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Abstract:

Accurate risk prediction models play a key role in precision medicine, where op-

timal individualized disease prevention and treatment strategies can be formed

based on predicted risks. In many clinical settings, it is of great interest to pre-

dict the τ -year risk of developing a clinical event using baseline covariates. Such

τ -year risk models can be estimated by fitting standard survival models, includ-

ing the Cox proportional hazards model and the more flexible τ -year specific

generalized linear model (τ -GLM). However, an efficient and robust estimation

of the risk model is challenging under heavy censoring and potential model mis-

specification. Intermediate outcomes observed prior to censoring can be highly

predictive of the outcome and, thus, may be used to improve the efficiency of

the model estimation. However, existing augmentation methods either do not

allow intermediate outcomes to be subject to censoring, or exhibit limited effi-

ciency gains. Here, we propose a two-step augmentation method to improve the

estimation of the τ -year risk model by leveraging longitudinally collected inter-
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Efficient τ -year Risk Prediction Model 2

mediate outcome information that is subject to censoring. Our method allows

for the easy incorporation of regularization to accommodate moderate covariate

sizes and rare events. We also propose resampling methods to assess the variabil-

ity of our proposed estimators. Our numerical studies show that the proposed

point and interval estimation procedures perform well in a finite sample. We

also demonstrate that our proposed estimators are substantially more efficient

than existing methods. Finally, we illustrate the proposed methods using data

from the Diabetes Prevention Program, a randomized clinical trial on high-risk

subjects.

Key words and phrases: Efficiency augmentation, Intermediate outcomes, Model

misspecification, Risk prediction, Robustness, Survival.

1. Introduction

Developing accurate risk prediction models is an important task in

translational medicine research. Disease prevention and treatment strate-

gies can be tailored to individual patients based on the risks predicted by

such models. For disease prognosis and prevention, it is often of interest to

predict the τ -year risk of experiencing a clinical event using baseline clini-

cal and biomarker information. Such τ -year risk models can be estimated

by fitting a wide range of survival models, including the Cox proportional

hazards model (Cox, 1972) and the more flexible τ -year specific general-

ized linear model (τ -GLM) (Uno et al., 2007). However, an efficient and
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robust estimation of the risk model is challenging under heavy censoring

and possible model misspecification. Under a model misspecification, the

partial likelihood estimator for the Cox model converges to a quantity that

depends on the censoring distribution (Van Houwelingen, 2007; Cai and

Cheng, 2008). This leads to reproducibility issues because the censoring

distribution is almost always study dependent. To derive a robust risk

model, Uno et al. (2007) proposed an inverse probability weighted (IPW)

estimator for τ -GLM, such that the model parameters are always conver-

gent to meaningful quantities that are free of the censoring distribution.

However, the IPW estimator suffers from low efficiency in heavy censoring

settings because it discards information from subjects who are censored

before τ .

To improve the estimation efficiency under general survival settings,

various augmentation procedures have been proposed in the literature that

leverage auxiliary baseline covariates or intermediate outcomes. For exam-

ple, Robins, Rotnitzky, and Zhao (1994) employed alternative estimators

for the censoring weights to improve the efficiency of the IPW estimators.

The doubly robust augmented IPW (AIPW) method provides protection

against misspecification of the weights, and could potentially improve the

estimation efficiency by further employing outcome imputations (Scharf-
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stein, Rotnitzky, and Robins, 1999; Bang, 2005; Tsiatis, 2006). DiRienzo

(2009) incorporated the AIPW method to estimate the τ -GLM, augment-

ing an estimating function involving outcome imputation to achieve double

robustness. However, the AIPW estimators may attain little, or even a

negative efficiency gain when the outcome model is misspecified. In ad-

dition, these existing methods tend to perform poorly when the number

of baseline covariates and intermediate outcomes is not small. Zhang and

Cai (2017) proposed a two-step imputation-based procedure that incorpo-

rates auxiliary information, including post-baseline outcomes, to improve

the efficiency. The method requires that the auxiliary predictors be fully

observed. However, in cohort studies or clinical trials, post-baseline inter-

mediate outcomes are often not observable after subjects experience either

the primary outcome or censoring. It is not straightforward to adapt the

method to the present setting of a τ -GLM estimation, with the additional

complication of intermediate outcomes being missing for those who are no

longer at risk.

