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Abstract: Quadratic regressions extend linear models by simultaneously including

the main effects and the interactions between the covariates. As such, estimating

interactions in high-dimensional quadratic regressions has received extensive at-

tention. Here, we introduce a novel method that allows us to estimate the main

effects and the interactions separately. Unlike existing methods for ultrahigh-

dimensional quadratic regressions, our proposal does not require the widely used

heredity assumption. In addition, our proposed estimates have explicit formulae

and obey the invariance principle at the population level. We estimate the in-

teractions in matrix form under a penalized convex loss function. The resulting

estimates are shown to be consistent, even when the covariate dimension is an

exponential order of the sample size. We develop an efficient alternating direction

method of multipliers algorithm to implement the penalized estimation. This al-

gorithm fully exploits the cheap computational cost of the matrix multiplication

and is much more efficient than existing penalized methods, such as the all-pairs

LASSO. We demonstrate the promising performance of the proposed method
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using extensive numerical studies.

Key words and phrases: High dimension, interaction estimation, quadratic re-

gression, support recovery.

1. INTRODUCTION

A fundamental problem in scientific research is understanding how the fea-

tures under investigation interact. Interaction estimation has been shown

to be very attractive in both parameter estimation and model prediction

(Bien et al., 2013; Hao et al., 2018), especially for data sets with compli-

cated structures. Efron et al. (2004) pointed out that for Boston housing

data, the prediction accuracy can be improved significantly if interactions

are included in addition to all main effects. In general, ignoring interac-

tions by considering main effects alone may lead to an inaccurate or biased

estimation, resulting in a poor prediction of an outcome of interest. In

contrast, considering both interactions and main effects can improve model

interpretability and prediction substantially, thus achieving a better under-

standing of how the outcome depends on the predictive features (Fan et al.,

2015). While it is important to identify interactions that may reveal real

relationships between the outcome and the predictive features, the num-

ber of parameters scales squarely with the number of predictive features.
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1.1 Interaction Estimation, Feature Selection, and Screening

This makes parameter estimation and model prediction very challenging for

problems with large, or even moderate dimensionality.

1.1 Interaction Estimation, Feature Selection, and Screening

Estimating interactions is a challenging problem because the number of

pairwise interactions increases quadratically with the number of covariates.

In the past decade, there has been a surge of interest in interaction estima-

tion in quadratic regression. Roughly speaking, existing interaction estima-

tion procedures can be classified into three categories. In the first category

of low- or moderate-dimensional settings, standard techniques such as the

ordinary least squares can be readily used to estimate all pairwise interac-

tions and main effects. However, this simple one-stage strategy becomes

impractical or even infeasible for moderate- or high-dimensional problems,

owing to the rapid increase in the dimensionality caused by the interac-

tions. In the second category of moderate- or high-dimensional settings,

where feature selection becomes imperative, several one-stage regularization

methods have been proposed, and some of which require either the strong

or the weak heredity assumption; see, for example, Yuan et al. (2009),

Choi et al. (2010), Bien et al. (2013), Lim and Hastie (2015), and Haris

et al. (2016). These regularization methods are computationally feasible
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1.2 Heredity Assumption and Invariance Principle

and the theoretical properties of the resulting estimates are well under-

stood for moderate- or high-dimensional problems. However, in the third

category of ultrahigh-dimensional problems, these regularization methods

are no longer feasible because their implementation requires storing and

manipulating a large-scale design matrix and solving complex constrained

optimization problems. The memory and computational costs are usually

extremely expensive and prohibitive. Several two-stage approaches have

been proposed for both ultrahigh-dimensional regression and classification

problems, including Hao and Zhang (2014), Fan et al. (2015), Hao et al.

(2018), and Kong et al. (2017). Two-stage approaches estimate the main

effects and interactions in two separate stages, which significantly reduces

their computational complexity. However, these two-stage approaches hinge

heavily on either the strong or the weak heredity assumption. These meth-

ods are computationally scalable, but may break down when the heredity

assumption is violated.

1.2 Heredity Assumption and Invariance Principle

Adding an extra layer of flexibility to linear models, quadratic regressions

include both the main effects and the pairwise interactions between the

covariates. Denote Y as the outcome variable and x = (X1, . . . , Xp)
T ∈ Rp
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1.2 Heredity Assumption and Invariance Principle

as the covariate vector. For notational clarity, we define u
def
= E(x) ∈ Rp.

In general, a quadratic regression has the form

E(Y | x) = α + (x− u)Tβ + (x− u)TΩ(x− u), (1.1)

where α ∈ R1, β = (β1, . . . , βp)
T ∈ Rp, and Ω = (Ωk,l)p×p ∈ Rp×p are all

unknown parameters. To ensure model identifiability, we further assume

that Ω is symmetric; that is, ΩT = Ω. Our goal is to estimate β and Ω,

which characterize the main effects and the interactions, respectively. The

intercept α is also useful for prediction.

