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Abstract: Sufficient dimension reduction often resorts to inverse regression, and most inverse

regression methods rely on slicing a quantitative response. The choice of a particular slicing scheme

is critical, but there are no current methods in the literature about how to select an optimal slicing

scheme. We consider two popular slicing-based methods, namely, the sliced inverse regression and

the sliced average variance estimation. By recasting the eigen-decomposition problem as a trace-

optimization problem, we propose a penalized criterion for choosing an optimal slicing scheme.

A dynamic programming algorithm is developed for numerical optimization. The theoretical

properties are studied under mild conditions. Simulation examples show that our methods compare

favorably with existing methods. An illustrative data analysis is also presented.
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1. Introduction

A fundamental concept in regression is dimension reduction, used to reduce the dimension

of the predictor space without losing information on the regression (Cook 2007). Many

different contexts have been developed to achieve this. Among these, sufficient dimension

reduction has received considerable interest in the past two decades (Cook 1998). Consider

the regression of a univariate response Y ∈ R on a p-dimensional predictor vector

X = (X1, . . . , Xp)
⊤ ∈ Rp. In full generality, sufficient dimension reduction seeks a

set of linear combinations of X , such that the conditional distribution of Y given X

depends on X only through these linear combinations. More formally, if Y and X are
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independent given β⊤X , where β is a p × d matrix with d ≤ p, then the column space

of β is called a dimension-reduction subspace. Under mild assumptions, the intersection

of all dimension-reduction subspaces is also a dimension-reduction subspace; in this case,

it is called the central subspace for the regression of Y on X , and is denoted by SY |X

(Cook 1998).

Methods for estimating SY |X include the sliced inverse regression (Li 1991), sliced

average variance estimation (Cook &Weisberg 1991), minimum average variance estimation

(Xia et al. 2002), minimum discrepancy estimation (Cook & Ni 2005), directional regression

(Li &Wang 2007), likelihood acquired directions (Cook & Forzani 2009), and semiparametric

estimation (Ma & Zhu 2012); see Ma & Zhu (2013) for a review. Among these methods,

perhaps the most widely used are the inverse regression methods, and in particular the

sliced inverse regression (SIR) and sliced average variance estimation (SAVE). The inverse

regression of X on Y , or X | Y for short, is composed of p regressions, Xj | Y , for

j = 1, . . . , p. Because Y is one dimensional, an inverse regression avoids the curse of

dimensionality. In this study, we are concerned only with the SIR and SAVE, both of

which rely on inverse conditional moments. See Section 2 for more details.

To estimate p inverse regressions, we can either use a smooth nonparametric method,

such as a kernel regression (Zhu & Fang 1996), or fit parametric curves using a linear

regression (Bura & Cook 2001). However, the usual routines for computing the SIR

and SAVE use a simple nonsmooth nonparametric procedure introduced by Li (1991):

partition the range of Y into a few slices, and compute the sample moments of X in each

slice. We call this procedure slicing. Similar to the bandwidth in kernel smoothing, the

slicing scheme is a tuning parameter that needs to be determined from the data. When

Y is continuous, it is more convenient to use quantile slicing, that is, to slice the response

according to its quantiles. Then, the choice of the number of slices is critical. To the
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best of our knowledge, there are no current methods in the literature for selecting the

number of slices in quantile slicing, or the slicing scheme in general, which remains an

open problem (Zhu, Wang, Zhu & Ferré 2010).

The performance of the SIR has been empirically observed to be robust to the choice

of the number of slices. Zhu & Ng (1995) showed theoretically that the SIR estimator is

√
n-consistent, provided that the number of slices is between

√
n and n/2, where n is the

sample size. This is not true for the SAVE. Numerically, the SAVE is more sensitive to

the number of slices than is the SIR (Zhu et al. 2007). Furthermore, it can be inconsistent

when the number of observations in each slice is fixed and does not depend on n (Li & Zhu

2007). As such, methods for adaptively choosing a slicing scheme are highly demanding.

To address the slicing problem, Zhu, Zhu & Feng (2010) proposed a cumulative slicing

estimation. Similarly to the SIR and SAVE, they proposed a cumulative mean estimation

and a cumulative variance estimation. The basic idea of a cumulative slicing estimation is

to pool the collection of estimates of SY |X from all possible slicing schemes with two slices.

Rather than select the optimal number of slices, their method sidesteps the problem.

More recently, Cook & Zhang (2014) developed a class of fused estimators. Like the

cumulative slicing estimation, the general methodology can be applied to all dimension-

reduction methods that rely on slicing a quantitative response. Two special cases are

the fused SIR and the fused SAVE. However, fused estimators are not fully slicing-free,

in the sense that the fusion is over a predefined set of slicing schemes. Consequently,

if we adopt quantile slicing, then the number of slicing schemes has to be specified for

each dimension-reduction method. However, the effect of this hyperparameter has not

been studied systematically. Despite these advances, the problem of choosing an optimal

slicing scheme remains.

In this study, we focus directly on the slicing problem and propose a practically
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useful solution. In Section 2, we review the SIR and SAVE in the usual dimension-

reduction framework. In Section 3, we re-derive the SIR and SAVE estimates using a

trace maximization principle. In Section 4.1, we propose a penalized criterion for selecting

an optimal slicing scheme. An efficient algorithm is developed for numerical optimization

in Section 4.2, and the theoretical properties of our methods are studied in Section 4.3.

In Section 5, we compare the performance of our methods with that of existing methods

by simulation. An illustrative data analysis is presented in Sections 6. We include a

concluding discussion in Section 7. All proofs are given in the Supplementary Material.

