deviation of

2.0. All covariates and bivariate outcomes are measured at each visit. The

girls’ BMI and height percentiles are computed based on the Centers for

Disease Control and Prevention (CDC) growth chart, as in Wu and Tian

(2018, Section 13.4). Of the two attempts in the literature to investigate

the conditional distribution of a univariate longitudinal outcome using the

NGHS data, Wu, Tian, and Yu (2010) study the time-varying effects of

race, BMI percentile, and height percentile on the SBP, and Wu and Tian

(2013a) estimate the time trends of the conditional distributions of the SBP.

Let Y1(t), Y2(t), X1, X2(t), and X3(t) be the SBP, DBP, race, BMI

percentile, and height percentile, respectively, at age t, where X1 = 1 if the
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girl is African American, and zero if Caucasian. Recall that the probability

of having an “abnormal BP level” is defined as

RPPabnormal BP(v|u) = 1− RPP{(−∞, Q.95{Y1(v)}), (−∞, Q.95{Y2(v)})|Z(u) = z(u)},(3.1)

where Z(t) = (X1, X2(t), X3(t), Y1(t), Y2(t))T and Qτ{Y1(t)} and Qτ{Y2(t)}

are the (τ × 100)th quantiles of the SBP and DBP at age t. Because all

subjects were enrolled in the study at age 9 or 10 and were followed for nine

years, we can estimate RPPabnormal BP(v|u), for 9 ≤ u < v ≤ 19. How-

ever, for the purpose of illustration, we analyze RPPabnormal BP(18|10).

We first use the NGHS data for girls whose age is within the interval

[17.5, 18.5) and estimate (Q0.95{Y1(18)}, Q0.95{Y2(18)}) as (Q̂0.95{Y1(18)}, Q̂0.95{Y2(18)}) =

(123, 80). Using the kernel smoothing estimators of Section 2.6 with a Gaus-

sian kernel, the joint probability of having an SBP or DBP above their cor-

responding 95th percentiles at the age of 18 is estimated to be 7.7%; that

is,

1− P̂{(−∞, Q̂0.95{Y1(18)}), (−∞, Q̂0.95{Y2(18)})} = 0.077.

Next, we illustrate how the observed health status at an earlier ado-

lescent period influences the probability of future abnormal BP levels. To

do so, we estimate the RPP of having an SBP or DBP over the 95th per-

centile at the age of 18 under various combinations of height percentile,
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BMI percentile, and three BP groups at the age of 10: “medium-BP”

(Q0.5{Y1(10)}, Q0.5{Y2(10)}), “above median-BP” (Q0.75{Y1(10)}, Q0.75{Y2(10)}),

and “elevated-BP” (Q0.9{Y1(10)}, Q0.9{Y2(10)}). These quantiles are esti-

mated using data for girls whose ages fall within the age interval [9.5, 10.5).

We compute the kernel smoothing estimators with the Gaussian kernel using

the bandwidths (h1, h2) = (1.0, 1.5) and (h1, h2) = (2.3, 1.5) for the follow-

ing respective sets of quantile regression models at age v: (a) a marginal

quantile model of Y1(v) and a quantile regression model of Y2(v) condi-

tioning on Y1(v); (b) a marginal quantile model of Y2(v) and a quantile

regression model of Y1(v) conditioning on Y2(v). The models in (a) and

(b) differ in their orders of Y1(v) and Y2(v). These bandwidths are selected

using the LSCV procedure of Section 2.3 and the quantile adjustment given

in (2.7). In each order, a bivariate random sample of 1000 is generated from

the proposed simulation-based procedure.

Figure 1 shows heat maps of the estimated RPPabnormal BP(18|10).

The color changes gradually from red to green, representing the gradually

decreasing estimated RPPabnormal BP(18|10). The colors of the estimated

probability become lighter when their values are closer to the estimated

probability 1− P̂{(−∞, Q̂0.95{Y1(v)}), (−∞, Q̂0.95{Y2(v)})}, which is 0.077

and represented by white on the heat maps. For the effects of the covariates,
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we observe in Figure 1 that a 10-year old girl with larger BMI and height

percentiles is more likely to have her SBP or DBP over its 95th percentile

at age 18. For the dynamic effects of BP over time, Figure 1 shows there is

a positive dependence between the BP levels at earlier and later adolescent

periods: higher SBP and DBP levels at age 10 are associated with a higher

probability of having an SBP or DBP over its 95th percentile at age 18.