In the literature, heredity structures (Nelder, 1977; Hamada and Wu,

1992) are widely imposed to avoid the quadratic computational cost of

searching over all pairs of interactions. The heredity structures assume

that the support of Ω can be inferred from the support of β. The strong

heredity assumption requires that an interaction between two covariates be

included in the model only if both main effects are important. The weak

assumption relaxes this constraint, stating that at least one main effect

must be important. The strong and weak heredity structures are defined

as follows:

strong heredity: Ωk,l 6= 0⇒ β2
k > 0 and β2

l > 0,

weak heredity: Ωk,l 6= 0⇒ β2
k + β2

l > 0.
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1.2 Heredity Assumption and Invariance Principle

Using the heredity assumptions, one can first seek a small number of impor-

tant main effects, and then only consider interactions involving these discov-

ered main effects. However, the main effects corresponding to important in-

teractions may be difficult to detect. An example is Y = (1+X1)(1+X2)+ε,

where X1 and X2 are drawn independently from N (−1, 1) and ε is stan-

dard normal. In this example, cov(X1, Y ) = cov(X2, Y ) = 0. The main

effects X1 and X2 are thus unlikely to be detectable by a working linear

model Y = α0 +α1X1 +α2X2 + ε, indicating that the heredity assumptions

do not necessarily facilitate finding interactions by first searching for the

main effects. Ritchie et al. (2001) provided a real-data example to demon-

strate the existence of pure interaction models in practice. Cordell (2009)

raised concerns that many existing methods that depend on the heredity

assumption may miss pure interactions in the absence of main effects.

An ideal quantification of the importance of the main effects and inter-

actions should satisfy the invariance principle with respect to a location-

scale transformation of the covariates. It is a natural and common strategy

to quantify the importance of the main effects and interactions through

the supports of β and Ω in model (1.1). In a conventional linear model,

where only the main effects are present and interactions are absent (i.e.,

Ω = 0p×p in model (1.1)), the invariance principle is satisfied. In contrast,
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1.2 Heredity Assumption and Invariance Principle

in a quadratic regression (1.1) with a general Ω, the invariance principle is

very likely violated. To demonstrate this issue, we recast model (1.1) as

E(Y | x) = (α− uTβ + uTΩu) + xT(β − 2Ωu) + xTΩx. (1.2)

In this model, the importance of the main effects and interactions is natu-

rally characterized through the support of (β − 2Ωu) and Ω, respectively.

This indicates that the interactions are invariant, whereas the main effects

are sensitive to a location transformation. The heredity condition and the

invariance principle are discussed in detail by Hao and Zhang (2017). In

an ultrahigh-dimensional quadratic regression, using a one-stage approach

which simultaneously estimate the main effects and the interactions under

the heredity assumption, or a two-stage approach which searches for main

effects prior to searching for interactions, in model (1.1) or model (1.2)

may lead to quite different conclusions. It is thus desirable to estimate the

interactions directly, without knowing the main effects in advance. Direct

interaction estimation without heredity constraints is, however, to the best

of our knowledge, much more challenging and still unsolved in the literature.

If both β and Ω in model (1.1) are treated as random rather than fixed,

then the strong heredity condition is satisfied almost surely. In this case,

however, the main effects are too weak to be used to search for interactions.
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1.3 Our Contributions

1.3 Our Contributions

We consider interaction estimation in ultrahigh-dimensional quadratic re-

gressions without the heredity assumption. We make at least the following

two important contributions to the literature:

1. We obtain a general and explicit expression for a quadratic regres-

sion with as minimal assumptions as possible. Surprisingly, it turns

out that such an explicit solution relies only on certain moment con-

ditions on the ultrahigh-dimensional covariates, which is satisfied by

the widely used normality assumption. Explicit forms can be derived

for both the main effects and the interactions. Thus, the quadratic

regression can be implemented separately as two independent tasks

relating to the main effects and interactions. Under weaker moment

assumptions, our approach is still valid in detecting the direction of

the true interactions. Our proposed method differs from existing one-

step and two-step procedures in that we do not require the hered-

ity assumption, and we give explicit forms for both the main effects

and the interactions. Estimating the main effects through a separate

working linear model ensures that the resulting estimate satisfies the

desirable invariance principle. We show that our approach to detect-

ing interactions is robust to the estimation of the main effects. Even
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1.3 Our Contributions

when the main effects are not estimated precisely, we are still able to

detect the interactions accurately.

2. We show that the interaction inference is equivalent to a particular

matrix estimation at the population level. We estimate the interac-

tions in matrix form under a penalized convex loss function, which

yields a sparse solution. We establish the consistency of our proposed

estimates when the covariate dimension p grows, approximately, in an

exponential order of the sample size n; specifically, p = o
{

exp(ns−2p )
}

,

where sp is the size of the underlying true model. Compared with the

conventional penalized least squares approach, the penalization of the

matrix form is appealing in terms of both memory storage and com-

putation cost. An efficient algorithm is developed to implement our

procedure. This algorithm fully exploits the cheap computational cost

for the matrix multiplication, and is more efficient than existing pe-

nalized methods. For example, the algorithm can handle the case with

p = 10000 covariates. The developed R package “PIE” is available at

https://github.com/cescwang85/PIE. More details can be found

in the package and the simulation part.

This remainder of this paper is organized as follows. We begin with a

quadratic regression model in Section 2, and derive closed forms for both
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the main effects and the interactions. We propose a direct penalized esti-

mation for a high-dimensional sparse quadratic model. To implement the

proposed method, an efficient alternating direction method of multipliers

(ADMM) algorithm is provided. We also study the theoretical properties

of our proposed estimates. We illustrate the performance of the proposed

method, using simulations in Section 3, and an application to a real-world

problem in Section 4. Section 5 concludes the paper. All technical details

and additional simulations are deferred to the Supplementary Material.

The following notation is used throughout the remainder of the paper.

