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Abstract: Sample correlation matrices are widely used, but for high-dimensional data little is

known about their spectral properties beyond “null models”, which assume the data have inde-

pendent coordinates. In the class of spiked models, we apply random matrix theory to derive

asymptotic first-order and distributional results for both leading eigenvalues and eigenvectors

of sample correlation matrices, assuming a high-dimensional regime in which the ratio p/n, of

number of variables p to sample size n, converges to a positive constant. While the first-order

spectral properties of sample correlation matrices match those of sample covariance matrices,

their asymptotic distributions can differ significantly. Indeed, the correlation-based fluctuations

of both sample eigenvalues and eigenvectors are often remarkably smaller than those of their

sample covariance counterparts.
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1. Introduction

Estimating a correlation matrix is a fundamental statistical task. It is widely applied

in areas such as viral sequence analysis and vaccine design in biology (Dahirel et al.,

2011, Quadeer et al., 2014, 2018), large portfolio design in finance (Plerou et al., 2002),

signal detection in radio astronomy (Leshem and van der Veen, 2001), and collaborative

filtering (Liu et al., 2014, Ruan et al., 2016), among many others. In classical statistical

settings, with a limited number of variables p and a large sample size n, the sample

correlation matrix performs well and its statistical properties are well understood; see, for

example, Girshick (1939), Konishi (1979), Fang and Krishnaiah (1982), Schott (1991),

Kollo and Neudecker (1993), and Boik (2003). Modern applications, however, often

exhibit high dimensionality, with large p and, in many cases, limited n. In such cases,

sample correlation matrices become inaccurate owing to an aggregation of statistical

noise across the matrix coordinates that is visible in the eigen-spectrum (El Karoui,

2009). This is particularly important in principal component analysis (PCA), which

often involves projecting data onto the leading eigenvectors of the sample correlation

matrix or, equivalently, onto those of the sample covariance matrix after standardizing

the data.

Despite the extensive use of sample correlation matrices, relatively little is known

about theoretical properties of their eigen-spectra in high dimensions. In contrast, sam-

ple covariance matrices have been studied extensively, and a rich body of literature now

exists (e.g., Yao et al. (2015)). Their asymptotic properties have typically been de-

scribed in high-dimensional settings in which the number of samples and variables both

grow large, often though not always at the same rate, based on the theory of random
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matrices. Specific first- and second-order results for the eigenvalues and eigenvectors

of sample covariance matrices are reviewed in Bai and Silverstein (2009), Couillet and

Debbah (2011), and Yao et al. (2015).

For the spectra of high-dimensional sample correlation matrices, current theoretical

results focus on the simplest “null model” scenario, in which the data are assumed to be

independent. In this null model, correlation matrices share many of the same asymptotic

properties as covariance matrices from independent and identically distributed (i.i.d.)

data, with zero mean and unit variance. Thus, the empirical eigenvalue distribution

converges to the Marchenko–Pastur distribution, almost surely (Jiang, 2004b), and the

largest and smallest eigenvalues converge to the edges of this distribution (Jiang, 2004b,

Xiao and Zhou, 2010). Moreover, the rescaled largest and smallest eigenvalues asymp-

totically follow the Tracy–Widom law (Bao et al., 2012, Pillai and Yin, 2012). Central

limit theorems (CLTs) for linear spectral statistics have also been derived (Gao et al.,

2017). A separate line of work studies the maximum absolute off-diagonal entry of sam-

ple correlation matrices, referred to as “coherence” (Jiang, 2004a, Cai and Jiang, 2011,

2012), which has been proposed as a statistic for conducting independence tests; see also

Cochran et al. (1995), Mestre and Vallet (2017), and the references therein. Hero and

Rajaratnam (2011, 2012) use a related statistic to identify variables exhibiting strong

correlations, an approach referred to as “correlation screening.”

For non-trivial correlation models, however, asymptotic results for the spectra of

sample correlation matrices are quite scarce. Notably, El Karoui (2009) shows that, for

a fairly general class of covariance models with bounded spectral norm, to first order,

the eigenvalues of sample correlation matrices asymptotically coincide with those of
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sample covariance matrices with unit-variance data, generalizing earlier results of Jiang

(2004b) and Xiao and Zhou (2010). Under similar covariance assumptions, recent work

also presents CLTs for linear spectral statistics of sample correlation matrices (Mestre

and Vallet, 2017), extending the work of Gao et al. (2017). First order behavior again

coincides with that of sample covariances. However, the asymptotic fluctuations are

quite different for sample correlation matrices.

This study considers a particular class of correlation matrix models, the so-called

“spiked models,” in which a few large or small eigenvalues of the population covariance

(or correlation) matrix are assumed to be well separated from the rest (Johnstone, 2001).