For a matrix M, span(M) denotes the subspace spanned by the columns of M, and

vec(M) is the operator that constructs a vector from M by stacking its columns. If M

is a square matrix, trace(M) denotes the trace of M. An identity matrix is denoted by

I or Ip, when it is necessary to indicate the order. A semi-orthogonal matrix A ∈ Rp×q,

for q < p, has orthogonal columns; that is, A⊤A = Iq.

2. Review of the SIR and SAVE

In keeping with the usual dimension-reduction protocol, we assume for now that the

response Y has been discretized by constructing G slices. We continue to use Y to

denote the sliced version with support {1, . . . , G}. We also assume that an independent

and identically distributed sample {(x i, yi), i = 1, . . . , n} from the joint distribution of

(X , Y ) is available.

The following two assumptions are common in sufficient dimension reduction: (C1)

E(X | β⊤X ) is a linear function of β⊤X , and (C2) Cov(X | β⊤X ) is constant, where

the columns of the matrix β ∈ Rp×d form a basis for SY |X . Both conditions apply to the

marginal distribution of X , and not to the conditional distribution of Y given X , and

are widely regarded as mild. See Li & Wang (2007) for a discussion.
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For ease of exposition, we often work in terms of the standardized predictor

Z = {Cov(X )}−1/2{X − E(X )},

with the sample version given by z i = S−1/2(x i− x̄ ), where x̄ =
∑n

i=1 x i/n is the sample

mean of x i, and S =
∑n

i=1(x i − x̄ )(x i − x̄ )⊤/n is the sample covariance matrix. This

involves no loss of generality, because SY |X = {Cov(X )}−1/2SY |Z (Cook 1998).

The SIR, SAVE, and many other methods for estimating SY |Z are based on the

following general procedure. Suppose M ∈ Rp×p is a kernel matrix with the property

that span(M) ⊆ SY |Z , and M̂ is a consistent estimate of M. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p

be the eigenvalues of M̂, and let η̂1, η̂2, . . . , η̂p be the corresponding eigenvectors. We

use span(η̂1, . . . , η̂d) to estimate SY |Z . We then use span{S−1/2(η̂1, . . . , η̂d)} to estimate

SY |X .

The SIR is based on a fundamental result by Li (1991): if condition (C1) holds, then

the conditional mean E(Z | Y ) ∈ SY |Z . Then, span(MSIR) ⊆ SY |Z , where MSIR =

Cov{E(Z | Y )} is the SIR kernel matrix.

The SAVE uses the conditional variance Cov(Z | Y ). Define the SAVE kernel matrix

as MSAV E = E[{Ip − Cov(Z | Y )}2]. Given conditions (C1) and (C2), the column space

of MSAV E is contained in SY |Z (Cook & Weisberg 1991).

It is well known that span(MSIR) ⊆ span(MSAV E). Specifically, let µg = E(Z |

Y = g) and Σg = Cov(Z | Y = g). Then, span(MSIR) = span(µ1, . . . ,µG), and by

Proposition 6 of Cook & Critchley (2000),

span(MSAV E) = span(µ1, . . . ,µG,Σ2 −Σ1, . . . ,ΣG −ΣG−1).

Let ng =
∑n

i=1 I(yi = g), where I(·) is the indicator function. Let µ̂g =
∑

i:yi=g z i/ng

and Σ̂g =
∑

i:yi=g(z i − µ̂g)(z i − µ̂g)
⊤/ng. We estimate MSIR and MSAV E by

M̂SIR =
G∑

g=1

ng

n
µ̂gµ̂

⊤
g
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and

M̂SAV E =
G∑

g=1

ng

n
(Ip − Σ̂g)

2,

respectively.

3. The trace-maximization principle

Instead of computing the eigen decomposition of a kernel matrix, we can solve a trace-

optimization problem (Chen et al. 2010).

Lemma 3.1. Let A ∈ Rp×p be a symmetric matrix, and B be a p × d semi-orthogonal

matrix. Denote by η1(A), . . . ,ηp(A) the eigenvectors of A, ordered from the largest to

the smallest eigenvalue λj(A). We have trace(B⊤AB) ≤
∑d

j=1 λj(A), with equality if

and only if B = [η1(A), . . . ,ηd(A)]U, where U is any d× d orthogonal matrix.

From this lemma, the SIR is equivalent to the criterion

max
α:α⊤α=Id

trace(α⊤M̂SIRα) = max
α:α⊤α=Id

G∑
g=1

ng

n
trace(α⊤µ̂gµ̂

⊤
g α),

and the SAVE is equivalent to the criterion

max
α:α⊤α=Id

trace(α⊤M̂SAV Eα) = max
α:α⊤α=Id

G∑
g=1

ng

n
trace{α⊤(Ip − Σ̂g)

2α}.

We can also obtain the SIR or SAVE estimate as the solution to a nonlinear least

squares problem (Cook & Ni 2005). For any B ∈ Rp×d, define

LSIR(B,C) =
G∑

g=1

ng

n
∥µ̂g −BCg∥22,

where Cg ∈ Rd×1 and C = (C1, . . . ,CG). In addition, define

LSAV E(B,F) =
G∑

g=1

ng

n
∥vec(Ip − Σ̂g)− vec(BFg)∥22,

where Fg ∈ Rd×p and F = (F1, . . . ,FG).
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For fixed B, let ĈB be the value of C that minimizes LSIR(B,C), and let F̂B be

the value of F that minimizes LSAV E(B,F). Let Gp,d = {B ∈ Rp×d : B⊤B = Id}. The

following proposition gives the connection between the least squares formulation and the

trace optimization problem.