For a real p× q matrix Ap×q = (Ak,l)p×q, let λmax(A) and λmin(A) denote

its maximum and minimum singular values, respectively. Let ‖A‖F
def
=

{tr(ATA)}1/2 be the Frobenius norm, ‖A‖ be the spectral norm, and tr(·)

be the trace operator of A. We further define

‖A‖∞
def
= max

1≤k≤p,1≤l≤q
|Ak,l|, ‖A‖1

def
=

p∑
k=1

q∑
l=1

|Ak,l|, and ‖A‖L
def
= max

1≤k≤p

q∑
l=1

|Ak,l|.

2. THE ESTIMATION PROCEDURE

2.1 The Rationale

In this section, we discuss how to estimate β and Ω, which characterize the

main effects and the interactions, respectively, in model (1.1). Note that

β = E {∂E(Y | x)/(∂x)} and Ω = E {∂2E(Y | x)/(∂x∂xT)}
/

2. There-
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2.1 The Rationale

fore, estimating β and Ω amounts to estimating E {∂E(Y | x)/(∂x)} and

E {∂2E(Y | x)/(∂x∂xT)}, respectively. However, this is not straightfor-

ward, especially when x is ultrahigh dimensional. To illustrate the ratio-

nale of our proposal, we assume for now that x follows N (u,Σ). It follows

immediately from Stein’s Lemma (Stein, 1981; Li, 1992) that

E {∂E(Y | x)/(∂x)} = Σ−1cov(x, Y ) and

E {∂2E(Y | x)/(∂x∂xT)} = Σ−1ΛyΣ
−1,

where Λy
def
= E

[
{Y − E(Y )} (x−u)(x−u)T

]
. Define r

def
= Y −E(Y )− (x−

u)Tβ, which is the residual obtained by regressing Y on x linearly. The

Hessians of E(Y | x) and E(r | x) are equal. Accordingly, we have

E
{
∂2E(Y | x)/(∂x∂xT)

}
= E

{
∂2E(r | x)/(∂x∂xT)

}
.

By Stein’s Lemma, we can obtain that

E
{
∂2E(r | x)/(∂x)(∂xT)

}
= Σ−1ΛrΣ

−1,

where Λr
def
= E {r(x− u)(x− u)T}. This indicates that, if x is normal, we

have explicit forms for β and Ω. Specifically,

β = Σ−1cov(x, Y ), and Ω = Σ−1ΛΣ−1
/

2,

where Λ stands for either Λy or Λr.
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2.1 The Rationale

Note that the normality assumption is widely used in the literature on

interaction estimation; see, for example, Hao and Zhang (2014), Simon and

Tibshirani (2015), Bien et al. (2015), and Hao et al. (2018). In the present

context, we show that the normality assumption can be relaxed.

Proposition 1. Suppose x is drawn from the factor model x = Γ0z + u,

where Γ0 satisfies Γ0Γ
T

0 = Σ > 0 and z
def
= (Z1, . . . , Zq)

T, where Z1, · · · , Zq

are independent and identically distributed (i.i.d.), with E(Zk) = 0, E(Z2
k) =

1, E(Z3
k) = 0 and E(Z4

k) = ∆. We further assume either (C1): ∆ = 3 or

(C2): diag(ΓT

0ΩΓ0) = 0. Then, the parameters α, β, and Ω in model (1.1)

have the following explicit forms:

α = E(Y )− tr(Σ−1Λ)
/

2, β = Σ−1cov(x, Y ), and Ω = Σ−1ΛΣ−1
/

2.(2.3)

The factor model is widely assumed in random matrix theory (Bai and

Saranadasa, 1996) and high-dimensional inference (Chen et al., 2010), where

higher-order moment assumptions of x are required. The moment condi-

tions on z play an important role in deriving an explicit form for Ω. Con-

dition (C1) is satisfied if x is normal. When Γ0 = Ip×p, condition (C2)

requires the absence of quadratic terms of the form X2
k in model (1.1); that

is,

E(Y | x) = α + xTβ +
∑
i6=j

Ωi,jXiXj,
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2.1 The Rationale

where X1, · · · , Xp are i.i.d.

We provide two explicit forms for estimating Ω. One is based on the

response Y , and the other is based on the residual r. The difference between

Λy and Λr is that we remove the main effects in Λr, or equivalently, the

linear trend in model (1.1), before we estimate the interactions Ω. It is

natural to expect that the residual-based Λr is superior to the response-

based Λy in that the sample estimate of Λr has less variability than that

of Λy (Cheng and Zhu, 2017). In effect, we can replace β with an arbitrary

β̃ ∈ Rp, which yields r̃
def
= Y − E(Y ) − (x − u)Tβ̃. Similarly, we can

define Λr̃
def
= E {r̃(x− u)(x− u)T}. Under the normality assumption, x is

symmetric about u and, hence, Λr = Λr̃. This ensures that, to estimate Ω

accurately, the proposed method does not hinge on the sparsity of the main

effects because we do not require β to be estimated consistently. Even

if the main effects are not sufficiently sparse or are not estimated very

accurately, we can directly use the response-based method Σ−1ΛyΣ
−1 or

the residual-based method Σ−1Λr̃Σ
−1, which uses a lousy residual r̃ =

Y − E(Y ) − (x − u)Tβ̃, and β̃ can be a lousy estimate of β. In effect Λy

equals Λr̃ by setting β̃ = 0p×1 in r̃. This makes the proposed method quite

different from existing procedures, which assume the heredity conditions

and require an accurate estimate of the main effects in order to recover the
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2.2 Interaction Estimation

interactions. In contrast, the proposed method does not require that we

estimate the main effects precisely. We illustrate this phenomenon using

simulations in Section 3.