Spiked covariance models are relevant in applications in which the primary covariance

information lies in a relatively small number of eigenmodes. Such applications include

collaborative signal detection in cognitive radio systems (Bianchi et al., 2009), fault de-

tection in sensor networks (Couillet and Hachem, 2013), adaptive beamforming in array

processing (Hachem et al., 2013, Vallet et al., 2015, Yang et al., 2018), and protein con-

tact prediction in biology (Cocco et al., 2011, 2013). The spectral properties of spiked

covariance models have been well studied, with precise analytical results established for

the asymptotic first-order and distributional properties of both eigenvalues and eigenvec-

tors; see, for example, Baik et al. (2005), Baik and Silverstein (2006), Paul (2007), Bai

and Yao (2008), Benaych-Georges and Nadakuditi (2011), Couillet and Hachem (2013),

Bloemendal et al. (2016). For reviews, see also Couillet and Debbah (2011, Chapter 9)

and Yao et al. (2015, Chapter 11).

Less is known about the spectrum of sample correlation matrices under spiked mod-

els. Although the asymptotic first-order behavior is expected to coincide with that of
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doi:10.5705/ss.202019.0052
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(a) Histogram of the largest sample eigenvalue
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(b) Scatter plot of sample-to-population eigenvector projections
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Figure 1: A simple simulation shows remarkable distributional differences between sample covariance

and sample correlation. From n = 200 i.i.d. Gaussian samples, xi ∈ R100, with covariance Σ =

blkdiag(Σs, I90), where (Σs)
10
i,j=1 = (r|i−j|)10i,j=1 , for r = 0.95, we compute the sample covariance

and sample correlation, and show: (a) the empirical density (normalized histogram) of the largest

sample eigenvalue, along with a Gaussian distribution with its estimated mean and standard deviation

(solid line), and (b) a scatter plot of the leading sample eigenvector, projected onto the second (x-

axis) and fourth (y-axis) population eigenvectors. A striking variance reduction is observed in the

sample correlation for both (a) and (b). A similar variance reduction is observed for different choices of

population eigenvectors in (b); the selected choice (being the second and fourth eigenvectors) facilitates

the illustration of an additional correlation effect in the sample-to-population eigenvector projections.
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the sample covariance, as a consequence of El Karoui (2009), a simple simulation reveals

striking differences in the fluctuations of both sample eigenvalues and eigenvectors; see

Figure 1.

Here, we present theoretical results to describe these observed phenomena. We ob-

tain asymptotic first-order and distribution results for the eigenvalues and eigenvectors

of sample correlation matrices under a spiked model. Paul (2007) proved theorems for

sample covariance matrices in the special case of Gaussian data. In essence, we present

analogs of these theorems for sample correlation matrices, and extend them to non-

Gaussian data. To first order, the eigenvalues and eigenvectors coincide asymptotically

with those of sample covariance matrices; however, their fluctuations can be very dif-

ferent. Indeed, for both the largest sample correlation eigenvalues (Theorem 1) and the

projections of the corresponding eigenvectors (Theorem 2), the asymptotic variances ad-

mit a decomposition into three terms. The first term is just the asymptotic variance for

sample covariance matrices generated from Gaussian data; the second adds corrections

due to non-Gaussianity, and the third captures further corrections due to data normal-

ization imposed by the sample correlation matrix. (This last amounts to normalizing

the entries of the sample covariance matrix using the sample variances). Consistent

with the example shown in Figure 1(a), in the CLT for the leading sample eigenvalues,

the sample correlation eigenvalues often show lower fluctuations—despite the variance

normalization—than those of the sample covariance eigenvalues. As seen in Figure 1(b),

the (normalized) eigenvector projections are typically asymptotically correlated, even

for Gaussian data, unlike the sample covariance setting of Paul (2007, Theorem 5).

Technical contributions: We build on and extend a set of random matrix tools for
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studying spiked covariance models. The companion manuscript (Johnstone and Yang,

2018) [JY], gives an exposition and parallel treatment for sample covariance matrices.

Important adaptations are needed here to account for the data normalization imposed by

sample correlation matrices. Among key technical contributions of our work, basic to our

main theorems, are asymptotic first-order and distributional properties for bilinear forms

and matrix quadratic forms with normalized entries, Section 4. A novel regularization-

based proof strategy is used to establish the inconsistency of eigenvector projections in

the case of “subcritical” spiked eigenvalues, Theorem 3.

Model M. Let x ∈ Rm+p be a random vector with finite (4+δ)th moment for some

δ > 0. Consider the partition

x =

 ξ
η

 .
Assume that ξ ∈ Rm has mean zero and covariance Σ, and is independent of η ∈

Rp, which has i.i.d components ηi with mean zero and unit variance. Let ΣD =

diag(σ2
1, . . . , σ

2
m) be the diagonal matrix containing the variances of ξi, and let Γ =

Σ
−1/2
D Σ Σ

−1/2
D be the correlation matrix of ξ with eigen-decomposition Γ = PLP T , where

P = [p1, . . . , pm] is the eigenvector matrix, and L = diag(`1, . . . , `m) contains the spike

correlation eigenvalues `1 ≥ . . . ≥ `m > 0.

The correlation matrix of x is therefore Γx = blkdiag(Γ, I), with eigenvalues `1, . . . , `m,1, . . . , 1,

and corresponding eigenvectors p1, . . . , pm, em+1, . . . , em+p, where pi = [pTi 0Tp ]T and ej is

the jth canonical vector (i.e., a vector of all zeros, except for a one in the jth coordinate).

