
Statistica Sinica Preprint No: SS-2019-0062 

Title Comment on 'Entropy Learning for Dynamic Treatment 

Regimes' by Binyan Jiang, Rui Song, et al. 

Manuscript ID SS-2019-0062 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202019.0062 

Complete List of Authors Hongxiang Qiu 

Alex Luedtke and  

Mark van der Laan 

Corresponding Author Hongxiang Qiu 

E-mail qiuhx@uw.edu 



Statistica Sinica

1

Comment on “Entropy Learning for Dynamic

Treatment Regimes” by Binyan Jiang, Rui Song, et al.

Hongxiang Qiu1, Alex Luedtke1, Mark van der Laan2

University of Washington1 and University of California at Berkeley2

Key words and phrases: Dynamic treatment regime, entropy learning, personal-

ized medicine.

1. Introduction

We congratulate the authors on their innovative method for estimating dy-

namic treatment regimes (DTRs). They introduced the entropy learning

(E-learning) framework, which circumvents the need to model the condi-

tional mean outcome directly given the covariates, when estimating an opti-

mal DTR. Their method extended the work of Zhao et al. (2012, 2015) and

Rubin and van der Laan (2012) by using a smooth surrogate loss function

enabling them to obtain valid statistical inferences about the parameters in

the DTR, as well as related quantities. In this discussion, we extend their

work to consider model misspecification, the estimation of more flexible
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DTRs, and the treatment cost in the hypothesis test of no treatment effect

in order to circumvent an unpleasant regularity assumption.

Our discussion is organized as follows.

1. We point out two consequences of restricting our attention to a linear

class of candidate DTRs when an optimal DTR over an unconstrained

class does not belong to this class:

(a) In general, the infinite-sample limit of the proposed E-learning

estimator depends on the treatment assignment probabilities.

(b) In general, the estimated optimal value is inconsistent for the

value under the optimal linear DTR, that is, the maximal mean

reward attainable under a linear DTR.

2. We study the estimation of an optimal DTR over an unrestricted

class using the loss function proposed by the authors. We show the

following:

(a) The unconstrained true-risk minimizer is the conditional log “rel-

ative reward” (RR).

(b) We can estimate the conditional log RR well by optimizing over

an essentially unrestricted class, where here, and throughout, we

use “essentially unrestricted” to refer to a class FM of cádlág
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functions, with a variation norm bounded by a given M < ∞

(van der Laan, 2017; Benkeser and Van Der Laan, 2016).

(c) We provide theoretical guarantees under which the value of the

estimated DTR, based on estimating the conditional log RR over

an essentially unrestricted class, converges to the optimal value

at a fast rate.

3. We discuss the conditions that required to apply the test of the null

of no individual-level stage-τ treatment effect, as proposed by the

authors. Importantly, note that the validity of the proposed test

relies on the null of no treatment effect not holding at any future

stage t > τ . This requirement seems concerning because, if the null

of no effect at time τ is plausible, then it would seem that the null at

times t > τ may also be plausible. Note that introducing a treatment

cost to the clinical decision could help mitigate this concern.
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2. Consequences of misspecification of the linear model

2.1 Dependence of the infinite-sample limit of the E-learning

estimator on the treatment assignment probabilities

Recall that β0
t indexes the linear DTR that minimizes the population-level

E-learning risk, which represents the infinite-sample limit of the estimated

linear decision rule parameters β̂t. In this section, we show that, in general,

β0
t depends on the treatment mechanisms, that is, the probability of receiv-

ing a given treatment at each stage, given past covariates. This dependence

is of more than academic interest — indeed, it can lead to counterintuitive

results in real applications of the proposed method. For example, suppose

that two clinical trials are run on the same population but with different

treatment assignment mechanisms. In this case, the optimal linear decision

rules in the two trials can differ substantially, even if the sample sizes are

very large.