2.2 Interaction Estimation

We showed that both β and Ω have explicit forms under moment conditions

in Section 2.1. In particular, β = Σ−1cov(x, Y ) and Ω = Σ−1ΛΣ−1/2 for

Λ being Λy or Λr. In this section, we discuss how to estimate Σ−1cov(x, Y )

and Σ−1ΛΣ−1 at the sample level. Estimating Σ−1cov(x, Y ) is straightfor-

ward by noting that it is a solution to the minimization problem

arg min
b

E{Y − E(Y )− (x− u)Tb}2.

Therefore, we can simply estimate Σ−1cov(x, Y ) using the penalized least

squares by regressing {Y − E(Y )} on the ultrahigh-dimensional covari-

ates (x − u) linearly. We do not provide details about how to estimate

Σ−1cov(x, Y ) because the penalized least squares estimation is well docu-

mented (Tibshirani, 1996; Fan and Li, 2001). Throughout our numerical

studies, we use the LASSO (Tibshirani, 1996) to estimate β. The resulting

solution is denoted by β̂.

In what follows, we concentrate on how to estimate Σ−1ΛΣ−1/2, where
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2.2 Interaction Estimation

Λ can be Λy or Λr. For an arbitrary matrix B = (Bk,l)p×p, we have

Ω = arg min
B

[
tr(B−Σ−1ΛΣ−1

/
2)T(B−Σ−1ΛΣ−1

/
2)
]

= arg min
B

[
tr(B−Σ−1ΛΣ−1

/
2)TΣ(B−Σ−1ΛΣ−1

/
2)Σ

]
,

and

tr(B−Σ−1ΛΣ−1
/

2)TΣ(B−Σ−1ΛΣ−1
/

2)Σ

= tr(BTΣBΣ)− tr(BΛ) + tr(Σ−2Λ2)/4.

Ignoring the constant, the term tr(BTΣBΣ) − tr(BΛ) quantifies the dis-

tance between B and Σ−1ΛΣ−1
/

2. Therefore, to seek a p×p matrix B that

can approximate Σ−1ΛΣ−1
/

2 very well, it suffices to consider the following

minimization problem:

arg min
B

[
tr(BTΣBΣ)− tr(BΛ)

]
, (2.4)

as long as we have faithful estimates of Σ and Λ. The above loss function

in matrix form is convex, which guarantees that the local minimum must

be a global minimum.

To construct faithful estimates for Σ and Λ, we suppose {(xi, Yi), i =

1, . . . , n} is a random sample of (x, Y ). Denote

x
def
= n−1

n∑
i=1

xi, Y
def
= n−1

n∑
i=1

Yi, Σ̂
def
= n−1

n∑
i=1

(xi − x) (xi − x)T ,

Λ̂y
def
= n−1

n∑
i=1

(Yi − Y ) (xi − x) (xi − x)T , Λ̂r
def
= n−1

n∑
i=1

r̂i (xi − x) (xi − x)T ,
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2.3 Implementation

where r̂i
def
= Yi − Y − (xi − x)Tβ̂. We propose the following penalized

interaction estimation (PIE) to estimate Ω, for Λ̂ being Λ̂y or Λ̂r:

PIE: Ω̂ = arg min
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂) + λn‖B‖1, (2.5)

where λn is a tuning parameter and ‖B‖1 =
p∑

k=1

p∑
l=1

|Bk,l|. To ease subse-

quent illustration, we further define the following notation:

PIEy: Ω̂y = arg min
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂y) + λ1n‖B‖1, (2.6)

PIEr: Ω̂r = arg min
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂r) + λ2n‖B‖1. (2.7)

2.3 Implementation

In this section, we develop an efficient algorithm to solve (2.5), which in-

cludes (2.6) and (2.7) as special cases. We rewrite the problem as

min
B∈Rp×p

tr(BTΣ̂BΣ̂)− tr(BΛ̂) + λn‖Ψ‖1, such that Ψ = B, (2.8)

which motivates us to form the augmented Lagrangian as

L(B,Ψ,L) = tr(BTΣ̂BΣ̂)− tr(BΛ̂) + λn‖Ψ‖1

+tr {L(B−Ψ)}+ (ρ/2)‖B−Ψ‖2F , (2.9)

where ρ > 0 is a step size parameter. By the standard ADMM (Boyd

et al., 2011), the augmented Lagrangian (2.9) can be solved by successively
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2.3 Implementation

updating (B,Ψ,L):

The B step: Bk+1 = arg min
B∈Rp×p

L(B,Ψk,Lk), (2.10)

The Ψ step: Ψk+1 = arg min
Ψ∈Rp×p

L(Bk+1,Ψ,Lk), (2.11)

The L step: Lk+1 = Lk + ρ(Bk+1 −Ψk+1). (2.12)

Define the elementwise soft thresholding operator soft(A, λ)
def
= {max(Ak,l−

λ, 0)}p×p. For the Ψ step, given Bk+1, Lk, ρ, and λn, the solution is

Ψk+1 def
= soft(Bk+1 + ρ−1Lk, λn/ρ).