Consider a sequence of i.i.d. copies of x, the first n of which fill the columns of the

(m + p) × n data matrix X = (xij). We assume m is fixed, whereas p and n increase

Statistica Sinica: Preprint 
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with

γn = p/n→ γ > 0 as p, n→∞.

Notation. Let S = n−1XXT be the sample covariance matrix, and SD = diag(σ̂2
1, . . . , σ̂

2
m+p)

be the diagonal matrix containing the sample variances. Let R = S
−1/2
D S S

−1/2
D be the

sample correlation matrix, with corresponding νth sample eigenvalue and eigenvector

satisfying

R p̂ν = ˆ̀
ν p̂ν ,

where, for later use, we partition p̂ν = [p̂Tν , v̂
T
ν ]T . Here p̂ν is the subvector of p̂ν restricted

to the first m coordinates.

For ` > 1 +
√
γ, define

ρ(`, γ) = `+ γ
`

`− 1
, ρ̇(`, γ) =

∂ρ(`, γ)

∂`
= 1− γ

(`− 1)2
.

For an index ν, for which `ν > 1 +
√
γ is a simple eigenvalue, set

ρν = ρ(`ν , γ) , ρνn = ρ(`ν , γn) , ρ̇ν = ρ̇(`ν , γ) , ρ̇νn = ρ̇(`ν , γn). (1.1)

We refer to eigenvalues satisfying `ν > 1 +
√
γ as “supercritical,” and those satisfying

`ν ≤ 1 +
√
γ as “subcritical,” with the quantity 1 +

√
γ referred to as the “phase

transition.”

To describe and interpret the variance terms in the limiting distributions to follow,

we need some definitions. Let ξ̄i = ξi/σi and κij = Eξ̄iξ̄j denote the scaled components

of ξ and their covariances; of course κii = 1. The corresponding scaled fourth-order

cumulants are

κiji′j′ = E[ξ̄iξ̄j ξ̄i′ ξ̄j′ ]− κijκi′j′ − κij′κji′ − κii′κjj′ . (1.2)
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When ξ is Gaussian, κiji′j′ ≡ 0.

The effect of variance scaling in the correlation matrix is described using additional

quadratic functions of (ξ̄i), defined by

χij = ξ̄iξ̄j, ψij = κij(ξ̄
2
i + ξ̄2j )/2 (1.3)

κ̌iji′j′ = Cov(ψij, ψi′j′)− Cov(ψij, χi′j′)− Cov(χij, ψi′j′) . (1.4)

Tensor notation: For convenience, it is useful to consider κiji′j′ and κ̌iji′j′ as entries

of four-dimensional tensor arrays κ and κ̌, respectively, and to define an additional

array Pµµ′νν′ with entries pµ,ipµ′,jpν,i′pν′,j′ . In addition, define Pν as Pνννν . Finally, for

a second array A of the same dimensions,

[Pν , A] =
∑
i,j,i′,j′

P ν
iji′j′Aiji′j′ .

2. Main results

Our first main result, proved in Section 5, gives the asymptotic properties of the largest

(spike) eigenvalues of the sample correlation matrix:

Theorem 1. Assume Model M, and that `ν > 1 +
√
γ is a simple eigenvalue. As

p/n→ γ > 0,

(i) ˆ̀
ν

a.s.−−→ ρν , (2.5)

(ii)
√
n(ˆ̀

ν − ρνn)
D−→ N(0, σ̃2

ν),

where

σ̃2
ν = 2ρ̇ν`

2
ν + ρ̇2ν [Pν , κ] + ρ̇2ν [Pν , κ̌]. (2.6)

Statistica Sinica: Preprint 
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Centering at ρνn rather than at ρν is important. If, for example, γn = γ + an−1/2, then

√
n(ˆ̀

ν − ρν)
D−→ N(a`ν(`ν − 1)−1, σ̃2

ν),

and we see a limiting shift. Furthermore, it may also be beneficial to consider σ̃2
νn instead

of σ̃2
ν , obtained by replacing ρ̇ν with ρ̇νn in (2.6), such that

√
n(ˆ̀

ν − ρνn)/σ̃νn
D−→ N(0, 1).

The asymptotic first-order limit in (i), which follows as an easy consequence of

El Karoui (2009), coincides with that of the νth largest eigenvalue of a sample covariance

matrix computed from data with population covariance Γ (Paul, 2007). This implies

that, when constructing R, normalizing by the sample variances has no effect on the

leading eigenvalues, at least to first order.

However, key differences are seen when looking at the asymptotic distribution, given

in (ii), and in the variance formula (2.6) in particular. This can be readily interpreted.

The first term corresponds to the variance in the Gaussian-covariance case of Paul (2007),

again for samples with covariance Γ. The second provides a correction of that result for

non-Gaussian data, see the companion article [JY]. The third term describes the contri-

bution specific to sample correlation matrices, representing the effect of normalizing the

data by the sample variances. This term is often negative, and is evaluated explicitly

for Gaussian data in Corollary 1 below, proved in the Supplementary Material, S1.1.