Momentarily, we will provide a simple example of such a discrepancy

between the estimands, in two settings. Before doing so, we provide a brief

analytical argument showing why this dependence of β0
t on the treatment

mechanism should be expected. Recall that the authors consider the DTR

to be determined by a linear function, namely, xt 7→ x∗t
>βt, where, for any
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2.1 Dependence of the infinite-sample limit of the E-learning estimator
on the treatment assignment probabilities5

stage-t covariate xt, x
∗
t ≡ (1, xt). In particular, the rule recommended by

the DTR (−1 or 1) is determined by the sign of x∗t
>βt. In this case, the

authors showed that β̂t converges to the population-level minimizer of the

E-learning risk; that is,

β0
t (π) = argmin

βt∈Rpt+1

E

[
(
∑T

j=tRj)
∏T

j=t+1 1{Aj = sgn(X∗j
>β0

j )}∏T
j=t π(Aj, Sj)

h(At, X
∗
t
>βt)

]
,

(2.1)

which is defined by iterating backwards through times t = T, T − 1, . . . , 1,

where h(a, y) = −(a + 1)y + 2 log(1 + exp(y)), and β0
t (π) emphasizes the

(potential) dependence of β0
t on the treatment assignment probabilities π.

The authors also considered the case when the linearity assumption is

not true, that is, when the population-level minimizer of their risk over

an unrestricted class is nonlinear; in Section 3.1, we provide a familiar

interpretation for this minimizer. When linearity does not hold, the authors

note that β0
t should be understood as the best approximation of the true

population-level minimizer in the collection of linear rules, namely, {xt 7→

x∗t
>βt : βt}. We now argue that β0

t depends on the treatment assignment

mechanism when the linearity assumption is not true. First note that the

risk function at stage T can be expressed as follows:

E
[

RT

π(AT , ST )
h(AT , X

∗
T
>βT )

]
= E

{
E

[
RTh(AT , X

∗
T
>βT )

∣∣∣∣∣ST
]}

.
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on the treatment assignment probabilities6

Note too that the treatments at previous stages are contained in the history

ST . Thus the previous treatment assignment mechanism π(Aj, Sj), for j <

T , influences the marginal distribution of ST and, hence, could influence

β0
T . At any stage t < T , there is a similar potential for β0

t to depend on

the treatment mechanisms at all previous stages j < t. Moreover, the term∏T
j=t+1 1{Aj = sgn(X∗j

>β0
j )} in (2.1) allows β0

t to depend on the decision

rules β0
j at all future stages j > t. Therefore, β0

t depends on the treatment

assignment mechanisms at the current stage and future stages π(Aj, Sj),

for t ≤ j < T . By this argument, we can show that, for all t, β0
t can depend

on π(Aj, Sj), for all j = 1, . . . , T − 1. Consequently, collecting two data

sets from the same population, but with different treatment assignment

probabilities, can lead to different infinite-sample limits for the E-learning

estimators used in the two settings.

We use a simple two-stage example to illustrate how this dependence on

the treatment mechanism can affect the interpretation of the study results.

We consider two data-generating mechanisms, which are identical in all

ways except for their treatment mechanisms. We denote the treatment

mechanisms in the two settings by π(1) and π(2), respectively. We show

that the coefficients in (2.1) vary between the two scenarios. Specifically, we

show that β0
1(π(1)) 6= β0

1(π(2)) and β0
2(π(1)) 6= β0

2(π(2)). In both examples,
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2.1 Dependence of the infinite-sample limit of the E-learning estimator
on the treatment assignment probabilities7

S1 = X1 follows a standard normal distribution, and X2|A1 = a1 and

X1 = x1 follow a normal distribution with mean a1x1 and variance one. We

consider a setting where the investigator is only interested in maximizing

the final reward, such that R1 = 0 and R = R2. The outcome regression

is given by E[R|S2 = s2, A2 = a2] = 1{a2 = 1}[2x21 1{a1 = 1} + 1{a1 =

−1}+ 2x22] +1{a2 = −1}. We let π
(k)
t denote P (At = 1|St) in each scenario

k. In the first scenario, we let π
(1)
1 = π

(1)
2 = 0.5. In the second scenario,

we let π
(2)
1 = 0.9 when X1 < 0.5 and π

(2)
1 = 0.1 when X1 > 0.5. Similarly,

π
(2)
2 = 0.9 when X2 < 0.5 and π

(2)
2 = 0.1 when X2 > 0.5.