In this paper, we propose robust imputation-based methods to improve

the estimation of τ -GLM model parameters. These methods effectively

incorporate intermediate outcomes that are subject to censoring, while al-

lowing both the τ -GLM and the imputation models to be misspecified. Our
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2. METHODS5

method can also easily employ regularization to control for overfitting when

the number of augmentation variables is not small. When the post-baseline

covariates are measured at multiple time points, we further develop a sys-

tematic approach to optimally combine several estimators in order to max-

imize efficiency. The rest of the manuscript is organized as follows. Section

2 describes the estimation and inference procedure. Section 3 presents our

simulation results, demonstrating the consistency and efficiency gain of the

proposed estimator. Section 4 illustrates the proposed method using data

from the Diabetes Prevention Program, a placebo-controlled randomized

clinical trial investigating whether a change of lifestyle or taking metformin

prevents type 2 diabetes among high-risk adults. Concluding remarks are

given in Section 5.

2 Methods

Let T † be a continuous failure time, and X = (X1 = 1, X2, ..., Xp)
T be a p×1

vector of bounded baseline predictors. Our goal is to develop an accurate

and robust risk prediction model for Yτ = I(T † ≤ τ) at some prespecified

time τ , based on X. We propose constructing the prediction model for Yτ

by fitting the following τ -GLM working model:

Pr(T † ≤ τ |X) = Pr(Yτ = 1|X) = g(βTX), (2.1)
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2. METHODS6

where g(·) is a known smooth probability distribution function, and β is a

p-dimensional vector of unknown parameters. For simplicity, we focus on

the logistic link with g(x) = ex/(1+ex) throughout, although the procedure

can be modified easily to accommodate other link functions. We allow β

to depend on τ , but suppress τ for notational ease.

In addition to the event time and baseline covariates, q-dimensional

intermediate outcomes, denoted by S, are collected over time. Without

loss of generality, we assume that S is measured at K visit times, for

0 < t1 < · · · < tK < τ , and let ~S = (ST
t1
, ...,ST

tK
)T, where St denotes S mea-

sured at time t. Owing to censoring, for T †, we only observe T = min(T †, C)

and δ = I(T † ≤ C), where C is the censoring time, assumed to be inde-

pendent of (T †, ~ST,XT) with a common survival function G(·). We allow

St to be missing for those who have censored or experienced the event by

t, but assume that St is observable when T > t. The underlying data

consist of n independent and identically distributed (i.i.d.) random vec-

tors, F = {(T †i , Ci,XT
i ,
~ST
i ), i = 1, ...,n}. The observed data consist of

D = {(Ti, δi,XT
i ,
~ST
Ti−), i = 1, ...,n}, where ~STi− is a subvector of ~Si, mea-

sured prior to Ti.
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2. METHODS7

2.1 Estimation procedure

To estimate β under the τ -GLM given in (2.1), we let β̄ denote the unique

solution to

U0(β) = E[X{Yτ − g(βTX)}] = 0.

When (2.1) is correctly specified, β̄ is the true model parameter. Un-

der a mild model misspecification, the resulting risk score β̄
T
X is shown

to approximately maximize a weighted area under the receiver operating

characteristic curve among all functions of X for classifying Yτ (Eguchi and

Copas, 2002). Thus, β̄ is a sensible target parameter, regardless of the ade-

quacy of the τ -GLM. We aim to derive a τ -year risk model by constructing

a consistent estimator of β̄.

To account for censoring, Uno et al. (2007) proposed an IPW estimator,

β̃, as the solution to

Ũn(β) = n−1
n∑
i=1

ŵτiXi{Yτi − g(βTXi)}, (2.2)

where ŵτi = I(Ti ≤ τ)δi+I(Ti > τ)/Ĝ(Ti∧τ), and Ĝ(·) is the KaplanMeier

estimator of G(·). For the logistic link g(·), β̃ is also the minimizer of the

weighted negative logistic log-likelihood

n∑
i=1

ŵτi`(Yτi,β
TXi), where `(y, x) = −y log{g(x)}−(1−y) log{1−g(x)}.
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Although β̃ → β̄ in probability, regardless of the adequacy of (2.1), it suffers

from low efficiency in settings with heavy censoring because it discards

information from subjects censored before τ . We derive a more efficient

estimator of β̄ by leveraging the observed information on ~S.

S measured at a single visit We first consider S measured at a single

time point ts < τ , Sts , and write

Yτ = I(T † ≤ ts) + I(ts < T † ≤ τ) = Yts + I(T † > ts)Yτ .

We propose estimating β̄ by separately imputing the missing Yts and

I(T † > ts)Yτ . To this end, let Z = (XT,ST
ts)

T where we suppress ts from Z

for notational ease. For both X and Z, we consider their possibly nonlin-

ear basis functions, Φ(X) and Ψ(Z), respectively, to account for potential

nonlinear effects, where we let the first p elements of Φ(X) and Ψ(Z) be

X.