The B step amounts to solving the equation

2Σ̂Bk+1Σ̂ + ρBk+1 = Λk, (2.13)

where Λk def
= Λ̂ − Lk + ρΨk. We make a singular value decomposition

to obtain Σ̂ = UD0U
T, where U ∈ Rp×m, m = min(n, p), and D0

def
=

diag(d1, · · · , dm) is a diagonal matrix. Define D
def
= (Dk,l)p×p, where Dk,l

def
=

2dkdl/(2dkdl + ρ). Given Ψk, Lk, and ρ, the solution to (2.13) is given by

Bk+1 = ρ−1Λk − ρ−1U{D ◦ (UTΛkU)}UT,

where ◦ denotes the Hadamard product.

The algorithm is summarized in Algorithm 1. This algorithm yields a

symmetric estimate of Ω, which is denoted by Ω̂. The computational com-

plexity of each iteration is no more than O{min(n, p)p2}, and the memory
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2.3 Implementation

requirement is no more than O(p2) because we only need to store a few

p× p or p×min(n, p) matrices in computer memory.

As a first-order method for convex problems, the convergence analysis of

the ADMM algorithm under various conditions has been well documented in

the recent optimization literature; see, for example, Nishihara et al. (2015),

Hong and Luo (2017), and Chen et al. (2017). The following lemma states

the convergence of our proposed ADMM algorithm.

Lemma 1. Given Σ̂ and Λ̂, suppose that the ADMM algorithm (2.10)-

(2.12) generates a sequence of solutions {(Bk,Ψk,Lk), k = 1, . . .}. Then,

{(Bk,Ψk), k = 1, . . .} converges linearly to the minimizer of (2.8), and

‖Bk −Ψk‖F converges linearly to zero, as k →∞.

It remains to choose an appropriate tuning parameter for PIEy or PIEr.

Motivated by Efron et al. (2004), we use PIE to find a sparse model, but not

to estimate the coefficients. For a given λn, we fit a least squares estimation

on the support of Ω̂ estimated by PIEy or PIEr, which yields the residual

sum of squares. We choose λn that minimizes the Bayesian information

criterion (BIC). Our limited experience indicates that this procedure is

very fast and effective.
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2.3 Implementation

Algorithm 1 ADMM algorithm for solving (2.5)

Initialization:

1: Input {(xi, Yi), i = 1, · · · , n}, the tuning parameter λn and ρ;

2: Calculate Λ̂ and the singular value decomposition of the centered

design matrix (x1 − x, · · · ,xn − x)p×n to get Σ̂ = UD0U
T, where

U ∈ Rp×m, D0 = diag{d1, . . . , dm}, and m = min(n, p);

3: Define D
def
= (Dk,l)m×m, where Dk,l = 2dkdl/(2dkdl + ρ);

4: Start from k = 0, L0 = 0p×p,B
0 = 0p×p.

Iteration:

5: Define Λk def
= Λ̂ − Lk + ρBk. Update Bk+1 = ρ−1Λk − ρ−1U{D ◦

(UTΛkU)}UT;

6: Update Ψk+1 def
= soft(Bk+1 + ρ−1Lk, λn/ρ);

7: Update Lk+1 def
= Lk + ρ(Bk+1 −Ψk+1);

8: Update k = k + 1;

9: Repeat step 5 through step 8 until convergence.

Output: Ω̂ = Bk+1.
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2.4 Asymptotic Properties

2.4 Asymptotic Properties

For notational clarity, we denote the support of Ω = (Ωk,l)p×p by S def
=

{(k, l) : Ωk,l 6= 0}, the complement of S by Sc, and the cardinality of S by

sp
def
= ‖Ω‖0. Similarly, we denote by Ŝy and Ŝr the respective support of

Ω̂y and Ω̂r, and by Ŝcy and Ŝcr the respective complement of Ŝy and Ŝr. We

further define Γ
def
= Σ⊗Σ, M

def
= ‖Γ−1S,S‖L, and κ

def
= 1−‖ΓSc,SΓ−1S,S‖L, where

ΓS,S is a submatrix of Γ with rows and columns indexed by S, and ΓSc,S

is a submatrix of Γ with rows and columns indexed respectively by Sc and

S. Denote c0, C0, c1, C1, . . . as a sequence of generic constants, which may

take different values at various places. We assume the following regularity

conditions in order to study the asymptotic properties of Ω̂y and Ω̂r.

(A1): Assume c−10 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0, where λmin(Σ) and λmax(Σ)

are the respective smallest and largest eigenvalues of Σ.

(A2): Assume Xk is sub-Gaussian; that is, E{exp(c0|eTx|2)} ≤ C0 <∞, for

any unit-length vector e.

(A3) Assume E{exp(c1|Y |α)} ≤ C1 <∞, for some 0 < α ≤ 2.

(A4) Assume the irrepresentability condition holds; that is, κ > 0.

(A5) Assume x is symmetric about u.
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2.4 Asymptotic Properties

Conditions (A1) and (A2) are widely assumed in the literature. Condi-

tion (A3) is assumed to control the tail behavior of Y through concen-

tration inequalities. Condition (A4) is analog, but not identical, to the

irrepresentability condition used to establish model selection consistency in

the LASSO. In our context, the irrepresentability condition is imposed on

Γ
def
= Σ ⊗Σ because the interaction effects are included. This condition is

also used to study the model consistency of the graphical LASSO (Raviku-

mar et al., 2011; Zhang and Zou, 2014; Liu and Luo, 2015). In contrast,

if the linear effects are of primary interest, the irrepresentability condition

is imposed on Σ; see, for example, Zhao and Yu (2006) and Zou (2006).