Table 1 presents β0
t for the two scenarios in this example where only

the treatment assignment mechanisms vary. We can clearly see that β0
t

depends on the treatment assignment mechanism. Suppose these two β0
t

parameters are estimated from two large clinical trials that are identical

in all aspects, except for their treatment assignment mechanisms. On the

one hand, based on the results from the first trial, because β0
21(π

(1)) and

β0
11(π

(1)) are very close to zero, policymakers might conclude that the two

treatments have very similar effects. On the other hand, based on the results

from the second trial, because β0
21(π

(2)) < 0 and β0
11(π

(2)) < 0, policymakers

might conclude that the two treatments have different effects for different

people. Consequently, they might discourage practitioners from collecting

Statistica Sinica: Preprint 
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2.2 Inconsistency of the estimated optimal value8

Table 1: Population-level parameters β0
t indexing an optimal DTR at stage

t, β0
t , in a two-stage example with different treatment assignment mecha-

nisms. These parameter values were obtained via a Monte Carlo approxi-

mation with sample size 5× 106. Note that these parameters—particularly

the slopes—are markedly different in the two scenarios.

Setting Treatment assignment

mechanism

First stage, β0
1 Second stage, β0

2

Intercept, β0
10 Slope, β0

11 Intercept, β0
20 Slope, β0

21

1 π(1) 0.69 0.00 1.50 0.00

2 π(2) 0.28 -2.53 0.79 -0.88

the variables X1, X2 on future patients, based on the results from the first

trial, but might encourage them to do so and use a linear DTR, based on

the results from the second trial.

2.2 Inconsistency of the estimated optimal value

Note that although the asymptotic normality of β̂t for β0
t can be shown to

hold, even when the true E-learning risk minimizer is nonlinear, a sim-

ilar result cannot be established for the proposed estimator of the op-

timal value. In fact, the estimator V̂t may not even be consistent for

V ∗t ≡ maxβt∈Rpt+1 Vt(βt) in this case, which is the optimal value that can
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2.2 Inconsistency of the estimated optimal value9

be possibly obtained from a linear DTR. This possible inconsistency arises

because the surrogate loss used to obtain the decision rules differs from the

zero-one loss used to define the optimal value. When the restricted class

F of DTRs does not contain an optimal DTR over an unrestricted class,

the DTR that minimizes the population-level surrogate risk over F may be

differ from the DTR that maximizes the optimal value over F . Therefore,

the value of the estimated DTR need not converge to V ∗t .

We illustrate this possible inconsistency of V̂t for V ∗t using a single-stage

scenario. To simplify the notation, throughout this example, we omit the

stage index t. The data are generated as follows: X ∼ Unif(−1, 1), P (A =

1|X) = 0.5, E[R|A = −1, X = x] = 1, and E[R|A = 1, X = x] = 2x2. The

population-level E-learning coefficients β0 maximize the following surrogate

for the value function in β = (β0, β1):

−R(β) = E
[
R[0.5(A+ 1)(β0 + β1X)− log(1 + exp(β0 + β1X))]

Aπ + (1− A)/2

]
.

This quantity differs from the value function,

V (β) = E
[
R1{A = sgn(β0 + β1X)}

Aπ + (1− A)/2

]
. (2.2)

We denote the maximizer of V by β†. Note that because the value function

is nonconcave, finding β† in our numerical example is challenging. Therefore

we instead use β† to denote any near maximizer of this function.
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2.2 Inconsistency of the estimated optimal value10

Table 2: Two linear DTRs and their optimal values. β0 is the “true linear

DTR” for which the estimated DTR using the surrogate loss is consistent

and minimizes the population-level surrogate risk. β† is a linear DTR that

nearly maximizes the value. Note that V (β†) > V (β0).