To impute Yts , we fit a working model P (Yts = 1 | X) = g{θT

tsΦ(X)}

and estimate θts as θ̂ts , the minimizer of the penalized IPW likelihood,

Q̂n(θ) = n−1
n∑
i=1

ŵtsi` {Ytsi,θTΦi}+ λ1Q(|θ[−1]|), (2.3)

where Φi = Φ(Xi), Q(·) is a penalty function, such as the ridge or LASSO

(Friedman, Hatie, and Tibshirani, 2001), that allows the dimension of Φ(X)
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not to be small relative to n, λ1 = o(n−
1
2 ) is a nonnegative penalty param-

eter that controls the degree of regularization, and for any vector a, a[−1]

represents the subvector of a with its first element removed. We choose a

small penalty parameter to reduce the potential bias in the estimated θ̂ts .

For I(T † > ts)Yτ , we impose the working model

P (Yτ = 1 | Z, T † > ts) = g{γT

τ |tsΨ(Z)}.

We use those with T > ts to estimate γτ |ts because P (Yτ = 1 | Z, T † >

ts) = P (Yτ = 1 | Z, T > ts) under independent censoring. For subjects with

T > ts, their intermediate outcome information Sts , and hence Z, are fully

observed. We estimate γτ |ts as γ̂τ |ts , the minimizer of an IPW penalized

log-likelihood associated with Yτ among Ti > ts:

D̂n(γ) = n−1
n∑
i=1

I(Ti > ts)ŵτi` (Ytsi,γ
TΨi) + λ2Q(|γ [−1]|), (2.4)

where Ψi = Ψ(Zi) and λ2 = o(n−
1
2 ) is a nonnegative penalty parameter.

Combining the estimates from these two working models, and noting

that the expectation of $tsi = I(Ti > ts)/G(ts), given Zi and T †i , is I(T †i >

ts), we impute Yτ as

Ŷ ts
τi = g(θ̂

T

tsΦi) + $̂tsi g(γ̂T

τ |tsΨi), where $̂tsi =
I(Ti > ts)

Ĝ(ts)
.

With the imputed outcome, we now use all subjects in the data set to
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estimate β̄ as β̂, the solution to the estimating equation

Ûn(β) ≡ n−1
n∑
i=1

Xi

{
Ŷ ts
τi − g(βTXi)

}
= 0. (2.5)

We show in Supplementary Material Appendix A that β̂ is a consistent

estimator of β̄, regardless of the adequacy of the τ -GLM or the imputation

models. This demonstrates the robustness of the proposed imputation-

based procedure, in that β̂ is valid even if both the imputation model and

the τ -GLM are misspecified. In contrast, under a misspecification of the

τ -GLM, separately fitting the GLM to Yτ and Yts will likely yield different

estimates of the covariate effects. In the Supplementary Material Appendix

B, we show that n
1
2 (β̂ − β̄) converges in distribution to a multivariate

normal with mean zero and covariance matrix

Σts = var(F1i) +

∫ ts

0

var(F2i + Li|T †i > s)
S(s)2dΛc(s)

π(s)

+

∫ τ

ts

var(F3i|T †i > s)
S(s)2dΛc(s)

π(s)
,

where F1i = J−1Xi{Yτi − g(β̄
T
Xi)}, F2i = J−1Xi{Ytsi − g(θ̄

T

tsΦi)}, F3i =

J−1Xi{Yτi − g(γ̄T

τ |tsΨi)}, Li = J−1XT
i g(γ̄T

τ |tsΨi)I(T †i > ts), π(t) = P (Ti ≥

t), J = E{X⊗2i ġ(β̄
T
Xi)}, θ̄ts and γ̄τ |ts are the respective limits of θ̂ts and

γ̂τ |ts , S(t) = P (T †i ≥ t), and Λc(·) = − log{G(s)}.

To evaluate the potential efficiency gain of β̂ over β̃, we note that the
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asymptotic variance of n
1
2 (β̃ − β̄) is

ΣIPW = var(F1i) +

∫ τ

0

var(F1i|T †i > s)
S(s)2dΛc(s)

π(s)
.

It follows that the variance reduction is

ΣIPW −Σts =

∫ ts

0

{var(F1i|T †i > s)− var(F2i + Li|T †i > s)}S(s)2dΛc(s)

π(s)

+

∫ τ

ts

{var(F1i|T †i > s)− var(F3i|T †i > s)}S(s)2dΛc(s)

π(s)
.

