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Abstract: Instrumental variables (IVs) are useful for estimating causal effects in the presence of

unmeasured confounding. IV methods are well developed for uncensored outcomes, particularly

for structural linear equation models, where simple two-stage estimation schemes are available.

Extending these methods to survival settings is challenging, partly because of the nonlinearity of

the popular survival regression models, and partly because of the complexity of right censoring and

other survival features. Motivated by the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer

Screening Trial, we develop a simple causal hazard ratio estimator in a proportional hazards model

with right-censored data. The method exploits a special characterization of IVs that enables the

use of an intuitive inverse weighting scheme that is generally applicable to more complex survival

settings with left truncation, competing risks, or recurrent events. We rigorously establish the

asymptotic properties of the estimators, and provide plug-in variance estimators. The proposed

method can be implemented in standard software, and is evaluated through extensive simulation

studies. We apply the proposed IV method to a data set from the PLCO Cancer Screening Trial

to identify the causal effect of flexible sigmoidoscopy screening on colorectal cancer survival, which

may be confounded by informative noncompliance with the assigned screening regimen.

Key words and phrases: Causal treatment effect; Cox proportional hazards model; Instrumental
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variable; Noncompliance

1. Introduction

Many recent studies have focused on understanding the causal effect of a treatment or

exposure on an outcome of interest (Holland, 1986). In observational studies, unmeasured

confounding is a major obstacle to estimating the causal effect of a nonrandomized expo-

sure on disease etiology. Such a challenge also arises in well-designed randomized clinical

trials. When there are issues of noncompliance in the treatment arms, the treatment de-

cision may be based on latent (unobserved) factors that strongly correlate with clinical

outcomes. This would result in bias from unmeasured confounding and, hence, complicate

the task of estimating the “efficacy” of the treatment.

Instrumental variables (IVs) are useful for estimating causal treatment or exposure

effects in such settings (Imbens and Angrist, 1994; Angrist et al., 1996; Loeys and Goet-

ghebeur, 2003; Li and Lu, 2015; Li and Gray, 2016; MacKenzie et al., 2016). Informally,

IVs are independent of unmeasured confounders, related to the treatment, and related to

the outcome only through the treatment (Baiocchi et al., 2014). In observational studies,

numerous instruments are available for the estimation of treatment or exposure causal

effects (Baiocchi et al., 2014). In randomized clinical trials with noncompliance, the treat-

ment assignment mechanism can serve as an IV.

The motivating example for this work is the Prostate, Lung, Colorectal and Ovarian

(PLCO) Cancer Screening Trial, which is a multi-center randomized trial designed to
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evaluate the effectiveness of screening using flexible sigmoidoscopy relative to that of usual

care. In this study, 77,449 subjects were assigned randomly to the intervention group, but

only 85% complied with the assigned sigmoidoscopy protocol. Such noncompliance may

be outcome-related. For example, relatively healthy individuals may be more likely to

skip the screening. In the presence of unmeasured confounding, neither an intent-to-treat

(ITT) analysis nor an “as-treated” analysis would adequately assess the causal benefit of

the treatment (i.e., flexible sigmoidoscopy screening). A possible remedy is an IV analysis

that properly adjusts for the selection bias induced by subjects’ post-randomization care

selection. The assigned treatment in a randomized trial serves a natural IV in this analysis.

The IV methodology focuses primarily on linear models and continuous outcomes in

contexts without censoring. More recently, interest has grown in using the IV methodology

for time-to-event data with right censoring. For example, Baker (1998) developed an IV

method for randomized trials using all-or-none compliance and discrete-time survival data

that extended the method of latent class IVs (also known as the local average treatment

effect method or complier average causal effect method) (Baker and Lindeman, 1994; Im-

bens and Angrist, 1994). Building on the work of Baker (1998), Nie et al. (2011) developed

an estimation method with improved efficiency. Robins and Tsiatis (1991) considered a

structural accelerated failure time model, and developed estimators for the causal treat-

ment effect in a context of noncompliance and administrative censoring only. Joffe (2001)

provides a detailed discussion of this general approach. Imposing parametric distribu-

tional assumptions, Li and Lu (2015) developed a Bayesian approach for an IV analysis
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using censored time-to-event outcomes under a two-stage linear model. Li et al. (2015)

and Tchetgen et al. (2015) developed IV-based methods for additive hazards modeling

of time-to-event data. Martinussen et al. (2017) studied a structural cumulative survival

model that assesses the time-varying exposure effect directly on the scale of the survival

function.

The proportional hazards model is a popular formulation for the effects of treatment

and covariates in time-to-event analyses. Several IV approaches have been developed for

proportional hazards modeling. For example, for the special case of all- or none- com-

pliance without covariates, Loeys and Goetghebeur (2003) proposed an estimate for the

complier proportional hazards effect of the treatment. They derive a properly imputed

partial likelihood that recovers the unobserved information on the treatable subgroup in

the control arm. Working in a noncompliance setting, Cuzick et al. (2007) constructed a

Mantel–Haenszel-type estimator for the case without covariates, and a partial likelihood-

based estimator when covariates are present and independent of the types of compliance. A

full-likelihood-based approach has been explored for situations in which the covariates are

correlated with the types of compliance. Li and Gray (2016) proposed an EM algorithm for

this full likelihood-based estimation. Yu et al. (2015) estimate causal estimands, including

the complier average causal effect, complier survival probability, and complier quantile

causal effect, under a semiparametric transformation model. They adapted the nonpara-

metric likelihood estimation technique of Zeng and Lin (2007) to develop an EM algorithm

for implementing the proposed estimation, as well as providing theoretical justifications.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0096



5

Although likelihood-based strategies accommodate both censoring and covariates when

estimating the causal treatment effect using censored time-to-event data, the resulting

estimation and inference procedures are, in general, very complicated. The resulting com-

putational complexity and stability may become unmanageable when the sample size is

large, as in the PLCO Cancer Screening Trial. Furthermore, they require that we specify

causal models for all latent compliance classes, not just for the class of interest, which may

limit the robustness of these methods to potential model misspecification.