Proposition 3.1. Minimizing LSIR(B, ĈB) over B ∈ Gp,d is equivalent to maximizing

trace(α⊤M̂SIRα) over α ∈ Gp,d. Furthermore, minimizing LSAV E(B, F̂B) over B ∈ Gp,d

is equivalent to maximizing trace(α⊤M̂SAV Eα) over α ∈ Gp,d.

Remarkably, the results in this section hold even when conditions (C1) and (C2) fail.

Nevertheless, they may be of little practical importance if there is no useful connection

between the subspace estimated by the SIR or the SAVE and the subspace we would like

to estimate, namely, SY |X .

Under the normal model, we can check whether a subspace is a dimension-reduction

subspace (Cook & Forzani 2009). Let SSIR = {Cov(X )}−1/2span(MSIR) be the SIR

subspace in the X -scale. Similarly, let SSAV E = {Cov(X )}−1/2span(MSAV E).

Proposition 3.2. Let η ∈ Rp×d be a semi-orthogonal matrix, and let η0 be an orthogonal

complement of η, such that (η,η0) is p × p orthogonal. Assume that X | (Y = g) ∼

N(µg,Σg). Let θ = E(X) and ∆ = E{Cov(X | Y )}. If

(i) η⊤X | (Y = g) ∼ N(η⊤θ + η⊤∆ηvg,η
⊤Σgη), for some vg ∈ Rd, and

(ii) η⊤
0 X | (η⊤X = η⊤x, Y = g) ∼ N{η⊤

0 θ+η⊤
0 ∆η(η⊤∆η)−1η⊤(x−θ), (η⊤

0 ∆
−1η0)

−1},

for all g ∈ {1, . . . , G}, then, span(η) = SY |X = SSAV E. If, in addition, Σ1 = · · · = ΣG,

then span(η) = SY |X = SSIR = SSAV E.
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4. Dimension reduction via adaptive slicing

The developments so far have been based on a fixed slicing scheme: the range of the

response Y has been partitioned into G slices, indexed by g = 1, . . . , G. In practice, the

slicing scheme is an important tuning parameter, and the optimal slicing scheme should

be chosen adaptively from the data.

For ease of discourse, in this section, we assume that the response Y has a finite

support Y = {1, . . . , K}. There is no loss of generality implied by this restriction, because

when Y is continuous, we can construct a discrete version Ỹ by dividing its range into K

intervals, and it is known that SỸ |X ⊆ SY |X with equality when K is sufficiently large.

Denote S as a generic slicing scheme and |S| as the cardinality of S. Mathematically,

we can write S = {Bg ⊆ Y, g = 1, . . . , |S|}, where the subsets Bg satisfy ∪G
g=1Bg = Y and

Bg ∩Bg′ = ∅, for all g ̸= g′. Without loss of generality, we assume that the slices in S are

sorted: if g < g′, then y < y′, for any y ∈ Bg and y′ ∈ Bg′ . We call Bg the gth slice of S.

For each k ∈ Y, let nk =
∑n

i=1 I(yi = k) and fk = nk/n. For a generic slice B ⊆ Y, let

fB =
∑

k∈B fk, µ̂B =
∑

k∈B
∑

i:yi=k z i/
∑

k∈B nk, and Σ̂B =
∑

k∈B
∑

i:yi=k(z i − µ̂B)(z i −

µ̂B)
⊤/

∑
k∈B nk. To emphasize the dependence of a kernel matrix on the slicing scheme,

we write M̂ = M̂(S). Then, the criteria become

max
α:α⊤α=Id

trace{α⊤M̂SIR(S)α} = max
α:α⊤α=Id

|S|∑
g=1

fBgtrace(α
⊤µ̂Bg

µ̂⊤
Bg
α)

and

max
α:α⊤α=Id

trace{α⊤M̂SAV E(S)α} = max
α:α⊤α=Id

|S|∑
g=1

fBgtrace{α⊤(Ip − Σ̂Bg)
2α}.

4.1 Penalized trace maximization

A key ingredient of a slicing scheme, S, is the number of slices, |S|. If |S| is smaller than

d, the dimension of SY |Z , then all methods will miss some directions. On the other hand,
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if we partition the range of the response into too many slices, the accuracy of the intra-

slice estimates can suffer. To select an optimal slicing scheme, we consider the penalized

trace optimization problem

max
(α,S):α⊤α=Id

[
trace{α⊤M̂(S)α} − log(n)

n
× df0 × |S|

]
, (4.1)

where df0, to be specified, is a complexity factor for introducing an additional slice.

Given α, this amounts to using the Bayesian information criterion (BIC) to choose a

slicing scheme (Schwarz 1978).

We motivate the penalty term as follows. In addition to the number of slices, a

slicing scheme must consider the arrangement of the slices. Following Jiang et al. (2015),

we assign a prior on the slicing scheme, and then penalize the trace using this prior.

Specifically, we assume that |S| − 1 follows a Poisson distribution, with rate parameter

exp(−τn), and that given the partition size |S|, the conditional distribution on the slice

widths (normalized to sum to one) is Dirichlet(1, . . . , 1). Then, a maximum a posteriori

estimation results in the penalty term τn × (|S| − 1), and setting τn = log(n)× df0 gives

the BIC. Penalized test statistics of this form have been studied recently in the K-sample

problem and in the independence problem; see Jiang et al. (2015) and Heller et al. (2016)

for details.