Although it is difficult, if not impossible, to provide conditions under which

ΣIPW − Σts is positive definite, we expect the variance of β̂ to be smaller

than that of β̃ because {Ytsi − g(θ̄
T

tsΦi)} + I(T †i > ts){Yτi − g(γ̄T

τ |tsΨi)}

is expected to have a smaller variance than that of Yτi − g(β̄
T
Xi) when

the τ -GLM model is misspecified and/or Sts is highly predictive of Yτ . To

further improve the robustness and efficiency of the proposed procedure,

we next describe our final combined estimator, which combines information

across all ~S and β̃.

S measured at multiple visits When S is collected over multiple time

points, leveraging all measurements to maximally improve the estimation

efficiency is challenging because of the unknown trade-off between the

missing rates and the predictiveness of S at different time points. While

the measurements of S may be more complete at earlier time points, the

Statistica Sinica: Preprint 
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latter measurements might be more predictive of Yτ . We propose com-

bining all available ~S by first constructing K estimators, B̂ = [β̂t1 , ...,

β̂tK ]p×K , with the kth estimator obtained as β̂ using Stk . Using simi-

lar arguments to those given in Appendix A and B, we can show that

n
1
2{(β̃− β̄)T, (β̂t1 − β̄)T, . . . , (β̂tK − β̄)T}T converges jointly to a zero mean

multivariate normal. This enables us to construct a combined estimator of

β̄ by deriving an optimal linear combination of β̃, β̂t1 , ..., β̂tK . For simplic-

ity, we focus on an element-wise combination. For j = 1, . . . , p, we identify

the combined estimator

β̂CMB,j = β̃j − ŴT

j∆̂j

, with Ŵj a consistent estimator of

Wj = argmin
Wj

{
var(β̃j − αj −WT

j∆̂j)
}
,

where ∆̂j = β̃j − B̂j, and for any matrix B, Bj represents the jth row

vector. To obtain Ŵj in practice, we approximate the joint distribution of

β̃ and B̂ using a perturbation resampling procedure, see section 2.2. For

b = 1, . . . , B, let β̃
(b)

and B̂(b) denote the bth realization of the resampled

estimate of β̃ and B̂, respectively, and let ∆̂
(b)

j = β̃
(b)
j − B̂(b)

j, . Then, we

obtain

Ŵj = argmin
Wj

{
B∑
b=1

(
β̃
(b)
j − αj −WT

j∆̂
(b)

j

)2
+ υ‖Wj‖1

}
,

Statistica Sinica: Preprint 
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where αj = E(β̃j) is a nuisance parameter, υ is the tuning parameter, and

‖ · ‖1 denotes the L1 norm.

Regularization can be used to estimate β when p is not small relative to

the number of events by first noting that β̃ and the proposed augmented es-

timator β̂ts are the respective minimizers of L̃n(β) = −
∑n

i=1 ŵi`(Yτi,β
TXi)

and L̂n(β) = −
∑n

i=1 `(Ŷ
ts
τi ,β

TXi). To adopt a regularization method, such

as the adaptive LASSO (Zhang and Lu, 2007), we estimate β as B̃, the

minimizer of the penalized objective function

L̃n(β) + ν̃n

p∑
j=2

∣∣∣βj/β̃j∣∣∣ , (2.6)

where 0 ≤ ν̃n →∞ as and ν̃nn
− 1

2 → 0 as n→∞. The regularized counter-

part of β̂, B̂, can be obtained as the minimizer of L̂n(β) + ν̂n
∑p

j=2 |βj/β̂j|

with similarly chosen ν̂n. The resampling procedure discussed in Section

2.2 can be similarly used to estimate the variability of B̃ and B̂, as well as

to construct the final combined estimator that synthesizes information on

S across multiple visits.

2.2 Inference via resampling

To construct β̂CMB = (β̂CMB,1, . . . , β̂CMB,p)
T and estimate its variance, we pro-

pose a perturbation resampling procedure. Specifically, let V = (V1, ..., Vn)T

be a vector of i.i.d. nonnegative random variables with mean and variance

Statistica Sinica: Preprint 
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both one, generated independently of D . Then, for ts = t1, . . . , tK , we

obtain a perturbed version of β̂ with Z = (XT,ST
ts)

T, namely β̂
∗
ts , as the

solution to Û∗n(β) ≡ n−1
∑n

i=1 ViXi{Ŷ ∗τ − g(βTXi)} = 0, where

Ŷ ∗τ = g(ΦT

i θ̂
∗
ts) + I(Ti > ts)Ĝ

∗(ts)
−1g(ΨT

i γ̂
∗
τ |ts),

with θ̂
∗
ts and γ̂∗τ |ts as the respective minimizers of

Q̂∗n(θ) = n−1
i=1∑
n

ŵ∗tsi`(Ytsi,θ
TΦi) + λ1Q(|θ[−1]|),

D̂∗n(γ) = n−1
n∑
i=1

I(Ti > ts)ŵ
∗
τi`(Ytsi,γ

TΨi) + λ2Q(|γ [−1]|).