In this work, we develop a new IV approach for estimating causal treatment effects

under proportional hazards modeling of time-to-event outcomes that are subject to in-

dependent right censoring. The causal estimand of interest is defined within the latent

subgroup of compliers, and differs from the population causal hazards ratio considered

in other recent IV methods (e.g., Martinussen et al., 2017; Wang et al., 2018). Notably,

our method does not need to impose regression models for the latent compliance classes

other than on the complier subgroup. Our key strategy adapts the seminal work of Abadie

(2003), which provides a simple link between the unconditional moment of the observed

data and the conditional moment, given the latent complier group. Abadie (2003) devel-

oped a simple weighting strategy that is easily applied to estimating equations that are

sums of independent terms. However, an analogous application to the proportional haz-

ards regression is not straightforward. This is because the partial likelihood does not yield

an estimating function of the simple form as a sum of independent terms, as with the least

squares criterion for linear regressions. To circumvent this difficulty, we incorporate the
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weighting idea of Abadie (2003) in the asymptotic influence functions of the partial likeli-

hood score equation. We further devise the weighting scheme such that the calculations of

the parameter estimate can be easily and stably implemented using existing software for

weighted proportional hazards regressions. Compared with currently available weighting

methods, such as the time-dependent weighted estimator proposed by Li and Gray (2016)

and the estimator based on principal stratification weighting (MacKenzie et al., 2016),

our weighting strategy is relatively simple. However, it can be applied readily to more

complex survival settings, for example, in the presence of left truncation, competing risks,

or recurrent events; see Section S3 of the Supplementary Material for more information.

Such a broad applicability appears lacking in existing IV approaches for proportional haz-

ards models. Finally, we establish the large-sample properties of the proposed parameter

estimators, including those of consistency and asymptotic normality.

In Section 2, we introduce the potential outcomes framework, including the latent com-

pliance groups, IV assumptions, and setup of the causal proportional hazards regression.

We next describe the proposed estimation procedure using randomly censored data, discuss

the computational considerations, and present a modification of the proposed method that

exhibits improved computational features. Here, we present a rigorous examination of the

consistency and asymptotic normality of the estimators. The results include a closed form

for the asymptotic variance of the estimator and a consistent plug-in variance estimator.

Bootstrap variance estimates are also provided. The results from extensive simulations are

reported Section 3, and demonstrate that the methods perform well for realistic sample
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sizes. In Section 4, we apply our methods to the data from the PLCO Cancer Screening

Trial. Section 5 concludes the paper.

2. Weighted Partial Likelihood Estimation for Causal Proportional Hazards

Models

2.1 Potential Outcomes Framework

We introduce the potential outcomes framework and notation commonly employed in the

causal inference literature. Consider potential survival times T1 and T0 based on receiving

(D = 1) and not receiving the treatment (D = 0), respectively. Define V as a binary IV,

and define the potential treatment Dv such that D1 denotes the treatment received when

V = 1, and D0 denotes the treatment received when V = 0. Following the terminology

of Abadie (2003), subjects can be classified into four latent compliance groups, based on

the potential treatment indicators: compliers (D1 > D0), always-takers (D1 = D0 = 1),

never-takers (D1 = D0 = 0), and defiers (D1 < D0). In the PLCO Cancer Screening

Trial, compliers are those individuals assigned to the intervention group who underwent

flexible sigmoidoscopy screening. Always-takers (or never-takers) always (or never) take

the flexible sigmoidoscopy screening. Defiers would take the the flexible sigmoidoscopy

screening if assigned to the usual care group, but not if assigned to the intervention group.

Because D1 and D0 cannot be observed simultaneously, we are not able to determine the

latent compliance group membership of any individual based on the observed data alone.
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Define the potential outcome for each subject as Tvd, which represents the survival

time T if V = v and D = d. Let X represent the covariate vector. We re-state several

key assumptions from Abadie (2003) about the IV, V . Let Tvd,X, V,D,Dv be defined as

above. Then, we have the following:

(A1) Independence of the instrument:

(T00, T01, T10, T11,D0,D1) ⊥ V ∣X.

(A2) Exclusion of the instrument: P (T1d = T0d∣X) = 1, for d = 0,1.

(A3) First stage: 0 < P (V = 1∣X) < 1 and P (D1 = 1∣X) > P (D0 = 1∣X).

(A4) Monotonicity: P (D1 ≥D0∣X) = 1.

Assumption (A1) states that the instrument V is as good as random conditional on

the covariates X, or equivalently, that V is independent of unmeasured confounders con-

ditional on X. Assumption (A2) states that the instrument V influences the outcome T

only through its effect on the treatment D. Assumption (A3) states that every subject

has some chance of receiving the instrument V , conditional on the covariate X, and that

conditional on X, V has an effect on the treatment received. Finally, assumption (A4)

states that, with probability one, defiers do not exist.
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2.2 Model Formulation

Our focus is to estimate and make inferences about the treatment effect for the latent

group of compliers. Specifically, we adopt Cox’s proportional hazards regression model to

formulate the effects of the treatment and covariates for compliers:

h(t;D,X) = h0(t) exp{βdD +βTxX}, (2.1)

where h(t;D,X) is the hazard function for compliers, defined as

h(t;D,X) = lim
∆t→0

Pr(t ≤ T < t +∆t∣T ≥ t,D1 >D0,D,X)
∆t

,

and h0(t) is an unspecified baseline hazard at time t. In model (2.1), βd is the causal

estimand of the primary interest. This is because, by assumption (A.1), it is easy to show

that h(t;D = d,X) = Pr(t ≤ T (d) < t + ∆t∣T (d) ≥ t, V = d,D1 > D0,X) = Pr(t ≤ T (d) <

t+∆t∣T (d) ≥ t,D1 >D0,X). Thus, βd can be interpreted as the causal treatment effect for

compliers, after adjusting for the covariate effects captured by βx (Abadie, 2003). Such

quantities are well studied in the literature (e.g., Loeys and Goetghebeur, 2003; Cuzick

et al., 2007; Yu et al., 2015). Note that the proportional hazards model (2.1) is assumed for

compliers only. In contrast, likelihood-based approaches (e.g., Cuzick et al., 2007; Yu et al.,

2015; Li and Gray, 2016) typically require distributional modeling for the other compliance

subgroups (e.g., always takers, never-takers), and may be biased under a misspecification

of these models.
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2.3 Estimation

In practice, T is often subject to right censoring by C; thus, we observe W = min(T,C)

and δ = I(T ≤ C), instead of T . We adopt the standard random censoring assumptions

that C is independent of T , conditional on (V,D,X). We further assume that C is

independent of V , given X. Define O = (W,δ,D,X, V ). The observed data consist of

n independently and identically distributed (i.i.d.) replicates of O, denoted by {Oi}ni=1 =

{(Wi, δi,Di,Xi, Vi)}ni=1. Define Yi(t) = I(Wi ≥ t) and Ni(t) = I(Wi ≤ t, δi = 1), which

represent the at-risk process and the observed event-counting process, respectively, for

subject i. We further assume that there are no ties (i.e., dNi(t) ≤ 1). In what follows,

we use the subscript i to differentiate between the population quantities and their sample

analogues.