4.2 Algorithms

We can solve (4.1) using an alternating optimization procedure: fix S and estimate α,

then fix α and estimate S, and iterate between these two steps until the algorithm

converges.

We start by specifying the complexity factor df0. Assume, for the moment, that S is

given and B is a slice in S. From Section 2, we know the SIR uses slice means µB = E(Z |

Y ∈ B), and the SAVE uses slice means and slice covariances ΣB = Cov(Z | Y ∈ B).
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Under condition (C1), we have µB ∈ SY |Z , or equivalently, µB = ηvB, for some vB ∈ Rd.

Here, η is a basis matrix for SY |Z . On the other hand, if both conditions (C1) and (C2)

hold, then Ip − ΣB ∈ SY |Z , or equivalently, Ip − ΣB = ηABη
⊤, where AB is a d × d

symmetric matrix. Now, if the number of slices is incremented by one, then the number

of free parameters is incremented by df0 = d for the SIR, and by df0 = d+ d(d+1)/2 for

the SAVE.

We treat the SIR and SAVE separately. For the SIR, the corresponding problem is

max
(α,S):α⊤α=Id


|S|∑
g=1

fBgtrace(α
⊤µ̂Bg

µ̂⊤
Bg
α)− log(n)

n
d|S|

 . (4.2)

The optimization procedure is outlined in Algorithm 1. For the SAVE, the problem

becomes

max
(α,S):α⊤α=Id

 |S|∑
g=1

fBgtrace{α⊤(Ip − Σ̂Bg)
2α} − log(n)

n

d(d+ 3)

2
|S|

 . (4.3)

The optimization procedure is outlined in Algorithm 2.

Algorithm 1 SIR with Adaptive Slicing (SIR-AS).

1: Take an initial guess for α, for example, a SIR with a quantile slicing scheme.

2: Adaptive slicing. Given α, compute the optimal slicing scheme {Bg} using the

adaptive slicing algorithm (Algorithm 3).

3: Given {Bg}, compute the SIR estimate of α.

4: Iterate steps 2 and 3 until convergence.

In both algorithms, the first step conducts dimension reduction (SIR or SAVE) on

a fixed slicing scheme S, and the second step uses a dynamic programming algorithm

called adaptive slicing to find an optimal slicing scheme (see Algorithms 3 and 4).

Note that adaptive slicing is a variant of the Viterbi algorithm, and is similar to the

procedure of Jiang et al. (2015), who investigated nonparametric K-sample testing from

the perspective of inverse modeling. Viewing the K-sample testing problem as a test of
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Algorithm 2 SAVE with Adaptive Slicing (SAVE-AS).

1: Take an initial guess for α, for example, a SAVE with a quantile slicing scheme.

2: Adaptive slicing. Given α, compute the optimal slicing scheme {Bg} using the

adaptive slicing algorithm (Algorithm 4).

3: Given {Bg}, compute the SAVE estimate of α.

4: Iterate steps 2 and 3 until convergence.

independence between a continuous random variable and a categorical random variable,

Jiang et al. (2015) proposed a test statistic by slicing the continuous variable, deriving the

likelihood ratio, and then including a term regularizing the number of slices; see Heller

et al. (2016) for more on this idea. The computational complexity of the adaptive slicing

algorithm is O(n2p) for the SIR, and O(n2p2) for the SAVE. One way to speed up the

algorithm is to pre-allocate observations into bins, and then to restrict the slicing to these

bins.

4.3 Theoretical properties

Before we can get started, we need a few definitions. We restrict our discussion to the

inverse regression. Here, S is called an optimal slicing scheme in location if E(Z | Y )

takes |S| values and is constant within each slice. Furthermore, S is called an optimal

slicing scheme in scale if E(Z | Y ) is constant, and Cov(Z | Y ) takes |S| values and is

constant within each slice.

Throughout this section, we assume that the optimal slicing scheme, either in location

or in scale, exists, and is denoted by S0. For a continuous response, if Z depends on Y

only through some latent slices of Y , then the optimal slicing scheme coincides with that

latent structure (Cook & Zhang 2014). As in the previous section, we assume that Y is

discrete and has a finite support Y = {1, . . . , K}. In this case, the existence is guaranteed.
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Algorithm 3 Adaptive Slicing for SIR in the Z -scale.

1: Rank the observed responses, and re-express the data as (y(i), z (i)), i = 1, . . . , n. To

ease notation, assume that the observations have been sorted; that is, y(i) = yi and

z (i) = z i.

2: For i = 1, . . . , n and s = 1, . . . , i, compute

µ̂(s:i) =
1

i− s+ 1

i∑
i′=s

z i′ .

3: Set v0 = 0. Fill in entries of two vectors (v1, . . . , vn)
⊤ and (s1, . . . , sn)

⊤ recursively as

follows:

vi = max
s∈{1,...,i}

{
vs−1 +

i− s+ 1

n
trace(α⊤µ̂(s:i)µ̂(s:i)⊤α)− log(n)

n
d

}
,

si = arg max
s∈{1,...,i}

{
vs−1 +

i− s+ 1

n
trace(α⊤µ̂(s:i)µ̂(s:i)⊤α)− log(n)

n
d

}
.