Here, ŵ∗ti = {I(Ti ≤ t)δi + I(Ti > t)}Ĝ∗(Ti∧ t)−1, and Ĝ∗(·) is the weighted

Kaplan-Meier estimator of G(t), with V being the weights. Similarly, we

may perturb the IPW estimator β̃ as β̃
∗
, the solution to the weighted

estimating equation

Ũ∗n(β) = n−1
n∑
i=1

ŵ∗τiViXi{Ŷτ − g(βTXi)}.

In practice, one can generate B random samples of V to obtain B

realizations of the perturbed estimators β̃
∗
, β̂
∗
t1
, . . . , β̂

∗
tK

. These estimators

can then be used to construct the combined estimator β̂CMB, as described in

Section 2.1. In addition, it is straightforward to see that the variability in

Ŵj does not contribute to the variability of β̂CMB at the first order. Thus,

these perturbed samples can also be used to estimate the final variance of

β̂CMB and construct associated confidence intervals.

Statistica Sinica: Preprint 
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3 Simulation

We conducted extensive simulation studies to evaluate the finite-sample

performance of the proposed estimation and inference procedures, and then

compared this performance with that of existing methods. Throughout,

we generated 500 data sets under each configuration at sample size n =

500, and B = 500 replications were used for the perturbation resampling

procedure. For each setting, we obtain the ”true value” β̄ using the Monte

Carlo method by averaging over the logistic regression estimates obtained

from fitting Yτ against X using 500 sets of simulated uncensored data at

sample size N = 10000. For the proposed estimator, natural spline bases

with three prespecified 3 knots for each covariate are used as Φ(·) and Ψ(·)

in the imputation models. In Section 3.1, we consider the scenario with

p = 4 and let Q(·) = ‖ · ‖2; while in Section 3.2, we consider the case

with p = 11 covariates, of seven are noise predictors unrelated to the risk,

and let Q(·) = ‖ · ‖1. For both settings, we let τ = 0.8 and generate a

single intermediate outcome S measured at K = 4 different time points,

with t1 = 0.05, t2 = 0.1, t3 = 0.15, and t4 = 0.2. The surrogate marker

S has an increasing correlation with the outcome over time, but also has

an increasing proportion of missing values due to censoring or failure. We

also consider an additional simulation in which S has a constant correlation

Statistica Sinica: Preprint 
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with the outcome over time. To evaluate the improvement in efficiency of

S, we obtained our combination estimator β̂CMB using Z = (XT,ST)T and

Z = X, denoted respectively by β̂
KM,Z

CMB and β̂
KM,X

CMB . The percentage efficiency

gain of β̂ over β̃ is calculated as {MSE(β̃)/MSE(β̂)− 1} × 100.

In addition to the comparison with β̃ (IPWKM, Uno et al., 2007), we ob-

tained (i) the IPW estimator, with censoring weights estimated from fitting

a Cox model to the data {(Ti, 1 − δi,Xi), i = 1, ..., n} (IPWCox,X), and (ii)

the AIPW estimator (AIPWKM, DiRienzo, 2009), with censoring weights

estimated using the KaplanMeier estimator and the outcome imputed from

the model based on Φ(X).

3.1 Low-dimension setting with p = 4

In this setting, we generated X−1, C, and T † from

X−1 = (X2, X3, X4)
T ∼ N(0, 0.3 + 0.7I3), C ∼ exponential(λ),

log(T †) = 0.5(X2 +X3 +X4) + 0.5X2
2 +X2

3 + 0.5X2
4 − 3 + logit(U) + log(α),

where Id is a d× d diagonal matrix, and U ∼ Uniform(0,1). We considered

two settings: (i) a low event rate (12−18% by τ) and heavy censoring rate

(65−74% before τ) with {α = 12, λ = 0.5}, where the ”true” β is estimated

as (-1.05,-0.25,-0.13,-0.24); and (ii) a moderate event rate (25−34% by τ)

and moderate censoring rate (37−50% by τ) with {α = 6, λ = 1}, where

Statistica Sinica: Preprint 
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the ”true” β is estimated as (-0.50,-0.27,-0.16,-0.27). We generated ~S =