Condition (A5) is assumed to ensure the consistency of residual-based ap-

proaches.

Theorem 1. Let λ1n
def
= c1{n−α/(α+1) log(p)}1/2 for sufficiently large c1, and

assume sp{n−1 log(p)}1/2 → 0. Under conditions (A1)-(A4),

(i) if we further assume min
(k,l)∈S

|Ωk,l| > c2Mλ1n for sufficiently large c2,

then pr
(
Ŝy = S

)
= 1−O(p−1).

(ii) pr
(
‖Ω̂y −Ω‖∞ ≤ c3λ1nM

)
= 1−O(p−1), for sufficiently large c3.

(iii) pr
(
‖Ω̂y −Ω‖F ≤ c4s

1/2
p λ1nM

)
= 1−O(p−1), for sufficiently large c4.

Theorem 1 shows that, as long as the signal strength of the interactions
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2.4 Asymptotic Properties

is not too small, the proposed method can identify the support correctly

with a very high probability. In other words, Ω̂y is asymptotically selection

consistent. Theorem 1 also shows that Ω̂y is a consistent estimate of Ω

under both the infinity norm and the Frobenius norm.

Theorem 2. Let λ2n
def
= c5{n−α/(α+1) log(p)}1/2 + c5‖β̂ − β‖1{log(p)/n}1/2

for sufficiently large c5, and assume that sp{n−1 log(p)}1/2 → 0. Under the

conditions (A1)-(A5),

(i) if we further assume min
(k,l)∈S

|Ωk,l| > c6Mλ2n for sufficiently large c6,

then pr
(
Ŝr = S

)
= 1−O(p−1).

(ii) pr
(
‖Ω̂r −Ω‖∞ ≤ c7λ2nM

)
= 1−O(p−1), for sufficiently large c7.

(iii) pr
(
‖Ω̂r −Ω‖F ≤ c8s

1/2
p λ2nM

)
= 1−O(p−1), for sufficiently large c8.

Theorem 2 shows that Ω̂r, as well as Ω̂y, possesses both selection and

estimation consistency asymptotically. Moreover, the convergence rate of

Ω̂r depends on β̂. If ‖β̂ − β‖1 = o{n1/(2α+2)}, the convergence rate term

involving β̂ will be absorbed in the first term of Theorem 2. In other words,

unless the estimation error of β̂ diverges faster than n1/(2α+2), Ω̂r and Ω̂y

share the same convergence rate.
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3. SIMULATIONS

In this section, we conduct simulations to evaluate the performance of our

proposed method and compare it with that of the RAMP method (Hao

et al., 2018) and the all-pairs-LASSO (Bien et al., 2013), which fits a LASSO

model on all p main effects and p(p + 1)/2 interactions. Hao et al. (2018)

claimed that the RAMP outperforms other methods, such as the iFOR (Hao

and Zhang, 2014) and hierNet (Bien et al., 2013), under heredity assump-

tions. Therefore, we do not include iFOR and hierNet in our comparison.

In what follows, we refer to the RAMP method under the strong hered-

ity condition as “RAMPs,” and that under the weak heredity condition as

“RAMPw.” We also include the oracle estimate as a benchmark, which as-

sumes that the main effects and the support of the interactions are known

in advance. The oracle estimate simply fits the least squares estimation

on the support of the interactions using the truly important main effects.

We denote it as “Oracle.” The RAMP and all-pairs-LASSO methods are

implemented by the R packages “RAMP” and “glmnet,” (Friedman et al.,

2010) respectively.

To ease illustration, we denote the estimate of Ω by Ω̂, obtained with

different approaches. We evaluate the accuracy of the estimation using

five criteria: the support recovery rate, denoted by “rate”; the Frobenius
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loss, denoted by “loss”; the number of interactions estimated as nonzero,

denoted by “size”; and the exact support recovery rate, denoted by “exact.”

Specifically, the criteria are defined as follows:

rate
def
= B−1

B∑
b=1

∑
l≤k

I(Ω̂
(b)

k,l 6= 0,Ωk,l 6= 0)
/∑

l≤k

I(Ωk,l 6= 0)× 100%,

loss
def
= B−1

B∑
b=1

‖Ω̂
(b)
−Ω‖F , size

def
= B−1

B∑
b=1

∑
l≤k

I(Ω̂
(b)

k,l 6= 0), and

exact
def
= B−1

B∑
b=1

I
(
Ŝ(b) = S

)
,

where S and Ŝ are the supports of Ω and Ω̂, respectively, the superscript (b)

stands for the bth replication, the subscript k,l stands for the (k, l)th entry

of the associated matrix, I(E) is an indicator function, equal to one if the

random event E is true, and zero otherwise. The closer “rate” is to one,

“loss” is to zero, “size” is to the number of truly important interactions,

and “exact” is to one, the better the performance a proposal exhibits.

We consider the following four models:

Y = X1 +X6 +X10 + 2X1X6 +X2
6 + 2X6X10 + ε, (3.14)

Y = X6 + 2X1X6 +X2
6 + 2X6X10 + ε, (3.15)

Y = X1 +X2 + 2X1X6 +X2
6 + 2X6X10 + ε, (3.16)

Y = 2X1X6 +X2
6 + 2X6X10 + ε. (3.17)

The strong heredity condition holds in (3.14), and the weak heredity con-
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3.1 Estimation Accuracy

dition holds in (3.15). Neither the strong nor the weak heredity condition

holds in (3.16) or (3.17). In particular, (3.17) is a pure interaction model.