Let β0 = (βd,βx) and Z = (D,X). When all subjects are known to be compliers,

we can estimate β0 using the standard Cox regression analysis (Andersen and Gill, 1982).

This is because, in this case, the hazard function for the overall study population, λ(t∣Z) ≡

lim∆t→0 Pr(t ≤ T ≤ t +∆t∣T ≥ t,D,X)/∆t, is equal to that for the latent complier subgroup,

exp(βTZ) h0(t). Then, M(t) ≡ N(t) − ∫
t

0 Y (s) exp(βT0 Z)h0(s)ds is a martingale, and,

thus, we can obtain a consistent estimator of β0 as the solution to the partial likelihood

score equation,

Un(β) =
1√
n

n

∑
i=1
∫

∞

0

⎧⎪⎪⎨⎪⎪⎩
Zi −

S
(1)
n (β, s)

S
(0)
n (β, s)

⎫⎪⎪⎬⎪⎪⎭
dNi(s), (2.2)

where S
(j)
n (β, s) = ∑nl=1 Yl(s)Z

⊗j
l e

βTZl , for j = 0,1,2. Here, and in what follows, for a
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vector v, v⊗0 = 1, v⊗1 = v, and v⊗2 = vvT .

Next, we consider the more realistic case in which the study population consists of

both compliers and noncompliers. In this case, λ(t∣Z) usually deviates from the hazard

function assumed for the complier group, h0(t) exp(βT0 Z). As a result, M(t) is no longer

a martingale for the overall study population, and equation (2.2) fails to provide a valid

estimate for β0.

To construct an appropriate estimating equation for β0, we use the fact that M(t)

remains a martingale for the complier group. Thus, we can show that µc(β0) = 0 under

model (2.1), where s
(j)
c (β, s) = E(Y (s)Z⊗jeβ

TZ∣D1 >D0) (j = 0,1,2) and

µc(β) = E
⎡⎢⎢⎢⎢⎣
∫

∞

0

⎧⎪⎪⎨⎪⎪⎩
Z − s

(1)
c (β, s)
s
(0)
c (β, s)

⎫⎪⎪⎬⎪⎪⎭
dM(s)∣D1 >D0

⎤⎥⎥⎥⎥⎦
.

However, µc(β) cannot be used directly to estimate β0 because the latent complier

group, {D1 > D0}, is not observed. To address this difficulty, we adopt the strategy of

Abadie (2003), who established a simple link between the unconditional moment of the

observed data and the conditional moment of the data within the complier group. A simple

weighting approach may be employed to identify the regression parameters associated

with the complier group. More specifically, let g(⋅) be a measurable real function of

(T,D,X,C), such that E∣g(T,D,X,C)∣ < ∞. Under assumptions (A1)–(A4), and given

that C is independent of V given X, an application of Theorem 3.1 of Abadie (2003)

immediately implies that

E{g(T,D,X,C)∣D1 >D0} =
1

Pr(D1 >D0)
E{κ ⋅ g(T,D,X,C)}, (2.3)
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where

κ = 1 − D(1 − V )
Pr(V = 0∣X,C)

− (1 −D)V
Pr(V = 1∣X,C)

= 1 − D(1 − V )
Pr(V = 0∣X)

− (1 −D)V
Pr(V = 1∣X)

. (2.4)

This result suggests that a weighting scheme involving κ can lead to the identification of

moment-type statistics for compliers. Note that κ can take both positive and negative

values. This differs from standard weighting procedures based on a probability weighting,

where the weights are always positive because the probabilities are nonnegative. This

creates nonstandard computational challenges, which are discussed further below.

Using (2.3), we obtain the following key results for deriving an estimating equation

for β0:

µc(β) =
1

Pr(D1 >D0)
E

⎡⎢⎢⎢⎢⎣
κ∫

∞

0

⎧⎪⎪⎨⎪⎪⎩
Z − s

(1)
c (β, s)
s
(0)
c (β, s)

⎫⎪⎪⎬⎪⎪⎭
dM(s)

⎤⎥⎥⎥⎥⎦
,

where

s
(j)
c (β, s) = E(κY (s)Z⊗jeβ

TZ)
Pr(D1 >D0)

, j = 0,1,2.

Suppose κi is known for each subject i. One may construct a weighted estimating

equation for β0, Un,κ(β) = 0, where

Un,κ(β) =
1√
n

n

∑
i=1
∫

∞

0
κi

⎛
⎝
Zi −

⎧⎪⎪⎨⎪⎪⎩

S
(1)
n,κ(β, s)

S
(0)
n,κ(β, s)

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
dNi(s),

with S
(j)
n,κ(β, s) = ∑nl=1 κlYl(s)Z

⊗j
l e

βTZl . Note that Un,κ(β) remains the same if dNi(s) is

replaced by dMi(s); hence, Un,κ(β) is proportional to an empirical counterpart of µc(β).

This justifies using Un,κ(β) to construct the estimating equation for β0.
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In general, κi is known a priori, for example, from external information. In practice,

we propose estimating κi by imposing additional modeling assumptions for Pr(V = 1∣X).

Specifically, we assume a logistic regression model for V :

P (V = 1∣X) ≡ ψ(α0,X) = exp(α01 +αT02X)
1 + exp(α01 +αT02X)

, (2.5)

with α0 = (α01,αT02)T . Let α̂ be the maximum likelihood estimator of α0 (Gourieroux and

Monfort, 1981; Agresti, 2013), and define

κ̂i = 1 − Di(1 − Vi)
1 − ψ(α̂,Xi)

− (1 −Di)Vi
ψ(α̂,Xi)

. (2.6)

Replacing κi in Un,κ(β) with κ̂i leads to the proposed estimating equation:

Un,κ̂(β) = 0, (2.7)

where

Un,κ̂(β) =
1√
n

n

∑
i=1
∫

∞

0
κ̂i

⎛
⎝
Zi −

⎧⎪⎪⎨⎪⎪⎩

S
(1)
n,κ̂(β, s)

S
(0)
n,κ̂(β, s)

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
dNi(s). (2.8)

Denote the solution to equation (2.7) by β̂. The computational algorithm for obtaining β̂

is discussed in the next subsection, along with related issues and remedies.