Corollary 1. For ξ Gaussian, the asymptotic variance in Theorem 1 simplifies to

σ̃2
ν = 2`2ν ρ̇ν

[
1− ρ̇ν

(
2`ν trP 4

D,ν − tr (PD,νΓPD,ν)
2
)]
,

where PD,ν = diag(pν,1, . . . , pν,m).

Statistica Sinica: Preprint 
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Thus, computing the sample correlation results in the asymptotic variance being

scaled by 1− ρ̇ν∆ν , relative to the sample covariance, where

∆ν = 2`ν trP 4
D,ν − tr (PD,νΓPD,ν)

2 = 2`ν
∑
i

p4ν,i −
∑
i,j

(pν,i κij pν,j)
2

is often positive, implying that spiked eigenvalues of the sample correlation often exhibit

a smaller variance than those of the sample covariance. Indeed, such variance reduction

occurs iff ∑
i,j

(pν,i κij pν,j)
2 < 2`ν

∑
i

p4ν,i =
∑
i,j

pν,i κij pν,j(p
2
ν,i + p2ν,j), (2.7)

with the last identity following from the fact that `νpν,i =
∑

j κij pν,j. Condition (2.7),

and variance reduction, holds in the following cases:

(i) both Γ and pν have nonnegative entries, or

(ii) 2`ν
∑

i p
4
ν,i > 1, or

(iii) 2`ν > `21.

In case (i), the inequalities 0 ≤ pν,iκijpν,j ≤ 2pν,ipν,j ≤ p2ν,i + p2ν,j yield (2.7). Note

that if Γ has nonnegative entries, then the Perron–Frobenius theorem establishes the

existence of an eigenvector with nonnegative components for `1; furthermore, if Γ has

positive entries, by the same theorem, `1 is simple and associated with an eigenvector

with positive components. Case (ii) follows from
∑

i,j(pν,i κij pν,j)
2 ≤

∑
i,j(pν,i pν,j)

2 = 1,

and holds if `ν > m/2, because
∑

i p
4
ν,i ≥ 1/m. Case (iii) follows from the inequalities

2p2ν,ip
2
ν,j ≤ p4ν,i + p4ν,j and

∑
j κ

2
ij = (Γ2)ii ≤ ‖Γ2‖ = `21. Note that this is rather special,

in that it has nothing to do with eigenvectors, and a necessary condition for it to hold

is `1 ≤ 2.

Statistica Sinica: Preprint 
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Condition (2.7) can fail, however. For example, for even m and r ∈ (0, 1), consider

Γ =

 1 −r

−r 1

⊗ 1m/21
T
m/2,

where 1m/2 is the (m/2)-dimensional vector of all ones, which corresponds to two neg-

atively correlated groups of identical random vectors. This has simple supercritical

eigenvalues `1 = (1 + r)m/2 and `2 = (1 − r)m/2 when m > 2(1 +
√
γ)/(1 − r), with

p2ν,i = m−1 for ν = 1, 2. One finds that ∆2 = (1 − 2r − r2)/2 < 0 for r >
√

2 − 1,

although ∆1 > 0 because `1 > m/2, which implies case (ii).

We turn now to the eigenvectors. Again, fix an index ν for which `ν > 1 +
√
γ

is a simple eigenvalue of Γ, with corresponding eigenvector pν = [pTν 0Tp ]T . Recall that

p̂ν = [p̂Tν v̂
T
ν ]T is the νth sample eigenvector of R, and let aν = p̂ν/‖p̂ν‖ be the corre-

sponding normalized subvector of p̂ν , restricted to the first m coordinates. The next

result establishes a limit for the eigenvector projection 〈p̂ν , pν〉, and a CLT for the nor-

malized cross-projections P Taν = [pT1 aν , . . . , p
T
maν ]

T ; see Sections 6.1 and 6.2.

Theorem 2. Assume Model M, and that `ν > 1 +
√
γ is a simple eigenvalue. Then, as

p/n→ γ > 0,

(i) 〈p̂ν , pν〉2
a.s.−−→ ρ̇ν`ν/ρν ,

(ii)
√
n(P Taν − eν)

D−→ N(0,Σν),

where Σν = DνΣ̃νDν with

Dν =
m∑
k 6=ν

(`ν − `k)−1ekeTk (2.8)

Σ̃ν,kl = ρ̇−1ν `k`ν δk,l + [Pkνlν , κ] + [Pkνlν , κ̌], (2.9)

Statistica Sinica: Preprint 
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where δk,l = 1 if k = l, and zero otherwise.

The CLT result in (ii) can be rephrased in terms of the entries of aν , for which we

readily obtain
√
n(aν − pν)

D−→ N(0, PΣνP
T ); note that Σν has zeros in the νth row and

the νth column.