In particular, for any covariate values (i.e., race, BMI, and height), the

estimated RPP of the SBP or DBP over its 95th percentile at age 18 for

girls with high SBP and DBP levels at age 10 is always higher than the

estimated probability of an SBP or DBP being over its 95th percentile

at age 18 without conditioning on the SBP and DBP levels at age 10.

The effects of race show that African American girls always have a higher

estimated RPPabnormal BP(18|10) than Caucasian girls do under the same

BP levels and height and BMI percentiles at age 10. This suggested race

effect is worth investigating further in pediatric studies.

Next, we estimate the RR at ages (u, v) = (10, 18) to quantify the

relative strength of the RPP at these ages over the probability of having

abnormal SBP or DBP levels at 18 years of age. Girls with high RR values

(e.g, significantly greater than 1) can be identified as those with a high risk

of developing abnormal BP levels at young adulthood. Because the BMI
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is a well-known risk factor for pediatric hypertension (Obarzanek et al.,

2010), we estimate the RR values at (u, v) = (10, 18) over a sequence of

BMI percentiles {0.05, 0.1, . . . , 0.95}, given a fixed height percentile.

Figure 2 shows the lower bounds of the one-sided 95% confidence inter-

vals (CI) for the RRs of African American and Caucasian girls, conditioning

on the medium height and the 75th SBP and DBP quantiles at age 10. For

both African American and Caucasian girls, the lower bounds of the CIs

increase linearly as the BMI percentile increases. Except for the Caucasian

girls with BMI percentiles below 25, the lower CI bounds of the RRs are

all greater than one for both races. This suggests that the majority of the

girls within the given height and BP range have a higher probability of

developing abnormal SBP or DBP levels at age 18. Similar phenomena are

observed for the RRs and their corresponding one-sided CIs under various

other scenarios of covariate values and BP levels at age 10, for example, the

girls with medium height and SBP and DBP values at their medians and

90th quantiles.

4. Simulation Study

In order to the performance of the proposed method for the NGHS data, the

simulation setups reflect the NGHS design. We generate longitudinal data
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for 1000 subjects from the following bivariate models, for j = 1, . . . , 10:

Yij1(tij) = α0(tij) + α1(tij)Xij1 + α2(tij)Xij2(tij) + α3(tij)Xij3(tij) + ei + εij,(4.1)

Yij2(tij) = β0(tij) + β1(tij)Xij1 + β2(tij)Xij2(tij) + β3(tij)Xij3(tij) + ei + εij.(4.2)

We independently generate Xij1, Xij2(tij), Xij3(tij), ei, and (εij, εij)
T as

follows: Xij1 ∼ Bernoulli(0.5), 100Xij2(tij) = ai + ξij, ai ∼ U(5, 95), ξij ∼

U(−5, 5), 100Xij3(tij) = bi + ϕij, bi ∼ U(5, 95), ϕij ∼ U(−5, 5), tij ∼

U(j+8, j+9), ei ∼ N(0, 62), and (εij, εij)
T are generated from the bivariate

normal distribution with zero means, and V ar(εij) = 36, V ar(εij) = 64,

and Cov(εij, εij) = 14. In addition, the coefficients are set as α0(t) =

72 + 3t− 0.07t2, α1(t) = −0.1 + 0.06t , α2(t) = −3 + 1.3t− 0.03t2, α3(t) =

4+1.1 cos(πt/6)−0.3 sin(πt/6), β0(t) = 15+5.27t−0.15t2, β1(t) = 1−0.1t+

0.007t2, β2(t) = 23−3t+ 0.11t2, β3(t) = 3 + 0.85 cos(πt/6)−0.42 sin(πt/6).

Note that Yij1, Yij2 Xij1, Xij2, and Xij3 approximate the SBP, DBP,

race, BMI, and height percentiles, respectively, in the NGHS data, and

the coefficients are set based on the estimates obtained from fitting models

(4.1) and (4.2) to the NGHS data. The within-subject correlation is im-

posed by using subject errors ei, and the correlation between the bivariate

response variables is considered by using bivariate normal errors (εij, εij).

Note that the conditional distribution (Y1(v), Y2(v)|Z(u)) is not appropri-

ate for generating ordinary longitudinal data (X(t), Y1(t), Y2(t)) that are
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measured concurrently.