Parameter indexing the DTR, β Value, V (β)

β0 = (−0.41, 0.00) 1.00

β† = (−2.52, 3.55) 1.07

As can be seen in Table 2, the value of β† is strictly larger than the

value of β0 in this example. Given that the value of β† is a lower bound

on the maximum V ∗ of (2.2), this fact does not impact our conclusion that

V (β0) < V ∗.

It can be shown that the estimator of the optimal value proposed by the

authors V̂ is consistent for V (β0). Hence it is inconsistent for the optimal

value that can be obtained from a linear decision rule V ∗.

Returning now to the general case, note that although V̂t may be in-

consistent for the optimal value V ∗t among the class of linear decision rules,

this quantity is always a conservative estimator of the true optimal value,

in the sense that

Vt(β
0
t ) ≤ max

βt∈Rpt+1
Vt(βt) ≡ V ∗t , (2.3)
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Refer to the definition of Vt above Eq. 2.10 in the paper under discussion.

Hence, V̂t provides information about whether it is worth advocating a wide

application of a DTR in a given setting: if V̂t were very large compared with

Vt(Dt,current) for the current standard decision rule at stage t, Dt,current,

then we would be confident of benefiting from implementing the DTR.

Furthermore, from (2.3), a (1 − α)-level confidence lower bound for the

limit Vt(β
0
t ) of V̂t is also a valid (1−α)-level lower confidence bound for V ∗t .

Therefore, even if the optimal value V ∗t is of interest, rather than the value

of the rule indexed by β0
t , it is still useful to obtain a valid confidence lower

bound for Vt(β
0
t ) under misspecification.

A natural question that arises is the following: is it possible to derive

the asymptotic normality of V̂t as an estimator of Vt(β
0
t ) under regularity

conditions, thus leading to a valid inference?

3. Nonparametric decision rules

3.1 Unconstrained true-risk minimizer

The loss function proposed by the authors yields (to the best of our knowl-

edge) a novel approach to robustly estimating the counterfactual log relative

risk. Consider the single-stage setting, with the population-level E-learning
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3.1 Unconstrained true-risk minimizer12

risk

R(f) = E
[
R[−0.5(A+ 1)f(X) + log(1 + exp(f(X)))]

Aπ + (1− A)

]
. (3.1)

Our goal is to minimize this risk, where the form of f is left unrestricted.

In this case, the function f 0 that minimizes this quantity is the conditional

log relative reward :

f 0(x) = log

(
E[R|A = 1, X = x]

E[R|A = −1, X = x]

)
. (3.2)

This leads to a way of estimating the conditional relative risk (instead of re-

ward) function nonparametrically, without estimating the conditional mean

function (a, x) 7→ E[R|A = a,X = x]. First, let R denote an indicator of

the occurrence of an event; next, minimize the risk in (3.1) over a large class

of functions. We consider the relative risk instead of the relative reward

here, because this is a more common measure of effect size in epidemiology.

This is similar to the result for the conditional average treatment effect

(CATE). Inspired by Rubin and van der Laan (2007), Luedtke and van der

Laan (2016c) showed that we can use least squares with pseudo outcomes[
1{A=1}

π
− 1{A=−1}

1−π

]
R, or doubly robust variants thereof, to nonparametri-

cally estimate the CATE.

A natural question that arises is the following: for any contrast of con-

ditional means E[R|A = 1, X] and E[R|A = −1, X] (e.g., odds ratio), is it

Statistica Sinica: Preprint 
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3.1 Unconstrained true-risk minimizer13

possible to select a surrogate loss function h or, in general, a risk function

R that allows us to estimate that conditional contrast function without es-

timating the conditional mean function? In DTRs, the conditional contrast

is of interest. Because a correct specification of the conditional mean func-

tion implies correct specification of the conditional contrast function, it is

never more difficult to correctly specify the conditional contrast than it is

to correctly specify the conditional mean. In many cases, we expect that it

will be easier. For example, when a test of treatment effect heterogeneity

is conducted, the null hypothesis is often that there is no treatment effect.