As for the eigenvalues, Theorem 2 shows that the spiked eigenvectors of sample cor-

relation matrices exhibit the same first-order behavior as those of the sample covariance

(Paul, 2007). The difference again lies in the asymptotic fluctuations, captured by the

covariance matrix Σν . Note that this is decomposed as a product of Dν—a diagonal

matrix—and the matrix Σ̃ν , which involves the three terms in (2.9). These terms have

similar interpretations as those discussed previously in (2.6). That is, the first term

captures the asymptotic fluctuations for a Gaussian-covariance model (Paul, 2007), the

second term captures the effect of non-Gaussianity in the covariance case [JY], and the

third term captures information specific to the correlation case, representing fluctua-

tions due to sample variance normalization. Note that only the first term is diagonal in

general, suggesting that the eigenvector projections may be asymptotically correlated,

as seen earlier in Figure 1(b), right panel. This holds also for Gaussian data, evaluated

explicitly in Corollary 2 below; see Supplementary Material, S1.2, for the proof. We note

an interesting contrast with the eigenvector projections for covariance matrices (Paul,

2007), described only by the leading term in (2.9).

Corollary 2. For ξ Gaussian, the asymptotic covariance in Theorem 2 reduces to Σν =

DνΣ̃νDν,

Σ̃ν =
`ν
ρ̇ν
L+ (`νI + L)

(
1
2
Z − `νY

)
(`νI + L) + `ν(`

2
νY − LYL) ,

where Z = P TPD,ν(Γ◦Γ)PD,νP , Y = P TP 2
D,νP , and ◦ denotes the Hadamard product.

Statistica Sinica: Preprint 
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Thus, for Gaussian data, the entries of the asymptotic covariance matrix are given

by (for k, l 6= ν)

Σν,kl = (`ν − `k)−1(`ν − `l)−1
[
`ν
ρ̇ν
`kδk,l + (`ν + `k)(`ν + `l)

Zkl
2
− `ν (`ν(`k + `l) + 2`k`l)Ykl

]
.

Consider now the subcritical case in which ν is such that 1 < `ν ≤ 1 +
√
γ. Let

pν denote the corresponding population eigenvector, and let ˆ̀
ν and p̂ν denote the cor-

responding sample eigenvalue and eigenvector, respectively. With proofs deferred to

Sections 5.1 and 6.3, we have the following result:

Theorem 3. Assume Model M, and that 1 < `ν ≤ 1+
√
γ is a simple eigenvalue. Then,

as p/n→ γ > 0,

(i) ˆ̀
ν

a.s.−−→ (1 +
√
γ)2 ,

(ii) 〈p̂ν , pν〉2
a.s.−−→ 0.

Once again, the asymptotic first-order limits of the sample eigenvalue and its associated

eigenvector are the same as those obtained for the sample covariance (Paul, 2007).

Recall that our high-dimensional results assume an asymptotic regime where p/n→

γ > 0, as opposed to the classical regime where p is fixed and n→∞. The case of fixed

p corresponds to γ = 0 and the spectral properties of the sample correlation matrix are

well understood; see, for example, Girshick (1939), Konishi (1979), Fang and Krishnaiah

(1982), Schott (1991), Kollo and Neudecker (1993), and Boik (2003). When γ = 0, the

function ρ(`) reduces to the identity. Indeed, for fixed p, there is no high-dimensional

component η in Model M, and hence no biasing effect on ρ(`, γ) that occurs when γ > 0.

In particular, for fixed p there is no counterpart to our Theorem 3.
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To summarize, in comparison to the high-dimensional (p/n → γ > 0) sample co-

variance setting, our results for the spiked eigenvalues and eigenvectors of sample corre-

lation matrices confirm that the first-order asymptotic behavior is indeed equivalent to

that of sample covariance matrices, in agreement with previous results and observations

(El Karoui, 2009, Mestre and Vallet, 2017). While the eigenvalue limits in Theorem 1

and Theorem 3 follow as a straightforward consequence of El Karoui (2009), the eigen-

vector results of Theorem 2-(i) and Theorem 3-(ii) do not. In contrast to the first-order

equivalences, important differences arise in the fluctuations of both the eigenvalues and

eigenvectors, as shown by the asymptotic distributions of Theorem 1-(ii) and Theorem

2-(ii).

We illustrate these differences with a simple example having covariance Γ = (1 −

r)Im + r1m1Tm, where r ∈ [0, 1] ; that is, a model with unit variances and constant

correlation r across all components. Moreover, ξ is assumed to be Gaussian for simplicity.

In this setting, L = diag(`1, 1− r, . . . , 1− r), where `1 = 1 + r(m− 1) is supercritical iff

r >
√
γ/(m− 1). Consider the largest sample eigenvalue ˆ̀

1 in such a supercritical case.

From Corollary 1, the asymptotic variances for the sample covariance and the sample

correlation can be computed, yielding

σ2
1 = 2`21ρ̇1, σ̃2

1 = σ2
1(1− ρ̇1∆),

respectively, with ∆ = 2`1 trP 4
D − tr (PDΓPD)2, and where

PD , PD,1 = m−1/2Im, ρ̇1 = 1− γ

r2(m− 1)2
.

Figure 2(a) plots these asymptotic variances versus r for various (γ,m). Indeed, the

variance (fluctuation) for the sample correlation is consistently smaller than for the
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sample covariance. The difference is striking, becoming extremely large as r ↗ 1.