We replicate each scenario B = 100 times to evaluate the performance of

the proposals.

3.1 Estimation Accuracy

We draw x independently from N (0p×1,Σ), where Σ = (0.5|k−l|)p×p, and

generate an independent error ε from N (0, 1). We set the sample size

n = 200 and the dimension p = 100 or 200.

The simulation results for models (3.15) and (3.17) are shown in Table

1; those for models (3.14) and (3.16) are shown in Table 1 of the Sup-

plementary Material. The proposed method exhibits stable performance

across almost all scenarios. Not surprisingly, the RAMP method with the

strong heredity condition, denoted by RAMPs, completely fails in models

(3.15)-(3.17), where the strong heredity condition is violated. In addition,

the RAMP method with weak heredity condition, denoted by RAMPw,

fails in models (3.16)-(3.17), where the weak heredity condition is violated.

The RAMP method exhibits satisfactory performance when the required

heredity condition is satisfied. In particular, RAMPs performs quite well in

model (3.14). For models (3.15)-(3.17), the oracle estimate has the smallest
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3.2 Estimation of Main Effects

Frobenius loss, followed by our proposed method. Our method outperforms

the all-pairs-LASSO in terms of the Frobenious loss and model size. For

the pure interaction model (3.17), where no main effects are present, fit-

ting a linear regression to obtain the residuals very likely introduces some

redundant bias. It is thus not surprising to see that our proposed response-

based procedure (PIEy) slightly outperforms our residual-based procedure

(PIEr).

3.2 Estimation of Main Effects

In this section, we evaluate how the estimation of the main effects affects the

estimation of the interactions. Both our proposed residual-based penalized

interaction estimation and the RAMP method are relevant to estimating

the main effects. To fix the signal-to-noise ratio for all settings, we simply

draw the covariates x = (X1, . . . , Xp)
T from N (0, Ip×p), and consider the

following quadratic model:

Y = d−1/2
(
X1 +X6 +X10 +Xk1 + · · ·+Xkd−3

)
+2X1X6 +X2

6 + 2X6X10 + ε.

The number of main effects is increased from d = 3 to 48. We always

include X1, X6, and X10 to ensure that the strong heredity condition holds.

We also randomly choose Xk1 , . . . , Xkd−3
from X11, . . . , Xp. Figure 1 reports

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0081



3.2 Estimation of Main Effects

Table 1: The averages (and standard deviations) of the support recovery

rate (“rate”), Frobenius loss (“loss”), model size (“size”), and exact support

recovery rate (“exact”) for models (3.15) and (3.17). Simulation results for

models (3.14) and (3.16) are given in the Supplementary Material.

p PIEy PIEr RAMPs RAMPw all-pairs-LASSO Oracle

model (3.15) where the weak heredity condition is satisfied

100 rate 98.67(6.56) 99.33(4.69) 40.67(26.20) 91.33(27.88) 100.00(0.00) 100.00(0.00)

size 4.19(3.03) 3.73(2.11) 1.67(1.51) 3.91(3.39) 7.38(6.40) 3.00(0.00)

loss 0.24(0.20) 0.18(0.16) 1.81(0.55) 0.30(0.68) 0.41(0.11) 0.09(0.05)

exact 0.57(0.50) 0.70(0.46) 0.06(0.24) 0.75(0.43) 0.16(0.37) 1.00(0.00)

200 rate 99.00(5.71) 99.00(5.71) 29.67(23.16) 77.67(41.32) 100.00(0.00) 100.00(0.00)

size 3.99(2.44) 3.42(1.08) 1.12(1.22) 4.09(4.34) 6.08(4.59) 3.00(0.00)

loss 0.23(0.21) 0.19(0.19) 1.98(0.40) 0.62(0.97) 0.45(0.11) 0.09(0.04)

exact 0.65(0.48) 0.73(0.45) 0.03(0.17) 0.68(0.47) 0.29(0.46) 1.00(0.00)

model (3.17) is a pure interaction model where the heredity conditions are violated

100 rate 99.67(3.33) 100.00(0.00) 11.67(24.33) 31.67(44.79) 100.00(0.00) 100.00(0.00)

size 4.18(4.24) 4.24(4.22) 0.71(1.58) 3.00(4.92) 5.57(3.86) 3.00(0.00)

loss 0.13(0.12) 0.13(0.09) 2.11(0.41) 1.64(1.01) 0.42(0.11) 0.09(0.04)

exact 0.72(0.45) 0.72(0.45) 0.03(0.17) 0.23(0.42) 0.27(0.45) 1.00(0.00)

200 rate 100.00(0.00) 100.00(0.00) 9.67(20.26) 24.33(41.26) 100.00(0.00) 100.00(0.00)

size 3.45(1.00) 3.49(0.99) 0.51(1.21) 2.95(5.49) 5.46(5.27) 3.00(0.00)

loss 0.11(0.06) 0.12(0.07) 2.15(0.21) 1.78(0.91) 0.44(0.11) 0.09(0.04)

exact 0.72(0.45) 0.69(0.46) 0.00(0.00) 0.18(0.39) 0.45(0.50) 1.00(0.00)
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3.2 Estimation of Main Effects

the support recovery rate of Ω̂ and the Frobenius loss of ‖Ω̂−Ω‖F .