When there is no heterogeneity in the treatment effect, which is an ap-

parently plausible scenario, given that this is often the null of interest, any

contrast between the conditional means E[R|A = 1, X] and E[R|A = −1, X]

is constant. Therefore, to correctly specify this quantity, it suffices to use a

learner that is able to learn a constant function. We note that all natural

learners satisfy this property.

We conclude by noting that it is possible to estimate an optimal DTR

based on the log relative risk, rather than using the log relative reward.

Let f̂ denote the estimated log relative risk above. The estimated DTR

is then x 7→ −sgn{f̂(x)}, where f̂ is the estimated conditional log relative

risk function. One advantage of “reversing the reward” in this fashion is
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3.2 Nonparametric estimator of the true-risk minimizer with a bounded
total variation norm14

that, in many cases, the event is rare, and it is more common to model the

relative risk for a rare event than it is to model the relative reward, where

the reward is defined as the absence of the event. It may also be easier to

compare f̂ with results from other studies, especially case-control studies,

where odds ratios are reported as an approximation of the relative risk.

3.2 Nonparametric estimator of the true-risk minimizer with a

bounded total variation norm

A promising approach to flexibly estimating the conditional log RR is to

minimize the empirical risk over the function class FM of cádlág functions,

with total variation norms bounded by some M < ∞. Similar approaches

have been applied successfully to least-squares and logistic losses for regres-

sions. The approach used in these settings is termed the highly adaptive

LASSO (HAL) (van der Laan, 2017; Benkeser and Van Der Laan, 2016).

Under certain conditions, owing to a bound on the uniform entropy of

the class FM , these empirical risk minimizers have been shown to have an

op(n
−1/4) convergence rate, even when there are numerous covariates and

discontinuities in the true function. We first introduce the notation for an

empirical process. For a distribution P and a function g, Pg ≡
∫
g(o)dP(o),

and we use P to denote the true distribution from which we draw the ob-
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served data. From a high level, these conditions require that:

1. there is a uniform bound on L,

2. f 7→ P{L(f) − L(f 0)} is locally quadratic for f ∈ FM , where f 0 is

the true function and L is the loss function,

3. the L2(P )-distance between L(f) and L(f 0), [P{L(f)− L(f 0)}2]1/2,

is bounded by P{L(f)− L(f 0)}.

Note that Condition 2 is similar to, but different from, Condition 3. Condi-

tion 2 describes the local behavior of the loss-based dissimilarity P{L(f)−

L(f 0)} between functions f and f 0, whereas Condition 3 shows how this

dissimilarity upper bounds the L2(P )-distance between the loss functions

L(f) and L(f 0). Refer to Lemma 1 in van der Laan (2017) for further

details.

Although the optimization over such a rich function class seems com-

putationally intractable, the HAL approach can be readily implemented.

As its name suggests, a HAL estimator can be computed using a LASSO

regression. Because the authors’ loss function and linearity assumption

on the decision rule correspond to a weighted logistic regression, the corre-

sponding HAL estimator can be computed using a weighted LASSO logistic
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3.3 Guarantees on the value of an essentially unrestricted estimated
optimal rule16

regression, as follows:

minimize
1

n

n∑
i=1

Ri[−0.5(Ai + 1)fβ(Xi) + log(1 + exp(fβ(Xi)))]

Aiπ + (1− Ai)/2
(3.3)

subject to |β0|+
∑

s⊂{1,...,p},s6=∅

n∑
k=1

|βs,k| ≤M, (3.4)

where

fβ(x) = β0 +
∑

s⊂{1,...,p},s6=∅

n∑
k=1

1(Xk,s ≤ xs)βs,k. (3.5)

Here we use the notation in Benkeser and Van Der Laan (2016): for a

nonempty index set s, xs denotes the entries of x ∈ Rp that are in the index

set s, and the ≤ in 1(Xk,s ≤ xs) holds entrywise.