4: Trace back the vector (s1, . . . , sn)
⊤ as follows. Let e0 = n. Compute eg = seg−1 − 1

recursively for g ≥ 1 until eG = 0, for some integer G. Then, the slicing scheme is

given by yi ∈ BG−g+1, for eg + 1 ≤ i ≤ eg−1 and 1 ≤ g ≤ G, with G the number of

slices.
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Algorithm 4 Adaptive Slicing for SAVE in the Z -scale.

1: Rank the observed responses, and re-express the data as (y(i), z (i)), i = 1, . . . , n. To

ease notation, assume that the observations have been sorted; that is, y(i) = yi and

z (i) = z i.

2: For i = 1, . . . , n and s = 1, . . . , i, compute

µ̂(s:i) =
1

i− s+ 1

i∑
i′=s

z i′ ,

and

Σ̂
(s:i)

=
1

i− s+ 1

i∑
i′=s

(z i′ − µ̂(s:i))(z i′ − µ̂(s:i))⊤.

3: Set df0 = d(d + 3)/2 and v0 = 0. Fill in entries of two vectors (v1, . . . , vn)
⊤ and

(s1, . . . , sn)
⊤ recursively as follows:

vi = max
s∈{1,...,i}

[
vs−1 +

i− s+ 1

n
trace{α⊤(Ip − Σ̂

(s:i)
)2α} − log(n)

n
df0

]
,

si = arg max
s∈{1,...,i}

[
vs−1 +

i− s+ 1

n
trace{α⊤(Ip − Σ̂

(s:i)
)2α} − log(n)

n
df0

]
.

4: Trace back the vector (s1, . . . , sn)
⊤ as follows. Let e0 = n. Compute eg = seg−1 − 1

recursively for g ≥ 1 until eG = 0, for some integer G. Then, the slicing scheme is

given by yi ∈ BG−g+1, for eg + 1 ≤ i ≤ eg−1 and 1 ≤ g ≤ G, with G the number of

slices.
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Note that the above definition is not well defined for a forward regression. The adaptive

slicing algorithm, however, is not restricted to an inverse regression.

Let G0 = |S0| and write S0 = {B0g, g = 1, . . . , G0}. Here, S is said to be over-slicing

if it divides one or more slices in S0 into sub-slices; that is, S0 \ S ̸= ∅, and for each

B0 ∈ S0 \ S, there is a nontrivial partition B0 = ∪lBl
0, such that Bl

0 ∈ S, for all l.

In addition, S is under-slicing if one slice contains elements from two or more slices in

S0; that is, there exists a slice B ∈ S and some 1 ≤ g ≤ G0, such that B ∩ B0g ̸= ∅

and B ∩ B0(g+1) ̸= ∅. According to whether S is over-slicing or under-slicing, we set

S+ = {S : S is over-slicing} and S− = {S : S is under-slicing}.

Define

BIC1(S;α) =

|S|∑
g=1

fBgtrace(α
⊤µ̂Bg

µ̂⊤
Bg
α)− log(n)

n
× d× |S|

and

BIC2(S;α) =

|S|∑
g=1

fBgtrace{α⊤(Ip − Σ̂Bg)
2α} − log(n)

n
× d(d+ 3)

2
× |S|.

Let Ŝ1(α) = argmaxS BIC1(S;α) and Ŝ2(α) = argmaxS BIC2(S;α). For each k ∈ Y,

let πk = P (Y = k). We have the following theorems.

Theorem 4.1. Assume that (1) πk > 0, for all k ∈ Y, and (2) α̃α̃⊤ = α0α
⊤
0 +Op(n

−1/2),

where α0 is a basis matrix for span(MSIR) and α̃ is an initial estimator of α0. Then, as

n → ∞, Ŝ1(α̃) converges in probability to S0, the optimal slicing scheme in location.

Theorem 4.2. Assume that (1) πk > 0, for all k ∈ Y, and (2) α̃α̃⊤ = α0α
⊤
0 +Op(n

−1/2),

where α0 is a basis matrix for span(MSAV E) and α̃ is an initial estimator of α0. Then,

as n → ∞, Ŝ2(α̃) converges in probability to S0, the optimal slicing scheme in location

or in scale.

The SAVE and SIR are very different. At the population level, the SAVE is exhaustive

under mild conditions (i.e., SSAV E = SY |X ), but the SIR is not (Li & Wang 2007). For a
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fixed slicing scheme, the asymptotic behavior of the SAVE differs from that of the SIR

(Li & Zhu 2007). For adaptive slicing, the difference remains. It is evident from the

proof that the theory for the SAVE is more challenging, because it requires the optimal

slicing scheme S0 be in location or in scale. In practice, S0 could be in both location

and scale, that is, the collection of E(Z | Y ) and Cov(Z | Y ) takes |S| values and is

constant within each slice. Although the SAVE is more comprehensive than the SIR,

we are not able to give the general theory for the SAVE. A bias correction might be

useful (Li & Zhu 2007), but this is beyond the scope of this study. Finally, note that the

consistency of the subspace estimation is guaranteed by the slicing consistency (Wang &

Zhu 2015). However, as noted by a referee, this consistency is quite different from that of a

conventional estimation, because the selected slicing scheme is random rather than fixed.

Nevertheless, our experience suggests that this randomness introduces some uncertainty

into the estimates. It would be interesting to investigate the impact of adaptive slicing

on the asymptotic distribution of the subspace estimator.