For 1000 simulation replicates, we estimate the same RPP in (3.1) con-

sidered in the NGHS data analysis:

1− RPP{(−∞, Q.95{Y1(18)}), (−∞, Q.95{Y2(18)})|Z(10) = z(10)},

where z(10) = (x1, x2(10), x3(10), y1(10), y2(10)). We evaluate the per-

formance of the proposed method by computing the RPP for x1 = 0, 1,

x2(10) = 0.05, . . . , 0.95, and x3(10) = 0.5, with (y1(10), y2(10)) = (Q0.5{Y1(10)}, Q0.5{Y2(10)}).

Because the quantiles of (y1(t), y2(t)) are unknown, they are estimated in

the same manner as in the NGHS data analysis using subjects whose age

lies in [t − 0.5, t + 0.5). For the estimation of the RPP given z(10), we

use stratified quantile regression models with both orders of the bivariate

response variables and a random sample of 1000.

Note that it is infeasible to obtain the true value of the RPP because

the data are generated based on models (4.1)–(4.2), while the stratified

quantile regression models (2.4)–(2.5) are considered to obtain the RPP.

Alternatively, we can generate a sufficiently large number of subjects (e.g.,

n = 1, 000, 000), and evaluate the true RPP without imposing any structure

between the bivariate response variable at time 18 and the predictors at time

10.

Figure 3 displays the unstructured RPP curves and the average, 2.5%
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percentiles, and 97.5% percentiles of the estimated RPP curves. The fig-

ure shows that the average of the estimated RPP curves by the proposed

method is quite close to the unstructured RPP curves. Moreover, the varia-

tion of the estimated RPP curves is reasonably small, even though a smaller

longitudinal data sample is used relative to the NGHS data. Therefore,

these simulation results validate that the proposed estimator of the RPP is

consistent, and that the estimated RPPs for analyzing the NGHS data are

reliable.

5. Discussion

The proposed statistical methodology and its application to the NGHS

data provide a useful exploratory tool for evaluating dynamic relationships

using multivariate longitudinal data. We propose using the RPP and its

functional as a natural and direct means to quantify past information on

the likelihood of future health status and disease risks. The dynamic quan-

tile regressions presented in Section 2 lead to a class of novel and flexible

structured nonparametric models for computing the RPP and its functional.

This conditional quantile-based approach can be applied to a wide range

of biomedical studies aiming to discover which factors have a significant

influence on future disease risks. In practice, statistical estimates and in-
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ferences of the RPP and its functional can be used to identify individuals

who are more likely than the general population to develop unfavorable

disease risks.

In some situations, it is possible to consider a “risk score” that combines

several risk factors into a single univariate outcome variable. For example,

one of the cardiovascular disease risk factors evaluated in Redheuil et al.

(2014) is the mean brachial blood pressure (MBP), which is defined as

(2DBP + SBP)/3. However, as discussed in Redheuil et al. (2014), the

MBP is only one of many risk factors investigated in cardiovascular studies,

and is by no means a unique substitute for the bivariate (SBP, DBP). In

their NGHS analysis of hypertension in adolescent girls, Obarzanek et al.

(2010) discuss the clinical implications of abnormal levels of blood pressure

using joint distributions of (SBP, DBP) conditional on age, height, BMI,

and other covariates.

The RPP and the conditional quantile models proposed in this paper

differ from the conditional distribution-based “rank-tracking probabilities”

(RTP) in the literature (e.g., Wu and Tian, 2013a, 2013b) in three impor-

tant aspects. First, our RPP and conditional quantile models allow for

longitudinal data with bivariate outcome variables, while the RTP-based

methods can only be applied to univariate outcomes. Second, unlike the
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RTP, our RPP defined at any time points u < v allows for any given out-

come and covariate values at the previous time u, while the RTP requires

that the outcome at u belongs to some prespecified set of “events.” Third,

our conditional quantile regression models allow for dynamic dependence

of outcomes and covariates at both time points u < v. In contrast, the

currently available conditional distribution-based models for RTP do not

allow the outcomes and covariates to appear simultaneously at both time

points. These three unique features enable our conditional quantile based

RPP and its functional to be more generally applied than the RTP-based

methods in the literature.