2.4 The Computational Algorithm

The form of the proposed estimation equation (2.7) closely resembles that of a weighted

Cox proportional hazards regression. However, an important distinction is that κ̂i in (2.7)

can take negative values. As a result, Un,κ̂(β) can have a highly irregular surface, with
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multiple zero-crossings. To address this complication, we propose locating β̂ by maximiz-

ing a properly designed objective function. Specifically, instead of solving Un,κ̂(β) = 0

directly, we propose obtaining β̂ as the maximizer of the following objective function:

C̄n,κ̂(β) =
1

n

n

∑
i=1

κ̂iδi [βTZi − log{S̃(0)n,κ̂(β,Wi)}] , (2.9)

where S̃
(0)
n,κ̂(β, t) = max(S(0)n,κ̂(β, t), ν), and ν is a prespecified small positive value. The

justification for doing so is that ∂C̄n,κ̂(β)/∂βT is nearly the same as n−1/2Un,κ̂(β), because

ν can be arbitrarily small. Truncating S
(0)
n,κ̂(β, t) below by ν ensures the positiveness of the

resulting quantity. In theory, the asymptotic limit of S
(0)
n,κ̂(β, t) is strictly positive under

mild regularity conditions. Therefore, such a truncation should have negligible impact on

the finite-sample performance of β̂ when n is reasonably large. In our numerical studies,

we choose ν = 10−4.

The procedure for obtaining β̂ is as follows:

1. Fit the logistic regression model (2.5) to {(Vi,Xi)}ni=1, and obtain α̂.

2. Calculate κ̂i using formula (2.6).

3. Find the maximizer of the objective function C̄n,κ̂(β) in (2.9) using an optimization

routine, such as the optim() function in R (R Core Team, 2017).

2.5 A Modified Weighting Scheme

In principle, the objective function C̄n,κ̂(β) approaches a limit that is concave, and stan-

dard optimization routines are expected to work well when the sample size is large. How-
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ever, the presence of negative weights κi can lead to highly irregular surfaces for C̄n,κ̂(β)

and Un,κ̂(β) (see the figures in Section S4 of the Supplementary Material) and result in

numerical instability in the estimate of β0. To address this problem, we propose a modified

weighting scheme that avoids negative weights and obtains β̂ using standard computational

routines for a weighted proportional hazards regression, such as the coxph() function in R

(Therneau, 2015).

Let U = (W,δ,D,X). We define the modified weight by projecting the original weight

κ, as follows:

κv = E(κ∣U) = 1 − D(1 − v0(U))
P (V = 0∣X)

− (1 −D)v0(U)
P (V = 1∣X)

, (2.10)

where v0(U) = E(V ∣U) = P (V = 1∣W,δ,D,X). Adapting the arguments of Abadie et al.

(2002), we can show that κv = P (D1 > D0∣U), and that κv plays the same role as κ in

equation (2.3) (see Section S1 of the Supplementary Material). This result indicates that

κv is a probability; thus, it is always nonnegative and can be regarded as a proper weight.

Adopting the weighting scheme based on κv avoids the potential numerical issues posed

by using κ. We propose estimating κv as follows:

1. Stratify the data by the censoring and treatment status: {(δ = c,D = d)}, c = 0,1,

d = 0,1.

2. Within each stratum, fit a nonparametric or parametric regression model for V ,

given covariates (W,X). This provides an estimate for v0(U), denoted by v̂(U).
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3. Calculate the estimated κv as

κ̂v = 1 − D(1 − v̂(U))
1 − ψ(α̂,Xi)

− (1 −D)v̂(U)
ψ(α̂,Xi)

.

In Step 2, we can employ a nonparametric power series (NPPS) regression or a logistic

regression for V , given (W,X). However, our extensive numerical findings (including

those reported and not reported in Section 3), show that a second-order logistic regression

model with an interaction between W and X outperforms approaches that estimate κ̂v

using an NPPS or a first-order logistic regression. When the dimension of X is large,

we recommend using a penalized logistic regression to obtain a reasonable estimate for

v0(U). Note that with finite sample sizes, the resulting estimator κ̂v may be negative

or greater than one. To circumvent the undesirable numerical properties associated with

negative weights, we propose a slightly modified weight, κ̂v,tr, that truncates κ̂v such that

its value lies strictly in an interval I ⊂ (0,1), say [0.01,0.99]. Because the true weight κv

is between zero and one and we can let I be arbitrarily close to (0,1), there should be

negligible asymptotic bias induced by such a truncation. Then, using κ̂v,tr in place of κ in

(2.7), we easily obtain β̂ from the R function coxph(), with the weight argument properly

specified. In Section 3, we examine the performance of the proposed estimator for different

choices of weights.

2.6 Large-Sample Results

We assume the following regularity conditions:
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(C1): The parameter space for β, B, is compact.

(C2): ∥Z∥ < ∞ and ∣κ∣ < ∞.

(C3): s
(0)
c (β, t) is bounded away from zero uniformly in β and t.

(C4): Σ0 > 0, where Σ0 is defined in (B.1) of Section S2 of the Supplementary Material.

(C5): α̂ −α0 →a.s. 0.

(C6) There exists an influence function Iα(⋅), such that

∥n1/2(α̂ −α0) − n−1/2
n

∑
i=1

Iα(α0,Oi)∥ = o(1), a.s.

We establish the consistency and asymptotic normality for the proposed estimator in

the following theorems.

Theorem 1. (Consistency) Under conditions (C1)–(C5), β̂ →a.s. β0.

Theorem 2. (Asymptotic normality) Under conditions (C1)–(C6), n1/2(β̂−β0) →d N(0,Ω),

where Ω is defined in Section S2 of the Supplementary Material (see equation (B.12)).

The regularity conditions (C1)–(C2) impose the boundedness of the parameter space

and covariates, which are mild and often met in practice. The boundedness of κ is satisfied

when Pr(V = 0∣X) is always away from zero and one. Conditions (C3)–(C4) are standard

assumptions for Cox proportional hazard regression methods. For example, condition (C4)

ensures the identifiability of β0. Conditions (C5)–(C6) depict reasonable requirements on

the estimator of α0, such as consistency and asymptotic i.i.d. sum representation. Detailed

proofs of Theorems 1 and 2 are provided in Appendix B.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0096



18

Note that the theoretical properties, including consistency and root-n asymptotic nor-

mality, can also be established for the proposed estimator based on the modified weighting

scheme presented in Section 2.5. The theoretical arguments follow similar lines to the

proofs of Theorems 1–2. The main distinction lies in the derivation of the influence func-

tion, which needs to account for the additional variability induced by v̂(U). The detailed

asymptotic results for the estimator with the modified weight are omitted here, but are

available upon request.

2.7 Variance Estimation

In the proof of Theorem 2, we derive a closed form for the asymptotic variance of n1/2(β̂−

β0); see equation (B.12) of Section S2 of the Supplementary Material. A consistent vari-

ance estimator for β̂ (with weight κ̂) can be obtained using Ω̂/n, where Ω̂ is Ω, with

unknown quantities replaced by their empirical counterparts or consistent estimators.