5. Simulation results

We conducted simulation studies to evaluate the performance of the SIR-AS and SAVE-

AS. We considered both inverse-regression and forward-regression models. To measure

the closeness between SY |X and its estimate, we used the vector correlation coefficient

(Ye & Weiss 2003). Let B and B̂ be basis matrices for the true and estimated subspaces,

respectively. The vector correlation coefficient is defined as the positive square root of the

product of the eigenvalues of B̂⊤BB⊤B̂. For each simulation example, we took n = 400

and p = 10, and tabulated the results over 200 replications. We treated the SIR-AS and

SAVE-AS separately.
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5.1 SIR-AS

Example 1: inverse regression. We first simulated Y uniformly on the interval [0, 5].

Given Y = y, we then generated X from the model

X = βCh(y) + 0.5ε+ 0.3βϵ, (5.1)

where β = (1, 1, 0, . . . , 0)⊤ ∈ Rp×1,C = (2,−2, . . . , 2,−2) ∈ R1×G0 , h(y) ∈ RG0×1 is

a vector of slice indicator functions, and (ε⊤, ϵ)⊤ ∈ Rp+1 is multivariate Gaussian with

zero mean and an identity covariance matrix and is independent of Y . We set G0 = 10

and constructed h using quantile slicing of the observed responses with G0 slices. By

Proposition 3.2, SY |X = SSIR = span(β). In this example, there is an optimal slicing

scheme in location: G0 slices, with an equal number of observations in each slice.

Example 2: forward regression. We first generated X from a multivariate

Gaussian distribution with mean vector zero and covariance matrix Σ = (Σij), with

Σij = 0.5|i−j|. We then generated Y according to the following model:

Y = β⊤
1 X (β⊤

2 X + 0.5) + 0.3ϵ, (5.2)

where β1 = (1, 0, . . . , 0)⊤ ∈ Rp×1,β2 = (0, 1, 0, . . . , 0)⊤ ∈ Rp×1, and ϵ is standard normal

and is independent of X . In this example, SY |X = SSIR = span(β1,β2). The optimal

slicing scheme is not well defined.

In addition to the SIR-AS, we examined the performance of the original SIR of Li

(1991), cumulative mean estimation (CUME) of Zhu, Zhu & Feng (2010), and fused sliced

inverse regression (FSIR) of Cook & Zhang (2014). Whereas the SIR uses a single slicing

scheme, the CUME and the FSIR extract information from multiple slicing schemes. The

kernel matrix for the CUME is the sum of the SIR kernel matrices from all slicing schemes

with two slices. In this sense, the CUME is slicing-free. The kernel matrix for the FSIR

is the sum of the SIR kernel matrices for a set of predefined slicing schemes. We used
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quantile slicing for the SIR and FSIR. To explore the sensitivity of the SIR to the number

of slices G, and of the FSIR to the set of slice numbers H, we took G ∈ {5, 10, 20} and

H = {2, . . . , H}, with H ∈ {10, 20, 30}.

The simulation results for these two examples are summarized in Table 1. Overall,

the SIR-AS performed best, followed by the FSIR. Consider first the inverse regression

model (5.1). We see that the CUME performed poorly, and that the FSIR is sensitive

to the choice of H. Furthermore, the SIR with G = 10 and the SIR-AS performed best.

For the SIR, over-slicing (G = 20) did not affect the performance, but under-slicing

(G = 5) deteriorated the performance dramatically. The success of the SIR with G = 10

is expected, because for this model, the quantile slicing scheme with 10 slices is optimal.

To understand the reason for the success of the SIR-AS, we calculated the percentage

of choosing the optimal slicing scheme. It turns out that the SIR-AS always made the

correct decision. However, this is expected from Theorem 4.1. Our conclusion is that

when there is an optimal slicing scheme, the SIR and CUME can fail, and the FSIR

can be unstable. We now turn to the forward regression model (5.2). Here, the SIR-AS

outperformed its competitors. The user-specified parameter, G for the SIR and H for

the FSIR, had only minor effects on the results.

5.2 SAVE-AS

Example 3: inverse regression. The setup is the same as in Example 2.

Example 4: forward regression. We first generated X from a multivariate

Gaussian distribution with mean vector zero and identity covariance matrix. We then

generated Y according to the following model:

Y = (β⊤
1 X )2 + 3 sin(β⊤

2 X /4) + 0.2ϵ, (5.3)
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Table 1: Means and standard deviations (in parentheses) of the vector correlation

coefficient for the SIR-AS and its various competitors, based on 200 data applications,

for Examples 1 and 2.

SIR FSIR

Model G = 5 G = 10 G = 20 CUME H = 10 H = 20 H = 30 SIR-AS

(5.1) 0.010 0.979 0.978 0.226 0.794 0.906 0.916 0.979

(0.008) (0.008) (0.009) (0.075) (0.078) (0.038) (0.032) (0.008)

(5.2) 0.679 0.706 0.652 0.747 0.740 0.750 0.734 0.786

(0.159) (0.156) (0.209) (0.110) (0.130) (0.136) (0.149) (0.128)

where β1 = (1, 1, 1, 0, . . . , 0)⊤ ∈ Rp×1,β2 = (1, 0, 0, 0, 1, 3, 0, . . . , 0)⊤ ∈ Rp×1, and ϵ

is standard normal and is independent of X . In this example, SY |X = SSAV E =

span(β1,β2). The optimal slicing scheme is not well defined.

We compared the SAVE-AS with the original SAVE of Cook & Weisberg (1991),

cumulative variance estimation (CUVE) of Zhu, Zhu & Feng (2010), and fused sliced

average variance estimation (FSAVE) of Cook & Zhang (2014). The kernel matrix of

the CUVE is the sum of the SAVE kernel matrices from all slicing schemes with two

slices, and the kernel matrix for the FSAVE is the sum of the SAVE kernel matrices for

a predefined set of slicing schemes. We used quantile slicing for the SAVE and FSAVE.