Compared with the nonparametric estimation methods for conditional-

based models (Wu and Tian, 2013a, 2013b), the proposed simulation and

kernel smoothing estimation procedure appears to be unique because of the

inclusion of the simulation step. This step is appropriate and essential, be-

cause the current modeling framework is based on the conditional quantiles.

The application to the NGHS data suggests that our proposed models and

estimation methods lead to clinical conclusions that are consistent with the

findings observed in the literature. The statistical properties established by

the simulation study and the asymptotic development suggest that our sim-

ulation and kernel smoothing-based estimation methods lead to consistent
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results.

Because the proposed estimation of the conditional distribution of the

bivariate outcomes involves a two-dimensional kernel estimation, a sufficient

number of observations is required to obtain reliable estimation results. In

order to check how sensitive the estimation of the RPP is to the sample size,

we perform the simulation studies with the number of subjects n = 1000,

which is substantially smaller than the NHGS data (n = 2376). The simu-

lation results suggest that the proposed estimator is reliable and consistent.

We further note that restructuring longitudinal data helps to overcome the

bidimensional problem by increasing the number of observations. When the

response variables and the covariates are measured concurrently, the num-

ber of observations in the restructured longitudinal data is nm(m − 1)/2,

where m = m1 = · · · = mn. This becomes much larger than the number of

observations nm in the original longitudinal data as m increases.

References

Barter, P., Gotto, A. M., LaRosa, J. C., Maroni, J., Szarek, M., Grundy, S.

M, John, J. P., Kastelein, Bittner, V. and Fruchart, J. C. (2007) “HDL

cholesterol, very low levels of LDL cholesterol, and cardiovascular

events,” New England Journal of Medicine, 357, 1301–1310.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0127



Risk-predictive probability models 34

Cho, H. (2016), “The analysis of multivariate longitudinal data using mul-

tivariate marginal models,” Journal of Multivariate Analysis, 143,

481–491.

Cho, H., Hong H. G. and, Kim, M. O. (2016). “Efficient quantile marginal

regression for longitudinal data with dropouts,” Biostatistics, 17, 561–

575.

Chobanian, A. A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green,

L. A., Izzo, J. L., Jones, D. W., Materson, B. J., Oparil, S., Wright, J.

T. and others (2003). “Seventh report of the joint national committee

on prevention, detection, evaluation, and treatment of high blood

pressure,” Hypertension, 42, 1206–1252.

Chaganty, N. R. and Naik, D. N. (2002), “Analysis of multivariate longitu-

dinal data using quasi-least squares,” Journal of Statistical Planning

and Inference, 103, 421–436.

Falkner, B. Daniels, S. R., Flynn, J. T. and Gidding, S. and Green, L. A.,

Ingelfinger, J. R., Lauer, R. M. and Morgenstern, B. Z., Portman, R.

J., Prineas, R. J., Rocchini, A. P., Rosner B., Sinaiko, A. R., Stettler,

N., Urbina E., Roccella, E. J., Hoke T., Hunt, C. E., Pearson G.,

Karimbakas, J. and Horton, A. (2004), “The fourth report on the

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0127



Risk-predictive probability models 35

diagnosis, evaluation, and treatment of high blood pressure in children

and adolescents,” Pediatrics, 114, 555–576.

Fieuws, S. and Verbeke, G. (2006), “Pairwise fitting of mixed models for

the joint modeling of multivariate longitudinal profiles,” Biometrics,

62, 424–431.

Flynn, J. T., Kaelber, D. C., Baker-Smith, c. M., et al. (2017), “Clin-

ical practice guideline for screening and management of high blood

pressure in children and adolescents,” Pediatrics, 140(3):e20171904.

Ghosh, P., Branco, M. D. and Chakraborty, H. (2007), “Bivariate random

effect model using skew-normal distribution with application to HIV-

RNA,” Statistics in Medicine, 26, 1255–1267.

Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L. P. (1998), “Nonpara-

metric smoothing estimates of time-varying coefficient models with

longitudinal data,” Biometrika, 85, 809–822.

Kavey, R. E. W., Daniels, S. R., Lauer, R. M., Atkins, D. L., Hayman, L.

L., and Taubert, K. (2003), “American heart association guidelines for

primary prevention of atheroclerotic cardiovascular disease beginning

in childhood,” Circulation, 107, 1562–1566.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0127



Risk-predictive probability models 36

Kim, C. and Zimmerman, D. L. (2012), “Unconstrained models for the

covariance structure of multivariate longitudinal data,” Journal of

Multivariate Analysis, 107, 104–118.