3.3 Guarantees on the value of an essentially unrestricted esti-

mated optimal rule

In the single-stage setting, we can use a nonparametric estimator of the

DTR to estimate the optimal value. Using the results in Section 7.5 of

Luedtke and van der Laan (2016b), which are based on arguments given

in Audibert and Tsybakov (2007), we can show that, under fairly weak

conditions, if the L2(P )-convergence rate of the estimated conditional log

RR function f̂n is rn, that is,
[
P{f̂n − f 0}2

]−1/2
= Op(rn), then the value

of the DTR defined using the estimated log RR, V (f̂n), converges to the

true optimal value, V (f 0) = maxf V (f), at rate Op(r
2(α+1)/(α+2)
n ), where

Statistica Sinica: Preprint 
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3.3 Guarantees on the value of an essentially unrestricted estimated
optimal rule17

α > 0 is a constant in the following margin condition:

P
(
0 <

∣∣E[R|A = 1, X]− E[R|A = −1, X]
∣∣ ≤ t

)
=P

(
0 < E[R|A = −1, X]

∣∣exp(f 0(X))− 1
∣∣ ≤ t

)
≤Ctα,

(3.6)

for all t, where f 0 is defined in (3.2) and C ≥ 0 is a constant. Under some

conditions, the L2(P )-convergence rate of the HAL estimator is op(n
−1/4).

If we assume that the density of E[R|A = 1, X] − E[R|A = −1, X] is

bounded near zero when X is drawn from the marginal distribution of

the covariates, then we can take α = 1, such that the optimal value for

the estimated decision rule converges to the true optimal value at rate

op(n
−1/3), regardless of the number of covariates used in the DTR when the

HAL approach is used to estimate f 0.

Note that (3.6) can be viewed as a more general form of Condition A3

given in the paper under discussion, in two respects. First, (3.6) applies

when the linearity assumption fails to hold. Second, (3.6) allows us to study

the performance of the learned rule under a range of α-dependent margin

conditions.

Finally , note that the nonparametric estimation for the decision rule

can also be applied in a multistage setting. To learn a DTR using HAL, we

can iterate backwards through stages t = T, T − 1, . . . , 1 to minimize the
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surrogate empirical risk in Eqs. 2.7 and 2.8 in the paper under discussion

over functions similar to (3.5), subject to constraints similar to (3.4). The

convergence rate of the estimated optimal value requires further investiga-

tion.

4. Nonregularity

In Section 3.3 of their paper, the authors present a test of the significance of

the treatment effect at stage τ , for 1 ≤ τ ≤ T . Specifically, their proposed

test relies on the result from their Theorem 1. That is, for a given stage-

τ covariate xτ , the following distributional convergence holds under the

conditions of Theorem 1:

√
nx∗>τ [β̂τ − β0

τ ]⇒d N(0, x∗>τ Στ (β
0
τ )x
∗
τ ). (4.1)

Here, xτ ∈ Rpτ , x∗τ ≡ (1, xτ ), and, for βτ ∈ Rpτ+1, Στ (βτ ) ≡ Iτ (βτ )
−1ΓτIτ (βτ )

−1

is a (pτ + 1) × (pτ + 1) matrix; refer to Condition A1 and Theorem 1 of

the paper under discussion for the definitions of Iτ and Γτ , respectively.

To test the null hypothesis H0(xτ ) : x∗>τ β0
τ = 0 against the complementary

alternative, the authors proposed an α-level test that rejects the null hy-

pothesis if
√
n

∣∣∣∣(x∗>τ Σ̂τ (β̂τ )x
∗
τ

)−1/2
x∗>τ β̂τ

∣∣∣∣ exceeds the (1−α/2)-quantile of

the standard normal distribution, where Σ̂τ (·) is an estimate of Στ (·).