For the SAVE, we considered the number of slices G ∈ {5, 10, 20}, and for the FSAVE,

we took the set of slice numbers H = {2, . . . , H} with H ∈ {10, 20, 30}.

The simulation results for these two examples are summarized in Table 2. Overall, the

SAVE-AS performed well. In the inverse regression model (5.1), the CUVE and FSAVE

performed poorly. The SAVE with G = 10 and the SAVE-AS performed best, followed

by the SAVE with G = 20. For this model, the quantile slicing scheme with 10 slices is
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optimal. This explains the success of the SAVE with G = 10. To understand the reason

for the success of the SAVE-AS, we calculated the percentage of choosing the optimal

slicing scheme. It turns out that the SAVE-AS made the correct decision every time.

However, this is expected from Theorem 4.2. We also see that for the SAVE, under-

slicing (G = 5) degraded the performance severely. We thus conclude that when there is

an optimal slicing scheme, the SAVE, CUVE, and FSAVE can all fail. We now consider

the forward regression model (5.3). We see that the SAVE-AS outperformed the CUVE,

and the FSAVE is sensitive to the choice of H. Furthermore, the SAVE was strongly

affected by the number of slices. This is in consistent with the theoretical behavior of

the SAVE (Li & Zhu 2007).

Table 2: Means and standard deviations (in parentheses) of the vector correlation

coefficient for the SAVE-AS and its various competitors, based on 200 data applications,

for Examples 3 and 4.

SAVE FSAVE

Model G = 5 G = 10 G = 20 CUVE H = 10 H = 20 H = 30 SAVE-AS

(5.1) 0.209 0.677 0.643 0.213 0.252 0.411 0.385 0.677

(0.138) (0.061) (0.095) (0.140) (0.180) (0.215) (0.214) (0.061)

(5.3) 0.936 0.851 0.466 0.721 0.941 0.855 0.689 0.793

(0.082) (0.173) (0.263) (0.248) (0.071) (0.152) (0.236) (0.220)

6. An illustration

In this section, we illustrate the proposed methodology using a real-data example.
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Example 5: the concrete compressive strength data (Yeh 1998). Concrete

is one of the most important materials in civil engineering. This data set records

the compressive strength of 1030 concrete mixtures, together with their age and seven

ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer,

coarse aggregate, and fine aggregate. The data set is available at http://archive.ics.

uci.edu/ml/datasets.html. Here, we regress the concrete compressive strength on the

other variables.

Dimension-reduction analyses of this data set are largely based on first conditional

moments (Zhou & He 2008, Cook & Zhang 2014). As such, we restrict our attention to

the SIR-AS and its competitors: the SIR with G ∈ {5, 10, 20}, CUME, and FSIR with

H = {2, . . . , H} and H ∈ {10, 20, 30}. Previous results suggest that we can take d = 2

as the dimension of SSIR. An accurate estimation of d is important and interesting, but

is beyond the scope of this study.

In real-data problems, we do not know the true dimension-reduction subspace. This

makes a comparison of different methods difficult. Because all methods considered here

are unbiased for estimating SSIR, we can pick the one with the minimum variance (Ye

& Weiss 2003). To assess the variability, we used the resampling technique. Specifically,

we generated 400 subsamples randomly from the observed data, with sample size 800.

For each method, we calculated the vector correlation coefficient between the full sample

estimate B̂ and the subsample estimate B̂(s), for s = 1, . . . , 400. The results are summarized

in Table 3. The results show that the SIR-AS outperformed all other methods. The

comparison of the SIR-AS and the SIR with a fixed slicing scheme and that of the SIR-

AS and the FSIR with a predefined set of slicing schemes are not completely fair, because

adaptive slicing introduces additional uncertainty into the estimates. Nevertheless, the

results suggest that for this data set the SIR-AS is very competitive.

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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Table 3: Means of the vector correlation coefficient between the full sample estimate B̂

and the subsample estimate B̂(s) for the SIR-AS and its various competitors, based on

400 random subsamples, for the concrete compressive strength data.

SIR (G = 5) 0.757

SIR (G = 10) 0.709

SIR (G = 20) 0.599

CUME 0.775

FSIR (H = 10) 0.734

FSIR (H = 20) 0.739

FSIR (H = 30) 0.738

SIR-AS 0.845

7. Discussion

We have considered the long-standing problem of how to choose a good slicing scheme

for the SIR and SAVE. We re-derived the SIR and SAVE using the trace maximization

principle, and then proposed two procedures, the SIR with adaptive slicing and the

SAVE with adaptive slicing, by penalizing the respective traces. We developed a dynamic

programming algorithm for numerical optimization. Our simulation results show that,

on average, adaptive slicing outperforms cumulative slicing and fusion, both of which

indirectly address the slicing problem. We have implemented the procedures inR, and the

computer program can be requested from the authors directly. The general methodology

of adaptive slicing can be applied to other dimension-reduction methods that involve

slicing a quantitative response, such as a directional regression and linear combinations
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of these methods (Ye & Weiss 2003).

Almost all traditional dimension-reduction methods rely on the traditional asymptotic

reasoning for support, letting the sample size n → ∞ with the number of predictors p

fixed. When n is not sufficiently large, they encounter estimation problems. Proposals

such as screening and selection have been proposed to carry out sufficient dimension

reduction in high-dimensional regressions. Investigations of adaptive slicing in high-

dimensional settings are interesting and important. This is left to future work.