Similar trends are observed for various choices of m and γ, being more pronounced for

higher m, while not much affected by varying γ. This may be understood from the fact

that, after writing ∆ = r(2− r) + (1− r)2m−1 = 1− (1− r)2(1−m−1),

σ̃2
1

σ2
1

= 1− ρ̇1∆→


γ

(m− 1)2
as r → 1, m fixed

(1− r)2 as m→∞, r fixed.

Turn now to the fluctuations of the leading sample eigenvector, in the same setting

as above. Note that, in Corollary 2, for this particular case, one can deduce from

P TΓP = L that

Z = m−1(1− r2)Im + r2e1e
T
1 , Y = m−1Im.

Also from Corollary 2, the asymptotic variances for the normalized sample-to-population

eigenvector projection pT2 a1, in the sample covariance and sample correlation cases, are

computed as

Σcov
1,22 =

`1`2
(rm)2ρ̇1

, Σ1,22 = Σcov
1,22 −

ζ

(rm)2
`1`2(`1 + `2)

m
,

respectively, where ζ = 1− r + 1
2
(1 + r)(1 + 1−r

rm
)−1, and we recall that `1 = 1− r + rm

and `2 = 1 − r. These variances are numerically evaluated in Figure 2(b) for the same

parameter choices as before and, again, as functions of r. Note, however, that for better

visual appreciation, the range of r has been restricted to supercritical values sufficiently

above the critical point
√
γ/(m− 1), because the variance explodes at that point. The

comparative evaluation again shows smaller variances for the sample correlation. The

variance reduction here is less visible in the graphs, because both Σ1,22 and Σcov
1,22 vanish
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(a) Largest sample eigenvalue ˆ̀
1
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(b) Sample-to-population eigenvector projection pT2 a1
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Figure 2: Differences in the fluctuations of sample eigenvalues and eigenvectors for an example Gaussian

model with Γ = (1−r)Im+r1m1Tm. Asympotic variances are shown for (a) the largest sample eigenvalue

ˆ̀
1, and (b) the normalized sample-to-population eigenvector projection pT2 a1.

as r → 1. The ratio, however, behaves quite similarly to the variance ratio σ̃2
1/σ

2
1:

Σ1,22

Σcov
1,22

= 1− ζρ̇1
(`1 + `2)

m
→


γ

(m− 1)2
as r → 1, m fixed

(1− r)(1− r/2) as m→∞, r fixed.

We end the discussion of our main results with a few remarks about possible ex-

tensions. Our results assume that `ν > 1 is a simple eigenvalue, but extensions for

small spikes with `ν < 1 and for spikes with multiplicities should be possible. Analogous
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results for eigenvalues have been obtained for sample covariance matrices for `ν < 1,

including multiplicities greater than one (e.g., see Bai and Yao (2008)), giving reason

to expect corresponding results for correlation matrices. Extensions of our results for

eigenvalues and eigenvectors of sample correlation matrices for simple `ν < 1 should be

fairly straightforward, though the cases γ < 1, γ = 1, and γ > 1 would need separate

treatment. Extensions for spikes with multiplicities are also possible, but in this case the

eigenvectors are not well defined and one would need to consider subspace projections,

requiring non-trivial modifications of our technical arguments.

The remainder of the paper proceeds as follows. First, in Section 3, we introduce key

quantities and identities used in the derivations. Section 4 presents necessary asymptotic

properties for bilinear forms and matrix quadratic forms with normalized entries, with

the corresponding proofs relegated to the Supplementary Material, Section S3. These

properties provide a foundation for describing the asymptotic convergence and distribu-

tion of eigenvalues and eigenvectors of sample correlation matrices, derived in Sections

5 and 6 respectively.

As already noted, a parallel treatment for the simpler case of covariance matrices is

given in a supplementary manuscript [JY]. This aims at a unified exposition of known

spectral properties of spiked covariance matrices as a benchmark for the current work,

along with additional citations to the literature.

3. Preliminaries

We begin with a block representation and some associated reductions for the sample

correlation matrix R. These are well known in the covariance matrix setting. As with
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the partition of x in Model M, consider

X =

X1

X2

 , X1 ∈ Rm×n, X2 ∈ Rp×n.

Write SD = blkdiag(SD1, SD2), with SD1 containing the sample variances correspond-

ing to ξ, and SD2 containing those corresponding to η. Define the “normalized” data

matrices X̄1 = S
−1/2
D1 X1 and X̄2 = S

−1/2
D2 X2, such that

R = n−1

X̄1X̄
T
1 X̄1X̄

T
2

X̄2X̄
T
1 X̄2X̄

T
2

 =

R11 R12

R21 R22

 ; p̂ν =

p̂ν
v̂ν

 .
This partitioning of the eigenvector equation R p̂ν = ˆ̀

ν p̂ν , along with p̂ν = [p̂Tν , v̂
T
ν ]T ,

yields

R11p̂ν +R12v̂ν = ˆ̀
ν p̂ν

R21p̂ν +R22v̂ν = ˆ̀
ν v̂ν .