An alternative approach to estimating the asymptotic variance of β̂ (with weight κ̂

or κ̂v) is to use bootstrapping: Step 1: Resample n observations from the original data

set with replacement, {Ob
i}ni=1, and add some small amount of noise (e.g., N(0,10−10)) to

avoid the presence of ties in the resampled data; Step 2: Calculate β̂b based on {Ob
i}ni=1,

with weights as described in Section 2 (i.e., κ̂, κ̂v, or κ̂v,tr); Step 3: Repeat steps 1–2, for

b = 1, ...,B; Step 4: Estimate the asymptotic variance of β̂ using the empirical variance of

{β̂b}Bb=1.

In the bootstrapping procedure, the computations in Step 2 may fail to converge.
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In such a case, we carry out Step 3 until there are B convergent estimates. In addition,

repeated resampling may occasionally produce outlier estimates that artificially inflate the

empirical variance in Step 4. If this occurs, we may estimate the standard deviation of β̂

using the median absolute deviation, namely, 1.4826×MAD, where MAD =median(∣β̂b−

median(β̂b)∣) (Rousseeuw and Croux, 1993). This alternative approach performs quite

well, based on our numerical results.

3. Simulation Study

We conduct extensive simulations to assess the performance of the proposed estimators.

We create data under assumptions (A1) to (A4), as follows:

1. Generate X from a bounded distribution.

2. Generate the latent group membership (i.e., complier, always-taker, or never-taker)

from a multinomial distribution.

3. Generate V ∼ Bernoulli(P (V = 1∣X)), where P (V = 1∣X) = exp(α01+α
T
02X)

1+exp(α01+αT
02X)

, and

determine D from V and the latent group membership.

4. For compliers, generate potential survival times T00 = T10 = exp(−βTxX + ε) and

T01 = T11 = exp(−βTxX −βd + ε), where ε follows the extreme value distribution.

5. For noncompliers, generate T00 or T01, given X, possibly from a nonCox regression

model, and let T00 = T10 and T01 = T11.
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6. Set T = Tvd and draw independent censoring times C ∼ Exponential(0.5).

We consider two basic data-generation scenarios with a single covariate X. In scenario

1, for compliers, survival times are generated using β0 = (βd, βx) = (−0.5,−0.2). Survival

times for noncompliers in scenario 1 are generated according to T = exp(−0.02X + ε1),

where ε1 ∼ N(0,0.01) (i.e., no treatment effect). In scenario 2, compliers’ survival times

are generated using β0 = (−0.3,0.05). Noncompliers’ survival times are also generated

from a Cox proportional hazards regression model, where T = exp(0.5D−0.05X + ε2), and

ε2 follows the extreme value distribution.

For each scenario, we consider eight cases with different combinations of rate of com-

pliers, sample size, and covariate distribution. Specifically, in cases 1–4, X follows a

Uniform(−1,1) distribution, and in cases 5–8, X follows a Bernoulli(0.5) distribution.

The sample size n = 1000 in cases 1, 2, 5, and 6, and n = 4000 in cases 3, 4, 7, and 8. The

probability of compliers is equal to 1/3 in cases 1, 3, 5, and 7, and 2/3 in cases 2, 4, 6, and

8.

We compare several estimation methods: (1) a benchmark estimate, based only on

compliers (unknown in a real-data analysis); (2) a naive estimate, which assumes the

entire sample follows the same Cox model; (3) the proposed κ̂-weighted estimate; (4)

the modified κ̂v-weighted estimate; and (5) the estimate based on the truncated modified

weights κ̂v,tr. Hereafter, we refer to these methods as complier, naive, κ, κv, and κv,tr.

To estimate κ̂v and κ̂v,tr, we estimate v0(U) = P (V = 1∣W,X,D, δ) using the method
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described in Section 2.5 with a second-order logistic regression, including the interaction

between W and X for each of the four partitions by the censoring and treatment status.

Note that the estimations using κ̂ and κ̂v follow the algorithms and caveats laid out in

Sections 2.4 and 2.5, where β̂ is estimated by maximizing the objective function in (2.9).

Specifically, we use the R function optim with the BFGS method option (R Core Team,

2017), considering three different starting values (based on the naive estimate, ±0.5) to

solve the maximization problem. For the method κv,tr, we use the R function coxph

to implement the proposed estimation, as described in Section 2.5. For each method

under comparison, we check whether the resulting estimate solves the proposed estimating

equation within some tolerance (e.g., 0.05). We record a failure to converge if such an

estimate cannot be produced.

The top row of Figure 1 shows the convergence rates for the three proposed estimators.

In scenario 1, the convergence rates of κ̂ and κ̂v are both close to 100% across the eight

cases considered. In scenario 2, the convergence rates vary considerably but, in general,

increase with n and the proportion of compliers P (D1 > D0). Anecdotal examination

reveals that the objective and estimating function surfaces for this scenario can be highly

irregular. In contrast, because the κ̂v,tr-weights are always positive, the resultant surfaces

are smooth and the convergence rates are always 100%. The second row of Figure 1 shows

the empirical bias by comparing the treatment and covariate parameter estimates with

the truth. In general, the naive parameter estimators demonstrate large empirical bias,

and the proposed methods reduce the bias considerably.
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Figure 1: Simulation results: Convergence rates, mean estimates, and empirical coverage

probabilities of 95% confidence intervals: Complier (∎); Naive (●); κ (○); κv (+); κvtr (S)
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In Figure 2, we compare various standard error (SE) estimates against the empirical

standard deviations (SD) of the proposed estimators. We denote the mean and median

estimated SE based on the analytic variance estimation by Mean SE and Median SE,

respectively, and denote the mean and median estimated SE based on the bootstrapping

variance estimation by Mean Bootstrap SE and Median Bootstrap SE, respectively. The

empirical standard deviation (SD) is denoted by Empirical. For the method κ, we evaluate

both the analytic variance estimation and the bootstrapping-based variance estimation.

The results show that both Mean Bootstrap SE and Median Bootstrap SE are close to

the corresponding empirical SDs in Scenarios 1 and 2. With regard to the analytic vari-

ance estimation, the Median SE s are in good agreement with the empirical SDs, while in

Scenario 2, many Mean SE s depart considerably from the empirical SDs. The latter phe-

nomenon may reflect the unstable performance of the κ-weighted estimator in Scenario

2, which is consistent with the lower convergence rates of the method κ in Scenario 2.

For the methods κv and κv,tr, we examine the bootstrapping-based variance estimation

only. Two extreme outliers are removed from the calculation of the mean bootstrap SE

for the covariate coefficient estimate based on method κv in Case 5 of Scenario 1. We

observe fairly small discrepancies between Mean Bootstrap SE s, Median Bootstrap SE s,

and the empirical SDs in Scenarios 1 and 2, while the method κv,tr shows slightly better

performance.