(St1 , St2 , St3 , St4)
T from

St = logit(U) + 0.1(X1 +X2) + (10t1.5)−1εt with εt ∼ N(0, 1),

where εt is generated independently across different time points. Under this

setting, the Pearson correlation coefficient between log(T †) and ~S is about

(13%, 34%, 55%, 65%)T, and approximately 87%, 76%, 67%, and 60% of

patients are at risk at t1, t2, t3, and t4, respectively. We use an additional

simulation in which the correlation between St and outcome is constant

over time (about 65%) to evaluate how the proportion of partially observed

subjects affects the efficiency gain.

As shown in Table 1, the proposed estimator has negligible bias and

gains substantial efficiency relative to IPWKM. Compared with IPWKM,

IPWCox and AIPWKM attained limited efficiency gains, especially in the low

event and high censoring setting. Even in the absence of ~S, β̂
KM,X

CMB is much

more efficient than IPWKM because the imputation model using a basis ex-

pansion captures the nonlinear effects. The proposed estimator β̂
KM,Z

CMB gains

further efficiency by additionally incorporating ~S. Figure 1 shows that the

efficiency of the proposed estimator β̂
KM,Z

ts relative to β̃ varies substantially

across ts. Furthermore, the final estimator β̂
KM,Z

CMB , the optimal combination

of them, has the highest efficiency gain, as expected. The results from Ta-

Statistica Sinica: Preprint 
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Figure 1: The percentage of efficiency gain (%EffG) from the IPW esti-

mator β̃ and the coverage percentage for the 95% confidence interval for

the proposed estimators {β̂
KM,Z

tk
, k = 1, 2, 3, 4}, as well as the combined

estimator β̂
KM,Z

CMB under the low-dimension baseline model.

low_dimension.pdf

ble 1 and Figure 1 suggest that the proposed interval estimation procedure

based on resampling works well, with empirical coverage levels close to the

nominal level of 95%. Note that in the setting where St has a similar cor-

relation with the outcome across ts, the efficiency gain of β̂
KM,Z

ts tends to

decrease over time (especially in the heavy censoring setting), owing to the

decreasing proportion of partially observed subjects (i.e., censored between

ts and τ), as shown in Figure 2.

3.2 Moderate p with regularization

For the setting with p = 11, we generated X−1 from an independent stan-

dard normal distribution, and T † from

log(T †) = X2 +X3 +X4 + 0.5X2
2 +X2

3 + 0.5X2
4 − 3 + logit(U) + log(6).

The surrogate markers ~S were generated in the same way as in the low-

dimensional setting, and C ∼ exponential(1). Under this setting, the ob-
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Table 1: Empirical bias, SE (ESE), and average of the estimated SE (ASE)

for the low-dimensional setting, as well as the percentage efficiency gain

(%EffG) relative to the IPWKM estimator.

Bias × 100 ESE × 100 %EffG

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

Low Event Rate

IPWKM 0.58 -2.48 -2.01 -2.39 15.23 20.35 20.50 20.44 0.00 0.00 0.00

IPWCox,X -1.01 -2.17 -2.26 -2.34 15.17 18.86 18.42 18.62 0.53 16.56 23.17 20.16

AIPWKM 2.01 -2.58 -1.16 -2.32 16.68 22.77 20.00 22.22 -17.75 -20.01 5.69 -15.17

AUGKM,X
CMB -0.17 -0.59 -3.41 -0.97 14.76 16.20 14.68 15.29 6.52 59.78 86.67 80.32

AUGKM,Z
CMB 1.79 0.07 -3.47 -0.22 14.31 14.51 12.95 13.68 11.59 99.51 135.88 126.06

Moderate Event Rate

IPWKM 0.28 -1.21 -1.06 -0.59 10.87 14.26 13.98 14.19 - - - -

IPWCox,X -0.37 -0.91 -1.07 -0.46 10.78 13.52 12.96 13.41 1.54 11.60 16.25 12.13

AIPWKM 0.73 -1.37 -0.60 -0.63 11.03 13.54 12.11 13.27 -3.21 10.55 33.88 14.28

AUGKM,X
CMB -0.50 -0.50 -1.76 0.03 10.61 12.20 11.04 12.09 4.77 37.38 57.34 38.04

AUGKM,Z
CMB -0.26 0.44 -1.02 0.33 10.19 11.35 10.34 11.51 13.80 58.77 82.33 52.35
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Figure 2: The percentage of efficiency gain (%EffG) for the proposed esti-

mators {β̂
KM,Z

tk
, k = 1, 2, 3, 4}, assuming a constant correlation between S

and the outcome over time under the low dimension baseline model.
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4. EXAMPLE21

served event rate by τ is about 26 − 38%, leading to an effective sample

size of around 100 - 200, which is not large relative to p = 11. We use the

adaptive LASSO in (2.6) to regularize the baseline prediction model in all

methods. The ”true” β for the working model estimated from the complete

data is (-0.49, -0.66, -0.52, -0.66, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00).