From the second equation, v̂ν = (ˆ̀
νIp − R22)

−1R21p̂ν . Substituting this into the first

equation yields

K(ˆ̀
ν)p̂ν = ˆ̀

ν p̂ν , with K(t) = R11 +R12(tIp −R22)
−1R21.

Thus, ˆ̀
ν is an eigenvalue of K(ˆ̀

ν), with associated eigenvector p̂ν ; this is central to our

derivations. Note that K(ˆ̀
ν) is well defined if ˆ̀

ν is well separated from the eigenvalues

of R22; Section 5.1 shows that this occurs with probability one for all large n when `ν is

supercritical. Furthermore, the normalization condition, p̂Tν p̂ν + v̂Tν v̂ν = 1 yields

p̂Tν (Im +Qν)p̂ν = 1, Qν = R12(ˆ̀
νIp −R22)

−2R21.
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Phrased in terms of the signal-space normalized eigenvector aν = p̂ν/‖p̂ν‖, we have

K(ˆ̀
ν)aν = ˆ̀

νaν , aTν (Im +Qν)aν = ‖p̂ν‖−2. (3.10)

Note also that the sample-to-population inner product can be rewritten as

〈p̂ν , pν〉 = 〈p̂ν , pν〉 = ‖p̂ν‖〈aν , pν〉. (3.11)

In the derivation of our CLT results, we use an eigenvector perturbation formula with

quadratic error bound given in [JY, Lemma 13], itself a modification of the arguments

in Paul (2007). This yields the key expansion

aν − pν = −RνnDνpν + rν , (3.12)

where

Rνn =
`ν
ρνn

m∑
k 6=ν

(`k − `ν)−1pkpTk , Dν = K(ˆ̀
ν)− (ρνn/`ν)Γ, ‖rν‖ = O(‖Dν‖2).

The derivations of our eigenvalue and eigenvector results, presented in Sections 5

and 6 respectively, take (3.10), (3.11) and (3.12) as points of departure, and rely on

asymptotic properties of the key objects K(ˆ̀
ν) and Qν . In particular, K(t) can be

expressed as the random matrix quadratic form

K(t) = n−1X̄1Bn(t)X̄T
1 , (3.13)

where, using the Woodbury identity,

Bn(t) = In + n−1X̄T
2 (tIp −R22)

−1X̄2

= t(tIn − n−1X̄T
2 X̄2)

−1.

Thus, our key objects are random quadratic forms involving the normalized data matrices

X̄1 and X̄2. The asymptotic properties of these forms are foundational to our results,

and are presented next.
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4. Quadratic forms with normalized entries

In this section, we establish the first-order (deterministic) convergence and a CLT for

matrix quadratic forms of the type n−1X̄1BnX̄
T
1 , where Bn is a matrix with bounded

spectral norm. While being essential to our purposes, some of the technical results may

be of independent interest; thus, we first present the general results, and then apply

these in the context of Model M.

4.1 First-order convergence

To establish the first-order convergence, we first require some results on bilinear forms

involving correlated random vectors of unit length. A main technical result (see Supple-

mentary Material, S3.1) is the following:

Lemma 1. Let B be an n × n nonrandom symmetric matrix, and let x, y ∈ Rn be

random vectors of i.i.d. entries with mean zero, variance one, E|xi|l,E|yi|l ≤ νl, and

E[xiyi] = ρ. Let x̄ =
√
nx/‖x‖ and ȳ =

√
ny/‖y‖. Then, for any s ≥ 1,

E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s ≤ Cs [n−s (ν2s trBs +
(
ν4 trB2

)s/2)
+ ‖B‖s

(
n−s/2ν

s/2
4 + n−s+1ν2s

)]
,

where Cs is a constant depending only on s.

This is a generalization of Gao et al. (2017, Lemma 5), which established a cor-

responding bound for normalized quadratic forms. Lemma 1 leads to the following

first-order convergence result:

Corollary 3. Let x, y be random vectors of i.i.d. entries with mean zero, variance

one, E|xi|4+δ,E|yi|4+δ < ∞ for some δ > 0, and E [xiyi] = ρ. Define x̄ =
√
nx/‖x‖

and ȳ =
√
ny/‖y‖, and let Bn be a sequence of n × n symmetric matrices, with ‖Bn‖
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bounded. Then,

n−1x̄TBnȳ − n−1ρ trBn
a.s.−−→ 0.

Proof. Because the (4 + δ)th moment and ‖Bn‖ are bounded, from Lemma 1,

E
∣∣n−1x̄TBnȳ − n−1ρ trBn

∣∣2+δ/2 ≤ O(n−(1+δ/4)).

The convergence then follows from Markov’s inequality and the Borel–Cantelli lemma.

We now apply this to our Model M with random matrices Bn(X̄2), independent of

X̄1:

Lemma 2. Assume Model M, and suppose that Bn = Bn(X̄2) is a sequence of random

symmetric matrices, for which ‖Bn‖ is Oa.s.(1). Then,

n−1X̄1Bn(X̄2)X̄
T
1 − n−1 trBn(X̄2)Γ

a.s.−−→ 0.