The bottom row of Figure 1 shows the empirical coverage probabilities of the 95% confi-

dence intervals, constructed as β̂±z0.975×ŜE(β̂), where ŜE(β̂) denotes the bootstrapping-
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Figure 2: Simulation results: the estimated standard errors and empirical standard devi-

ations of κ̂, κ̂v, κ̂v,tr weighted estimators: Empirical (◻); Mean SE (+); Median SE (▽);

Mean Bootstrap SE (×); Median Bootstrap SE (S)
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based SE. The coverage probabilities associated with the method κv,tr are fairly close to

the nominal 95% level, decreasing to 93% in a few cases. The methods κ and κv have

similar and generally more conservative performance in terms of their empirical coverage

probabilities. Note that the results presented for these two methods are based only on

simulations that produce converged estimates. In Scenario 2, where the convergence rates

of κ and κv can be considerably below one, the results in Figure 1 may over-represent the

performance of these two methods.

Based on all simulations, the method κv,tr exhibits the best performance of the weight-

ing methods, including good coverage probabilities, low bias, and reliable convergence.

4. Colon Cancer Screening with Flexible Sigmoidoscopy

The PLCO Cancer Screening Trial is a multi-center, two-armed randomized trial, spon-

sored by the National Cancer Institute, of screening tests for prostate, lung, colorectal,

and ovarian cancers. Ten centers across the United States recruited approximately 155,000

participants between November 1993 and July 2001. Data were collected until December

31, 2009. One objective of the trial is to evaluate the effectiveness of screening for col-

orectal cancer using flexible sigmoidoscopy, in terms of mortality, versus that of usual-care

methods. Prorok et al. (2000) reported further details about this trial.

The original data consist of 154,897 individuals aged 55 to 74 years. They were

assigned randomly to either the usual-care (control, N = 77,453) group or the screening

with flexible sigmoidoscopy (intervention, N = 77,444) group. For the intervention group,
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subjects were offered the screening at the baseline and three or five years later. After

randomization, data were discarded for 187 participants who dropped out, died, were

diagnosed with cancer, or had an organ removed before the first screening visit, as were

data on four participants with no follow-ups. Thus, we considered 154,706 individuals in

our analyses.

Table 1 presents the descriptive statistics for the baseline characteristics of the partic-

ipants, stratified by the screening assignment (i.e., V = 0, V = 1) and the actual screening

status (i.e., D = 0, D = 1). We also consider risk factors, including age (in years), gender,

family history of any cancer, family history of colorectal cancer, colorectal polyps, and

diabetes. We apply t-tests or chi-squared tests to check the balance of these observed risk

factors between the groups, determined by the screen assignment or the actual screening

status. Based on the p-values reported in Table 1, there is strong evidence that this trial

was well randomized, with small and nonsignificant associations between the screening

assignment and the risk factors. However, most of these risk factors are unbalanced by

the actual screening status. The summary statistics in Table 1 suggest that older male

participants with a family history of any cancer, a family history of colorectal cancer, or

diabetes were more likely to take the colon cancer screening when it was assigned. Thus,

there is some evidence to suggest that the study participants’ post-randomization care se-

lections and their potential survival outcomes are dependent. Hence, the traditional ITT

or “as-treated” analyses may be problematic for evaluating the causal effect of flexible

sigmoidoscopy screening on colorectal cancer mortality.
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Table 1: Characteristics of the Study Participants

Characteristics Control (V = 0) Intervention (V = 1) Not Screened (D = 0) Screened (D = 1)

N = 77449 N = 77257 N = 90056 N = 64650

Number of Participants (%) p-value Number of Participants (%) p-value

Age ⋆

62.60 (5.37) 62.59 (5.39) 0.8274 62.65 (5.39) 62.52 (5.33) <.0001

Age Level

55-59 yr 25838 (33.36) 25789 (33.38) 29902 (33.20) 21725 (33.60)

60-64 yr 23767 (30.69) 23736 (30.72) 27451 (30.48) 20052 (31.02)

65-69 yr 17473 (22.56) 17402 (22.52) 20352 (22.60) 14523 (22.46)

70-74 yr 10371 (13.39) 10330 (13.37) 0.9967 12351 (13.71) 8350 (12.92) <.0001

Sex

Male 38340 (49.50) 38229 (49.48) 43529 (48.34) 33040 (51.11)

Female 39109 (50.50) 39028 (50.52) 0.9393 46527 (51.66) 31610 (48.89) <.0001

Family History of Any Cancer

No 32742 (42.28) 33327 (43.14) 37798 (41.97) 28271 (43.73)

Yes 41305 (53.33) 41971 (54.33) 0.8735§ 47137 (52.34) 36139 (55.90) 0.0190§

Unknown 3402 (4.39) 1959 (2.54) <.0001 5121 (5.69) 240 (0.37) <.0001

Family History of Colorectal Cancer

No 64504 (83.29) 65203 (84.40) 73997 (82.17) 55710 (86.17)

Yes † 7320 (9.45) 7627 (9.87) 0.0809§ 8331 (9.25) 6616 (10.23) 0.0022§

Possibly ‡/Unknown 5625 (7.26) 4427 (5.73) <.0001 7728 (8.58) 2324 (3.59) <.0001

Colorectal Polyps

No 68690 (88.69) 69910 (90.49) 78705 (87.40) 59895 (92.65)

Yes 4947 (6.39) 5185 (6.71) 0.1565§ 5739 (6.37) 4393 (6.80) 0.7865§

Unknown 3812 (4.92) 2162 (2.80) <.0001 5612 (6.23) 362 (0.56) <.0001

Diabetes

No 68028 (87.84) 69371 (89.79) 77773 (86.36) 59626 (92.23)

Yes 5699 (7.36) 5810 (7.52) 0.9971§ 6776 (7.52) 4733 (7.32) <.0001§

Unknown 3722 (4.81) 2076 (2.69) <.0001 5507 (6.12) 291 (0.45) <.0001

⋆ denotes a continuous variable. Mean and standard deviation are reported.

† indicates colorectal cancer family history in immediate family member.

‡ indicates colorectal cancer family history in relatives or unclear cancer type.