It can be clearly seen that, as the number of main effects increases from

d = 3 to 48, both RAMPs and RAMPw deteriorate gradually in terms of

both criteria, indicating that the RAMP method requires an accurate es-

timate of the main effects. For the all-pairs-LASSO, the support recovery

rate appears very stable, while the Frobenius loss becomes worse when d

increases. In contrast, our method is very robust to the number of main

effects. When the number of main effects increases, PIEy is slightly bet-

ter than PIEr in terms of the Frobenius loss. These findings confirm our

theoretical results in Theorem 2 because β̂ becomes worse when d increases.
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Figure 1: The vertical axis is the support recovery rate (left) and the Frobe-

nius loss (right) of Ω̂, and the horizontal axis is the number of main effects.
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4. AN APPLICATION

In this section, we apply our method to the red wine data set that is

publicly available at https://archive.ics.uci.edu/ml/datasets/Wine+

Quality. The data consist of 11 measurements of several chemical con-

stituents, including the determination of the density, alcohol, or pH values

for 1599 red wine samples from the northwest region of Portugal. The re-

sponse variable is the median of the scores evaluated by human experts,

and each score ranges from 0 (very bad) to 10 (very excellent). The same

data set was analyzed by Cortez et al. (2009). In their analysis, interactions

are found to be very helpful for prediction. The sample size n = 1599 and

the covariate dimension p = 11. Following Radchenko and James (2010),

we standardize all variables and conduct two experiments:

• Experiment 1. In addition to the original 11 covariates X1, . . . , X11,

we add 100 noise variables X12, . . . , X111, among which the first 50

are generated from the standard normal distribution, and the rest are

generated from the uniform distribution on the interval [−
√

3,
√

3].

• Experiment 2. We generate the covariates in the same way as in

Experiment 1 and modify the response variable Y by adding two more

interactions: Y + 0.5X12X13 + 0.5X61X62. In this experiment, both
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the strong and the weak heredity conditions are violated.

In both experiments the covariate dimension is updated to p = 111, leading

to 111 × 100/2 = 6, 105 possible interactions. We randomly select 400

observations as the sample, and the procedure is repeated 100 times. The

heat map of the frequencies of the identified interactions are summarized

in Figure 2. It can be clearly seen that, in Experiment 1, the selected

interactions mainly occur among the first 11 covariates collected in the

original data set while the interactions related to the remaining 100 noisy

covariates are rarely detected. This indicates that both PIEy and PIEr are

able to exclude irrelevant interactions. In Experiment 2, both methods are

able to exclude irrelevant interactions with high probability. In addition,

the interactions X12X13 and X61X62 are successfully identified throughout.

We further compare our proposed PIEy and PIEr with the all-pairs-

LASSO in terms of prediction. We randomly split the observations into

two halves. We use the first half as a training sample and the second as

a test sample. We fit quadratic regressions using the training sample and

perform a prediction using the test sample. To implement the PIEy and

PIEr, we follow Example 1 and generate 100 additional noise covariates.

To implement the all-pairs-LASSO, we use the original 11 covariates only.

We record the averages of the squared prediction errors for each random
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Figure 2: Heat maps of the frequency of the interactions identified out of

100 replications using PIEy and PIEr. Upper panel: Experiment 1. Lower

panel: Experiment 2.
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split. Table 2 summarizes the mean and standard deviation of the squared

prediction errors and the model sizes based on 100 replications. Compared

with the all-pairs-LASSO, which includes around seven interactions, the

PIEy and PIEr both include fewer than four interactions and yield models

that are more parsimonious. In terms of the prediction performance, the

PIEy and PIEr are both comparable with the all-pairs-LASSO method.

Table 2: The prediction performance on the red wine data set. The PIEy

and the PIEr are both fitted with 100 additional noise covariates, while the

all-pairs-LASSO is fitted with only 11 original covariates.

PIEy PIEr all-pairs-LASSO

prediction error 0.706(0.035) 0.702(0.034) 0.671(0.032)

model size 3.600(1.980) 3.640(1.580) 7.020(1.880)

5. CONCLUSION

In this paper, we have proposed a penalized estimation for detecting in-

teractions without requiring heredity conditions. We developed an efficient

ADMM algorithm to implement our estimation, and demonstrated the ef-

fectiveness of our method using numerical studies. Note that if the strong
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or the weak heredity condition is satisfied, some existing methods, such as

the RAMP method, may work relatively well, as long as the main effects

are sufficiently strong. However, if the main effects are too weak to be

detectable, the performance of existing methods that require the heredity

assumptions may deteriorate. Our proposed method is highly robust to a

violation of the heredity assumptions, because the estimation of the inter-

action is separable from the estimation of the main effect. Even with a

lousy estimate of the main effects, we are still able to estimate the interac-

tions consistently. When we have little prior information about whether the

heredity condition holds in an application, we advocate using our method

because it does not require this assumption. If the heredity condition is

known to be satisfied, we can incorporate this into our method through a

two-stage procedure. In the first stage, we use the penalized least squares

to identify the main effects. In the second stage, we implement our proce-

dure using only the main effects selected in the first stage. This allows us

to handle ultrahigh-dimensional problems efficiently. Moreover, it would be

interesting to combine our proposed method with screening procedures such

as the SIRI (Jiang and Liu, 2014) in order to further improve its estimation

efficiency.

Supplementary Material
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