The structural dimension is assumed to be known throughout the paper. In practice,

it is unknown. To learn the dimension from the data, sequential tests (Cook & Weisberg

1991) and information criteria (Zhu et al. 2006) are commonly used in the dimension-

reduction literature. One advantage of information criteria is that the selection consistency

follows from the estimation consistency. Because adaptive slicing explicitly accounts

for the structural dimension, addressing slicing and dimension selection simultaneously

deserves further investigation. A simple approach, as employed in the real-data example,

is to choose the dimension based on a rough slicing scheme, and then to base adaptive

slicing on the chosen dimension.

Supplementary Material The online Supplementary Material contains additional

simulations and all proofs.

Acknowledgements Tao Wang was supported, in part, by the National Natural Science

Foundation of China (11971017), National Key R&D Program of China (2018YFC0910500),

Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), SJTU

Trans-med Awards Research Young Faculty Grant (YG2019QNA26, YG2019QNA37),

and Neil Shen’s SJTU Medical Research Fund.



23

References

Bura, E. & Cook, R. D. (2001), ‘Estimating the structural dimension of regressions via

parametric inverse regression’, J. Roy. Statist. Soc. Ser. B 63(2), 393–410.

Chen, X., Zou, C. & Cook, R. D. (2010), ‘Coordinate-independent sparse sufficient

dimension reduction and variable selection’, Ann. Statist. 38(6), 3696–3723.

Cook, R. D. (1998), Regression Graphics: Ideas for Studying Regressions Through

Graphics, Wiley, New York.

Cook, R. D. (2007), ‘Fisher lecture: Dimension reduction in regression’, Statist. Sci.

22(1), 1–26.

Cook, R. D. & Critchley, F. (2000), ‘Identifying regression outliers and mixtures

graphically’, J. Amer. Statist. Assoc. 95(451), 781–794.

Cook, R. D. & Forzani, L. (2009), ‘Likelihood-based sufficient dimension reduction’, J.

Amer. Statist. Assoc. 104(485), 197–208.

Cook, R. D. & Ni, L. (2005), ‘Sufficient dimension reduction via inverse regression: A

minimum discrepancy approach’, J. Amer. Statist. Assoc. 100(470), 410–428.

Cook, R. D. & Weisberg, S. (1991), ‘Comment’, J. Amer. Statist. Assoc. 86(414), 328–

332.

Cook, R. D. & Zhang, X. (2014), ‘Fused estimators of the central subspace in sufficient

dimension reduction’, J. Amer. Statist. Assoc. 109(506), 815–827.

Heller, R., Heller, Y., Kaufman, S., Brill, B. & Gorfine, M. (2016), ‘Consistent

distribution-free K-sample and independence tests for univariate random variables’,

J. Mach. Learn. Res. 17(29), 1–54.



24

Jiang, B., Ye, C. & Liu, J. S. (2015), ‘Nonparametric K-sample tests via dynamic slicing’,

J. Amer. Statist. Assoc. 110(510), 642–653.

Li, B. & Wang, S. (2007), ‘On directional regression for dimension reduction’, J. Amer.

Statist. Assoc. 102(479), 997–1008.

Li, K.-C. (1991), ‘Sliced inverse regression for dimension reduction’, J. Amer. Statist.

Assoc. 86(414), 316–327.

Li, Y. & Zhu, L. (2007), ‘Asymptotics for sliced average variance estimation’, Ann. Statist.

35(1), 41–69.

Ma, Y. & Zhu, L. (2012), ‘A semiparametric approach to dimension reduction’, J. Amer.

Statist. Assoc. 107(497), 168–179.

Ma, Y. & Zhu, L. (2013), ‘A review on dimension reduction’, Int. Stat. Rev. 81(1), 134–

150.

Schwarz, G. (1978), ‘Estimating the dimension of a model’, Ann. Statist. 6(2), 461–464.

Wang, T. & Zhu, L. (2015), ‘A distribution-based lasso for a general single-index model’,

Sci. China-Math. 58(1), 109–130.

Xia, Y., Tong, H., Li, W. K. & Zhu, L. (2002), ‘An adaptive estimation of dimension

reduction space’, J. Roy. Statist. Soc. Ser. B 64(3), 363–410.

Ye, Z. &Weiss, R. E. (2003), ‘Using the bootstrap to select one of a new class of dimension

reduction methods’, J. Amer. Statist. Assoc. 98(464), 968–979.

Yeh, I. (1998), ‘Modeling of strength of high-performance concrete using artificial neural

networks’, Cem. Concr. Res. 28(12), 1797–1808.



25

Zhou, J. & He, X. (2008), ‘Dimension reduction based on constrained canonical

correlation and variable filtering’, Ann. Statist. 36(4), 1649–1668.

Zhu, L. & Fang, K. (1996), ‘Asymptotics for kernel estimate of sliced inverse regression’,

Ann. Statist. 24(3), 1053–1068.

Zhu, L., Miao, B. & Peng, H. (2006), ‘On sliced inverse regression with high-dimensional

covariates’, J. Amer. Statist. Assoc. 101(474), 630–643.

Zhu, L. & Ng, K. (1995), ‘Asymptotics of sliced inverse regression’, Statist. Sinica 5, 727–

736.

Zhu, L., Ohtaki, M. & Li, Y. (2007), ‘On hybrid methods of inverse regression-based

algorithms’, Comput. Statist. Data Anal. 51(5), 2621–2635.
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