§ indicates p-value without considering missing category.
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To address this issue, we employ the proposed IV methods, with the survival outcome

of interest (T ) defined as the time from trial entry (i.e., randomization) to death from

colorectal cancer (in years), and the IV chosen as the screening assignment (V ). In our data

set, 351 and 249 colorectal cancer deaths were observed in the control group (n = 77098)

and the intervention group (n = 77,098), respectively; 409 and 191 colorectal cancer deaths

were observed in the group without screening (n = 89,647) and the group with screening

(n = 64,459), respectively. In our analysis, deaths due to other causes are competing risks

for death from colon cancer. As discussed in Section S3 of the Supplementary Material,

naively treating such competing events as censoring events leads to a valid IV proportional

hazards analysis of the cause-specific hazard function for colon cancer death. Our IV

is justified as follows: (i) the screening assignment is highly informative of the actual

screening status (D) (i.e., screened vs. not screened); (ii) the screen assignment is random

and, hence, is expected to be independent of unmeasured confounders (given the observed

risk factors); and (iii) it is reasonable to expect that the impact of the screening assignment

on the survival outcome is only through its influence on the actual screening status.

We first assess the unadjusted causal effect of the flexible sigmoidoscopy screening by

fitting model (2.1) without X to the full data set and stratifying the analysis by each

risk factor. For comparison purposes, we also perform the “as-treated” counterparts (i.e.,

fitting a Cox model for T , with D as the only covariate) and the ITT counterparts (i.e.,

fitting a Cox model for T , with V as the only covariate) of these IV analyses. For the

IV analyses, we implement the three methods κ, κv, and κv,tr in the same way as in our
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Table 2: Analyses for the Unadjusted Screening Effect Based on the Whole Data Set or
Stratified by Each Risk Factor

Data N pc As-Treated ITT κ κv κv,tr

(Subgroup) Parameter Estimates (Standard Errors)

Total 154706 0.84 -0.442* -0.343* -0.427* -0.427* -0.427*
(0.088) (0.083) (0.099) (0.097) (0.101)

Age Level
55-59 yr 51627 0.84 -0.572* -0.380* -0.496* -0.496* -0.496*

(0.198) (0.184) (0.229) (0.240) (0.248)
60-64 yr 47503 0.84 -0.313 -0.130 -0.169 -0.169 -0.169

(0.160) (0.153) (0.201) (0.198) (0.193)
65-69 yr 34875 0.83 -0.475* -0.590* -0.654* -0.655* -0.655*

(0.164) (0.158) (0.178) (0.164) (0.182)
70-74 yr 20701 0.81 -0.420* -0.264 -0.351 -0.350 -0.350

(0.188) (0.176) (0.228) (0.213) (0.218)

Sex
Male 76569 0.86 -0.549* -0.445* -0.536* -0.536* -0.536*

(0.115) (0.109) (0.124) (0.123) (0.123)
Female 78137 0.81 -0.319* -0.200 -0.262 -0.262 -0.262

(0.135) (0.128) (0.156) (0.172) (0.166)

Family History of Any Cancer
Yes 83276 0.86 -0.237* -0.258* -0.294* -0.294* -0.294*

(0.114) (0.111) (0.120) (0.124) (0.127)
No 66069 0.85 -0.704* -0.492* -0.639* -0.639* -0.639*

(0.144) (0.132) (0.158) (0.179) (0.162)

Family History of Colorectal Cancer
Yes 14947 0.87 -0.010 -0.097 -0.105 -0.106 -0.106

(0.241) (0.239) (0.251) (0.271) (0.254)
No 129707 0.85 -0.457* -0.391* -0.469* -0.469* -0.469*

(0.099) (0.094) (0.117) (0.113) (0.104)

Colorectal Polyps
Yes 10132 0.85 0.315 0.288 0.335 0.336 0.336

(0.305) (0.309) (0.388) (0.405) (0.389)
No 138600 0.86 -0.490* -0.401* -0.490* -0.485* -0.485*

(0.093) (0.089) (0.111) (0.112) (0.110)

Diabetes
Yes 11509 0.81 -1.036* -0.335 -0.606 -0.603 -0.603

(0.311) (0.253) (0.451) (0.454) (0.438)
No 137399 0.86 -0.355* -0.349* -0.404* -0.404* -0.404*

(0.093) (0.090) (0.095) (0.099) (0.092)

* indicates p-value ≤ 0.05
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simulation studies (see Section 3), except that we use a simple logistic regression model

stratified by (δ,D) to estimate v0(U) in (2.10). Table 2 reports the parameter estimates

and the associated standard errors. For the IV methods, we present the bootstrap-based

standard errors. Table 2 also reports the rate of compliance in the intervention group (i.e.,

the proportion of screened participants in the intervention group), pc.

From Table 2, we observe that the estimates for the causal effect of screening are

very similar among the three IV methods. The conclusions on the survival impact of

screening are, in general, consistent across the IV analyses, as-treated analyses, and ITT

analyses, except for the sub-cohort with a baseline age between 70 and 74 years, and the

sub-cohort with diabetes. In these two cases, significant benefits of screening are suggested

by the as-treated analyses, but not by the ITT or IV analyses. Such discrepancies may be

explained by the relatively high noncompliance rates (≈ 19%) observed in the intervention

group. That is, study participants who refused assigned screening are likely to be less

health-conscious, which may be associated with worse potential survival outcomes. When

the nonscreened group includes a large proportion of such participants, the as-treated

analyses would tend to over-estimate the benefit of screening, because they ignore the

survival impact of the unmeasured confounder related to health-consciousness. Therefore,

in these two cases, it is more plausible to conclude that flexible sigmoidoscopy screening

offers little in the sense of survival benefits for participants aged between 70 and 74 years

and for participants with diabetes. Overall, the unadjusted stratified analyses support the

benefit of flexible sigmoidoscopy in reducing colorectal mortality, with the greatest benefit
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evidenced in subpopulations with relatively low mortality risk, for example, the age group

55–59 years, and subjects without a family history of colorectal cancer.

We next evaluate the causal effect of screening, while accounting for other risk factors.

Specifically, we fit model (2.1), with X capturing gender, family history of any cancer,

family history of colorectal cancer, colorectal polyps, and diabetes separately for the four

age groups, 55–59 years, 60–64 years, 65–69 years, and 70–74 years. Table 3 provides the

summary statistics (i.e., count and percentage) of the risk factors by V and by D within

each age group, along with the p-values from testing the association of the risk factors

with V or D, based on the chi-squared tests. Similarly to Table 1, within each age group,

the risk factors show little association with the screening assignment D, but may vary

significantly between participants who were screened versus those who were not screened.