Kim, M. O. and Yang, Y. (2011). “Semiparametric approach to a random

effects quantile regression model,” Journal of the American Statistical

Association, 106, 1405–1417.

Kohlia, P., Garcia, T. P. and Pourahmadi, M. (2016), “Modeling the

Cholesky factors of covariance matrices of multivariate longitudinal

data,” Journal of Multivariate Analysis, 145, 87–100.
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Appendix

Proof of Theorem 1. Let uij = (tij − t1)/b1, vij′ = (tij′ − t2)/b2, Kijj′ =

K(uij)K(vij′),

∆ =


∆θ

∆∗θ

∆#
θ

 =
√
Nb1b2


θ − θτ (t2|t1)

b1{θ∗ − ∂θτ (t2|t1)
∂t1

}

b2{θ# − ∂θτ (t2|t1)
∂t2

}

 and Jijj′ =


Zijj′

Zijj′uij

Zijj′vij′

 .

Then we can write

Y2,ij′−ZT
ijj′θ−ZT

ijj′{θ∗(tij−t1)+θ#(tij′−t2)} = ξijj′+dijj′−JTijj′∆/
√
Nb1b2

where dijj′ = ZT
ijj′{θτ (tij′ |tij) − θτ (t2|t1) − (tij − t1)∂θτ (t2|t1)/∂t1 − (tij′ −

t2)∂θτ (t2|t1)/∂t2}. Since
(
θ̂τ (t2|t1), θ̂∗τ (t2|t1), θ̂#

τ (t2|t1)
)

minimizes (2.8), the

re-scaled vector ∆̂ minimizes the re-parameterized function of ∆:

L(∆) =
n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

{
ρτ

(
ξijj′ + dijj′ − JTijj′∆/

√
Nb1b2

)
− ρτ

(
ξijj′ + JTijj′dijj′

)}
Kijj′ .
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Write δijj′ = JTijj′∆/
√
Nb1b2. Applying Knight’s identity ρτ (u−θ)−ρτ (u) =

−θ(τ −1u<0) +
∫ θ

0
(1u≤s−1u≤0)ds, we can write L(∆) = −An∆ + In, where

An =
1√
Nb1b2

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

(τ − 1dijj′+ξijj′<0)Kijj′J
T
ijj′ ,

In =
n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

Kijj′ηijj′ , ηijj′ =

∫ δijj′

0

(1dijj′+ξijj′≤s − 1dijj′+ξijj′≤0)ds.

Consider In. Since K has bounded support, it suffices to consider |tij−

t1| = O(b1) and |tij′−t2| = O(b2). By Condition 1, |δijj′| = Op{(Nb1b2)−1/2}

and |dijj′ | = Op(b
2
1 +b2

2) . Since |ηijj′| ≤ |δijj′|1−|δijj′ |≤ξijj′+dijj′≤|δijj′ |, we have

E(K2
ijj′η

2
ijj′) = O(ρn/N), where ρn = 1/

√
Nb1b2 + b2

1 + b2
2. By the Cauchy-

Schwarz inequality, we have

var(In) =
n∑
i=1

var

(
mi−1∑
j=1

mi∑
j′=j+1

Kijj′ηijj′

)
≤

n∑
i=1

[
mi(mi − 1)

2

mi−1∑
j=1

mi∑
j′=j+1

E(K2
ijj′η

2
ijj′)

]

= O

(
n∑
i=1

m4
i ρn/N

)
= O

{
n∑
i=1

m4
i

( 1√
N3b1b2

+
b2

1 + b2
2

N

)}
→ 0, (5.3)

in view of Condition 2. By dijj′ = Op(b
2
1+b2

2) and simple Taylor’s expansion,

E(ηijj′|Zij, tij, tij′) =

∫ δijj′

0

[
Fξ(s− dijj′)− Fξ(−dijj′)

]
ds � δ2

ijj′
fξ(0)

2
,(5.4)

uniformly for all (i, j, j′). Recall ΓZ(t1, t2) = E[Z(t1, t2)Z(t1, t2)T ]. Note

that

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

E(Kijj′δ
2
ijj′)→ p(t1, t2)∆TΩ(t1, t2)∆, (5.5)
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where Ω(t1, t2) = diag{ΓZ(t1, t2), µKΓZ(t1, t2), µKΓZ(t1, t2)} is a block di-

agonal matrix. By (5.3)–(5.5), we have the convergence in probability:

In = E(In) + op(1) =
n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

E[Kijj′E(ηijj′|Zij, tij, tij′)] + op(1)

→ fξ(0)

2
p(t1, t2)∆TΩ(t1, t2)∆.