Note that (4.1) fails to hold in important scenarios that are of scientific
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interest. The simplest example occurs when βt = (0, 0, . . . , 0), for some

t > τ . In this case, Condition A3 of Theorem 1 in the paper under discussion

fails to hold; thus (4.1) is not implied by Theorem 1. The inability to

establish (4.1) in this setting does not appear to be due to the requirement of

a sufficient-but-not-necessary condition in the theorem statement. Indeed,

Robins (2004) studies “exceptional laws” of this form in detail, arguing

that a condition similar to Condition A3 is essentially necessary for a valid

inference. See also Theorem 3.3 in Laber et al. (2014) and Theorem 1 in

Luedtke and van der Laan (2016b) for related results. Exceptional laws lead

to nonregular inferences and, thus, the failure of convergence results such as

those in (4.1). Informally, exceptional laws arise when the optimal decision

for an individual randomly drawn from the population is nonunique at some

stage; that is, the same expected reward is attained for this individual,

regardless of the treatment he or she receives.

Note that the validity of (4.1) actually relies on a condition that is

slightly weaker than Condition A3 in the work under discussion. If Con-

dition A3 were strictly required, then this would seem to pose a major

problem for the authors’ test of a treatment effect at xτ . Specifically, Con-

dition A3 requires that, with probability one, the stage-τ treatment effect is

nonzero at the covariate Xτ , where Xτ is a random stage-τ covariate drawn
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from the distribution P that generated the data. Therefore, if the user

knows in advance that Condition A3 is valid, then, given a random Xτ ∼ P

drawn independently of the data, a test that rejects the null hypothesis

H0(Xτ ) without considering the data will make the correct decision, with

probability one, over the draw of Xτ ∼ P . Fortunately, a convergence

result of the form given in (4.1) can hold under a weaker condition than

Condition A3. Although this weaker condition would continue to require

that Condition A3 holds for all t > τ , it would not require that Condi-

tion A3 holds for t = 1, . . . , τ . This would allow the user to avoid assuming

that H0(xτ ) holds P -almost surely over xτ in order to obtain a valid test

of H0(xτ ). Nonetheless, the user would still be required to assume that the

optimal treatment decisions at all future stages are almost surely unique.

Given that the purpose of the authors’ proposed test is to test whether the

optimal treatment for a given individual is unique at some stage—namely,

stage τ—it seems problematic to make an a priori assumption that this

individual’s optimal treatment will be unique at all future stages.

A possible approach to mitigating this concern is to take the treatment

cost into account when making the stage-τ treatment decision. Suppose

that treatment 1 is more expensive than treatment −1. In this case, for

a given patient, it is natural to test whether treatment 1 yields a suffi-
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ciently large additional reward γτ that it is worth applying this more ex-

pensive treatment. This can be formalized by testing the null hypothesis

H ′0(xτ ) : x∗>τ β0
τ ≤ γτ against the complementary alternative. In this sce-

nario, the uniqueness of the rule at each stage would be ensured by replacing

each instance of X∗>t β0
t in Condition A3 by (X∗>t β0

t − γt). Here γt is the

threshold on X∗>t β0
t at which administering treatment 1 at time t becomes

cost-effective; that is, it yields a clinical benefit, while still satisfying a given

cost constraint. Unlike the authors’ proposed test, which needs to assume

that the alternative hypothesis holds at all future stages t > τ , this modi-

fication of Condition A3 does not require the unpleasant assumption, that

the expensive treatment is cost-effective at all future stages. This kind of

cost-constrained or resource-limited setting has been studied previously by

Luedtke and van der Laan (2016a), Toth and van der Laan (2018) and

VanderWeele et al. (2018). Importantly, in the settings of these works, the

standard errors for the summaries of the optimal DTR changed in these

cost-constrained settings. This is because these works assume that γτ is

not specified directly, but instead is specified through a constraint on the

expected treatment cost, which, in turn, implies a threshold γτ that must

be estimated from the data. We suspect that the standard errors of the

estimators of the true E-learning risk minimizer would change similarly in
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5. Conclusion

We close by again congratulating the authors on their important contribu-

tion to estimations and statistical inferences for optimal DTRs.
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