Table 4 presents the parameter estimates and the associated standard errors based

on the IV methods, κ, κv, and κv,tr. The coefficient estimates from the as-treated anal-

ysis (i.e., a multivariate Cox model for T , given D and X) and the ITT analysis (i.e., a

multivariate Cox model for T , given V and X) are also presented, along with the cor-

responding standard errors. From Table 4, we again observe relatively good agreement

among the three IV estimates. The IV analyses suggest that the flexible sigmoidoscopy

screening has a significant protective effect on colorectal cancer mortality in the older age

groups, 65–69 years and 70–74 years, but not in the younger age groups, 55–59 years and

60–64 years, after adjusting for age, gender, family history of any cancer, family history

of colorectal cancer, colorectal polyps, and diabetes.
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Table 4: Results of Adjusted Models within Age Subgroups

Age Level As-Treated ITT κ κv κv,tr

(pc) Covariates Point Estimates (Standard Errors)

55-59 yr Screening -0.474* (0.207) -0.296 (0.196) -0.373 (0.228) -0.373 (0.242) -0.373 (0.246)

(0.84) Female -0.101 (0.195) -0.089 (0.195) -0.003 (0.244) -0.013 (0.246) -0.013 (0.232)

Family History of Any Cancer 0.204 (0.208) 0.201 (0.208) 0.468 (0.272) 0.463 (0.280) 0.465 (0.280)

Family History of Colorectal Cancer 0.194 (0.313) 0.192 (0.313) -0.080 (0.471) -0.071 (0.468) -0.073 (0.386)

Colorectal Polyps 0.276 (0.422) 0.277 (0.422) 0.137 (0.736) 0.135 (1.725) 0.131 (1.768)

Diabetes 0.168 (0.392) 0.179 (0.392) 0.127 (0.606) 0.125 (0.591) 0.126 (0.710)

60-64 yr Screening -0.333* (0.169) -0.184 (0.163) -0.228 (0.197) -0.229 (0.205) -0.242 (0.181)

(0.84) Female -0.419* (0.167) -0.409* (0.166) -0.579* (0.214) -0.585* (0.206) -0.563* (0.189)

Family History of Any Cancer -0.182 (0.176) -0.183 (0.176) -0.055 (0.234) -0.054 (0.231) -0.071 (0.225)

Family History of Colorectal Cancer 0.396 (0.260) 0.391 (0.260) 0.564* (0.279) 0.566* (0.275) 0.556* (0.276)

Colorectal Polyps -0.124 (0.329) -0.121 (0.329) -0.141 (0.429) -0.147 (0.446) -0.108 (0.351)

Diabetes 0.520* (0.258) 0.526* (0.258) 0.114 (0.458) 0.117 (0.554) 0.206 (0.369)

65-69 yr Screening -0.386* (0.168) -0.526* (0.165) -0.564* (0.187) -0.568* (0.166) -0.576* (0.188)

(0.83) Female -0.402* (0.164) -0.388* (0.164) -0.426* (0.194) -0.435* (0.181) -0.408* (0.182)

Family History of Any Cancer -0.182 (0.176) -0.185 (0.176) -0.187 (0.190) -0.190 (0.196) -0.198 (0.186)

Family History of Colorectal Cancer 0.565* (0.129) 0.563* (0.139) 0.625* (0.260) 0.642* (0.242) 0.627* (0.253)

Colorectal Polyps -0.306 (0.314) -0.299 (0.314) -0.226 (0.331) -0.243 (0.349) -0.245 (0.328)

Diabetes 0.370 (0.251) 0.377 (0.251) 0.036 (0.419) 0.045 (0.411) 0.138 (0.313)

70-74 yr Screening -0.414* (0.196) -0.364 (0.186) -0.437 (0.225) -0.439* (0.223) -0.439* (0.223)

(0.81) Female -0.486* (0.189) -0.467* (0.189) -0.472* (0.228) -0.484* (0.246) -0.486* (0.228)

Family History of Any Cancer 0.157 (0.195) 0.152 (0.195) 0.387 (0.250) 0.389 (0.268) 0.388 (0.233)

Family History of Colorectal Cancer -0.219 (0.318) -0.222 (0.318) -0.344 (0.508) -0.333 (0.405) -0.342 (0.384)

Colorectal Polyps 0.088 (0.286) 0.093 (0.286) 0.137 (0.387) 0.124 (0.396) 0.121 (0.349)

Diabetes 0.444 (0.270) 0.451 (0.270) -0.027 (0.583) -0.031 (0.589) -0.037 (0.409)

* indicates p-value ≤ 0.05
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This finding is consistent with that based on the ITT analyses, but moderately dis-

agrees with the results from the as-treated analyses, particularly for the age groups 55–59

years and 60–64 years. The similarity between the ITT analyses and the proposed anal-

yses might be due to the dilution effect commonly seen in screening trials, as discussed

in Baker et al. (2002). To understand the discrepancies between the results of the other

analyses and those of the as-treated analyses, note that there is a marked imbalance in

the risk factors by actual screening status for the age groups 55–59 years and 60–64 years

compared to those of the two older age groups. For example, in the age group 60–64 years,

participants who were female, had diabetes, or had no family history of colorectal cancer

were significantly less likely to comply with the assigned screening assignment than were

males who had no diabetes, or who had a family history of colorectal cancer. Such asso-

ciations may bias the estimation of the causal treatment effect by the as-treated analyses,

which may explain the discrepancies observed in Table 4 between the as-treated analyses

and the IV analyses. In addition, the IV analyses provide strong evidence for the lower

colorectal cancer mortality risk in females (versus males) in all age groups beyond the age

of 60 years. The results also suggest some survival disadvantages (related to colorectal

cancer mortality) associated with a family history of colorectal cancer.

5. Conclusion

The use of IVs in survival settings with binary treatments has been severely limited by

complexities arising from nonlinear model specifications, as with the proportional hazards
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model. The application of simple two-stage estimation procedures developed for linear

models is challenging, and only valid in special cases. Alternative procedures may include

strong modeling assumptions on strata other than that of interest, tend to be complex,

both computationally and inferentially, and are not readily implemented using standard

software. Our approach based on a special characterization of IVs enables a simple two-

stage procedure analogous to propensity score weighting. At the first stage, a binary

regression model is fit to the IV, and in the second stage, the fitted regression model from

the first stage is used to construct a weight that “debiases” the naive estimating equation

for the proportional hazards model. Previous work on this approach (Abadie et al., 2002;

Abadie, 2003) considers only iid estimating equations, with limited attention being given

to practical computational issues. The current study demonstrates rigorously the valid-

ity of the approach using the partial likelihood score function. Moreover, the proposed

estimators can be easily computed using existing software for the proportional hazards

model, with the variance estimation based on bootstrapping correctly accounting for the

first-stage estimation of the weights. Moreover, the estimators are generally applicable

to IV estimations for the proportional hazards model in complex survival scenarios, for

example, in the presence of left truncation, competing risks, and recurrent events.

Supplementary Material

The online Supplementary Material provides theoretical justifications and proofs, dis-

cussions of generalizations to complex survival settings, and additional figures and tables.
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