Recall ∆̂ = argmin∆ L(∆). By the quadratic approximation and con-

vexity lemma,

∆̂ = argmin
∆

{
− An∆ +

fξ(0)

2
p(t1, t2)∆TΩ(t1, t2)∆

}
+ op(1)

=
Ω(t1, t2)−1ATn
p(t1, t2)fξ(0)

+ op(1).

For the θ̂ components of ∆̂, we have

θ̂τ (t2|t1)− θτ (t2|t1)

=
Γ−1
Z (t1, t2)

p(t1, t2)fξ(0)

1

Nb1b2

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

(τ − 1ξijj′<0 + ζijj′)Kijj′Zij + op[(Nb1b2)−1/2],(5.6)

where ζijj′ = 1ξijj′<0−1dijj′+ξijj′<0. LetRn = (Nb1b2)−1
∑n

i=1

∑mi−1
j=1

∑mi
j′=j+1 ζijj′Kijj′Zij.

By the arguments in (5.3)–(5.4) and Taylor’s expansion dijj′ = {b2
1u

2
ij∂

2θτ (t2|t1)/∂t21+

b2
2v

2
ij′∂

2θτ (t2|t1)/∂t22 + b1b2uijvij′∂
2θτ (t2|t1)/(∂t1∂t2)}/2 +O(b3

1 + b3
2),

E(Rn) =
1

Nb1b2

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

E{Kijj′ZijE(ζijj′ |Zij, tij, tij′)}

=
p(t1, t2)fξ(0)µK

2
ΓZ(t1, t2)

(∂2θτ (t2|t1)

∂t21
b2

1 +
∂2θτ (t2|t1)

∂t22
b2

2

)
+ o(b3

1 + b3
2),(5.7)
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and var(Rn) = o{(Nb1b2)−1/2}. Note that b3
1 + b3

2 = o{(Nb1b2)−1/2}. Thus,

by (5.6)–(5.7),

√
Nb

{
θ̂τ (t2|t1)− θτ (t2|t1)− µK

2

(∂2θτ (t2|t1)

∂t21
b2

1 +
∂2θτ (t2|t1)

∂t22
b2

2

)}

=
Γ−1
X (t1, t2)

p(t1, t2)fξ(0)

1√
Nb1b2

n∑
i=1

%i + op(1), (5.8)

where %i =
∑mi−1

j=1

∑mi
j′=j+1 %ijj′ with %ijj′ = [τ − 1ξijj′<0]Kijj′Zij. Note that

E(%ijj′%
T
i``′) = O(b2

1b
2
2) for j 6= ` and j′ 6= `′, E(%ijj′%

T
i``′) = O(b1b

2
2) for j = `

and j′ 6= `′, and E(%ijj′%
T
i``′) = O(b2

1b2) for j 6= ` and j′ = `′. Thus,

var
( 1√

Nb1b2

n∑
i=1

%i

)
=

1

Nb1b2

n∑
i=1

mi−1∑
j=1

mi∑
j′=j+1

E{[τ − 1ξijj′<0]2K2
ijj′ZijZ

T
ij}

+
1

Nb1b2

n∑
i=1

O(m3
i b

2
1b2) +

1

Nb1b2

n∑
i=1

O(m3
i b1b

2
2) +

1

Nb1b2

n∑
i=1

O(m4
i b

2
1b

2
2)

→ τ(1− τ)p(t1, t2)ϕ2
KΓZ(t1, t2). (5.9)

The desired result then easily follows from (5.8) and the independence of

%1, . . . , %n. ♦
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Figure 1: Heat maps of the estimated RPP of having hypertension at age

18.
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Figure 2: Lower bounds, marked with x, of one-sided 95% confidence

intervals for the relative risk of RPP with the 50th height percentile and

the 75th quantile of SBP and DBP at age 10.
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Figure 3: The solid lines are the averages of the estimated RPP curves; the

dashed lines are the pointwise 2.5% and 97.5% percentiles of the estimated

RPP curves; the dotted lines are the structured RPP curves.
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