Figure 3 summarizes the results for {β̂
KM,Z

tk
, k = 1, 2, 3, 4}, the final

combined linear optimal estimator β̂
KM,Z

CMB , and IPWKM and IPWCox as bench-

marks for the efficiency assessment. The AIPW methods are not included

because no associated regularization procedures were available. In general,

β̂
KM,Z

tk
is more efficient than IPWCox, and the combined estimator β̂

KM,Z

CMB out-

performs all other estimators, with a substantial efficiency gain over existing

methods. The resampling procedures also perform well, with the empirical

coverage percentage ranging from 92 - 95% for informative signals. The

coverage percentage for the zero signals ranges from 96% - 98%, which is

expected owing to the oracle properties.

4 Example

We illustrate the proposed procedures using a data set from the Dia-

betes Prevention Program (DPP) (DPPG, 2002). The DPP is a placebo-

controlled randomized clinical trial that investigates whether changes in
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Figure 3: The percentage of efficiency gain (%EffG) and the coverage per-

centage for the 95% confidence interval for the proposed estimator of the

regularized baseline model.
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lifestyle or taking metformin prevent type 2 diabetes among high-risk

adults. The primary outcome, type 2 diabetes, is defined as fasting glu-

cose ≥ 140mg/dL for visits through 6/23/1997, ≥ 126 mg/dL for visits on

or after 6/24/1997, or 2-h post challenge glucose ≥ 200 mg/dL. The study

found that the both lifestyle changes andn metformin significantly prevent

or delay the development of type 2 diabetes.

Suppose we are interested in constructing a time-specific risk prediction

model for τ = 4 years for the lifestyle intervention group (N=1024) and

the placebo group (N=1030), respectively. The event rate was 13.5% for

lifestyle intervention group and 27.5% for placebo group by year four, with

74% and 62%, respectively, censored before year four. The working baseline

prediction model includes three predictors: age in ordinal scale, body mass

index (BMI) in ordinal scale, and hemoglobin A1c (HBA1C). There are

two intermediate outcomes, namely fasting plasma glucose and HBA1C,

measured in each of the first three years.

All covariates are standardized to have mean zero and standard devia-

tion one. For the imputation modeling in AIPWKM and our approach, we

use spline bases with three knots for all variables. Resampling with 500

replications is used to generate the variance of the IPWKM method and our

proposed methods, and the bootstrap is used for the other methods. As
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Table 2: Estimated prediction models for diabetes by year 3.5 in DPP study

CoefficientSE Efficiency gain

Int age BMI HA1C Int age BMI HA1C

Lifestyle group

IPWKM −1.41.123 −0.21.146 0.15.120 0.41.146 - - - -

IPWCox,X −1.41.123 −0.26.127 0.21.105 0.42.148 -2.03 32.67 29.61 -2.20

AIPWKM −1.28.145 −0.17.221 0.00.202 0.41.229 -28.25 -56.23 -64.87 -59.08

AUG1
KM,X −1.36.128 −0.23.123 0.14.096 0.39.133 -7.66 41.18 55.38 21.46

AUG1
KM,Z −1.42.127 −0.28.116 0.10.088 0.38.122 -7.13 58.31 85.66 44.48

AUG2
KM,X −1.36.125 −0.24.114 0.17.090 0.35.128 -3.46 64.12 76.26 29.85

AUG2
KM,Z −1.29.133 −0.22.116 0.13.086 0.34.113 -15.14 59.29 92.36 69.85

AUG3
KM,X −1.37.123 −0.23.101 0.16.083 0.31.116 -1.45 110.49 106.11 59.16

AUG3
KM,Z −1.43.119 −0.22.103 0.16.083 0.35.108 5.22 101.59 107.57 85.03

AUGKM,X
CMB −1.39.121 −0.24.099 0.15.073 0.29.109 2.12 119.86 169.57 81.18

AUGKM,Z
CMB −1.41.119 −0.25.095 0.10.067 0.31.094 6.39 137.98 217.79 144.82

Placebo group

IPWKM −0.58.097 0.01.134 0.13.138 0.34.128 - - - -

IPWCox,X −0.58.098 −0.04.120 0.19.130 0.37.135 -1.79 24.24 11.37 -8.98

AIPWKM −0.54.099 0.09.203 0.02.210 0.32.205 -4.25 -56.60 -56.90 -60.74

AUG1
KM,X −0.58.095 −0.02.102 0.13.113 0.34.101 4.35 72.02 49.51 60.44

AUG1
KM,Z −0.54.091 0.01.091 0.15.097 0.39.097 13.28 117.05 99.78 74.44

AUG2
KM,X −0.59.095 −0.03.089 0.15.096 0.38.093 4.34 127.23 105.28 89.12

AUG2
KM,Z −0.58.095 −0.03.086 0.15.087 0.45.093 4.72 142.87 147.97 90.12

AUG3
KM,X −0.59.097 −0.04.080 0.14.081 0.47.087 0.54 183.43 192.25 118.48

AUG3
KM,Z −0.63.093 −0.03.077 0.13.076 0.50.088 9.27 202.67 224.08 137.77

AUGKM,X
CMB −0.58.095 −0.06.070 0.15.067 0.45.069 5.11 267.02 325.85 242.39

AUGKM,Z
CMB −0.59.088 −0.03.065 0.15.062 0.45.067 21.11 327.89 395.28 263.68
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shown in Table 2, the point estimates from IPWKM and IPWCox are quite

similar, supporting that censoring may be independent of the baseline pre-

dictors. The proposed method also provides point estimates similar to those

of IPWKM and IPWCox, but have substantially smaller standard errors. For

example, in the lifestyle intervention group, the coefficient estimation for

age is -0.21 with standard error 0.15 using the IPWKM method, while our

estimation is -0.25 with standard error 0.095, making age a significant pre-

dictor. Similarly, in the placebo group, the coefficient estimation for BMI is

0.13 with standard error 0.138 using the IPWKM method, while our estima-

tion is 0.15 with standard error 0.062, making BMI a significant predictor.

5 Conclusion

Deriving a robust and efficient estimator for a τ -year risk prediction model

is challenging in the presence of heavy censoring prior to τ and poten-

tial model misspecification. The proposed approach adds to the literature

as follows. First, unlike most existing imputation based estimators, the

proposed method is robust to model misspecifications in both the under-

lying risk model and the imputation model. Second, our method is able

to incorporate information from longitudinal intermediate outcomes that

are subject to missingness due to censoring or failure. Third, the pro-

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0066



5. CONCLUSION26

posed efficient data-adaptive combination strategy allows us to effectively

combine information from S measured at different visits along with other

consistent estimators (e.g., β̃) to achieve maximal efficiency. Analogous to

overfitting in a regression, our regularization-based combination strategy

can effectively overcome both the correlation between the estimators and

the potentially large number of candidate estimators.

The degree of efficiency gain from incorporating S in our proposed esti-

mator depends on the censoring distribution prior to τ , how well the τ -GLM

approximates the true conditional risk, the censoring rate for S, and the

predictiveness of S for Yτ above and beyond X. The proposed method could

be particularly useful in settings in where a prediction model with a long-

term outcome involves heavy censoring because of administrative reasons

(e.g., study closure, etc.), but intermediate covariates that are predictive of

the outcome are collected for a large proportion of the patients.

We assume that C is independent of the baseline covariates covariates

X, for simplicity. However, similarly to existing IPW estimators, we can

allow C to depend on X by calculating the censoring weights ŵi by fitting

a Cox or other semi-parametric model for C | X. When C depends on

X, but cannot be correctly modeled, Zhang and Cai (2017) demonstrated

using simulation studies that the imputation-based approach tends to be
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more robust than the simple IPW approach. When p is not small, our

approach also has advantages over the augmentation method that uses the

Cox model to estimate the censoring weights. This is because employing a

regularization in the estimation of the censoring model diminishes its po-

tential efficiency gain. In contrast, our imputation-based method naturally

allows for variable selection.

Throughout, we assume that the intermediate outcomes are potentially

measured at the same time points across subjects. This is a reasonable as-

sumption for clinical trials because study visit times are typically presched-

uled according to the study protocol. For settings in which these times

vary across patients, we can choose a set {ts, s = 1..., K} as landmark time

points, and summarize S information up to ts as the intermediate outcome

associated with ts for each patient.

Supplementary Material

All technical proofs are available in the online Supplementary Material.
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