Proof. This follows from Fubini’s theorem. Specifically, one may use the arguments in

the proof of [JY, Lemma 5], applying Corollary 3, and noting that X̄1 is independent of

Bn(X̄2).

4.2 Central Limit Theorem

To establish our main matrix quadratic-form CLT result, we first derive a CLT for scalar

bilinear forms involving normalized random vectors. To this end, we must introduce
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some further notation. Consider zero-mean random vectors (x, y) ∈ RM × RM , with

Cov

x
y

 = C =

Cxx Cxy

Cyx Cyy

 ,

where Cxy
ll′ = E [xlyl′ ]. Assume Cxx

ll = Cyy
ll = 1; that is, all components of the x and y

vectors have unit variance and ρl = Cxy
ll = E [xlyl]. We first introduce notation for some

quadratic functions of xl, yl. Let z, w ∈ RM , with

zl = xlyl, wl = ρl(x
2
l + y2l )/2, Czz = Cov(z), Cwz = Cov(z, w), etc.

Let X = (xli)M×n and Y = (yli)M×n be data matrices based on n i.i.d. observations

of (x, y), and define the “normalized” data matrices X̄ = Σ̂
−1/2
x X and Ȳ = Σ̂

−1/2
y Y ,

where Σ̂x = diag(σ̂2
x1
, . . . , σ̂2

xM
), Σ̂y = diag(σ̂2

y1
, . . . , σ̂2

yM
), and σ̂2

xl
= n−1

∑n
i=1 x

2
li, σ̂

2
yl

=

n−1
∑n

i=1 y
2
li. Then, we use the following notation for the rows x̄Tl· and ȳTl· of the normal-

ized data matrices

X̄ = (x̄li)M×n =


x̄T1·

...

x̄TM ·

 , Ȳ = (ȳli)M×n =


ȳT1·

...

ȳTM ·

 .
With this setup, we have the following result, proved in the Supplementary Material,

S3.2:

Proposition 1. Let Bn = (bn,ij) be random symmetric n × n matrices, independent of

X, Y , such that for some finite β, ‖Bn‖ ≤ β for all n, and

n−1
n∑
i=1

b2n,ii
p−→ ω , n−1 trB2

n

p−→ θ , (n−1 trBn)2
p−→ φ ,

all finite. In addition, define Zn ∈ RM , with components

Zn,l = n−1/2
[
x̄Tl·Bnȳl· − ρl trBn

]
.
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Then, Zn
D−→ NM(0, D), with

D = (θ − ω)J + ωK1 + φK2 = θJ + ωK + φK2, (4.14)

where K = K1 − J and J,K1, K2 are matrices defined by

J = Cxy ◦ Cyx + Cxx ◦ Cyy

K1 = Czz (4.15)

K2 = Cww − Cwz − Czw.

The entries of K are fourth-order cumulants of x and y:

Kll′ = E(xlylxl′yl′)− E(xlyl)E(xl′yl′)− E(xlyl′)E(ylxl′)− E(xlxl′)E(ylyl′). (4.16)

Hence, K vanishes if x, y are Gaussian.

The corresponding result with unnormalized vectors is established in [JY Theorem

10]. The terms θJ + ωK appear in that case, and the additional term φK2 reflects the

normalization in x̄l· and ȳl·. As in [JY], the proof is based on the martingale CLT, rather

than the moment method used in Bai and Yao (2008), which stated a similar result for

quadratic forms involving unnormalized random vectors.

While potentially of independent interest, Proposition 1 is important for our pur-

poses through its application to Model M.

Proposition 2. Assume Model M, and consider Bn as in Proposition 1. Then,

Wn = n−1/2
[
X̄1BnX̄

T
1 − ( trBn)Γ

] D−→ W,

where W is a symmetric m × m Gaussian matrix with entries Wij, mean zero, and

covariances given by

Cov[Wij,Wi′j′ ] = θ(κij′κji′ + κii′κjj′) + ωκiji′j′ + φκ̌iji′j′ , (4.17)
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for i ≤ j and i′ ≤ j′.

Proof. The result follows from Proposition 1 by turning the matrix quadratic form

X̄1BnX̄
T
1 into a vector of bilinear forms; see, for example, [JY, Proposition 6] and Bai

and Yao (2008, Proposition 3.1). Specifically, use an index l for the M = m(m + 1)/2

pairs (i, j), with 1 ≤ i ≤ j ≤ m. Build the random vectors (x, y) for Proposition 1 as

follows: if l = (i, j), then set xl = ξi/σi and yl = ξj/σj. In the resulting covariance

matrix C for (x, y), if also l′ = (i′, j′),

Cxy
ll′ = E[ξiξj′ ]/(σiσj′) = κij′ , Cyx

ll′ = κji′ , Cxx
ll′ = κii′ , Cyy

ll′ = κjj′

and, in particular, ρl = Cxy
ll = κij and ρl′ = κi′j′ , whereas Cxx

ll = Cyy
ll = 1. Component

Wn,ij corresponds to component Zl in Proposition 1. Thus, we conclude that Wn
D−→ W ,

where W is a Gaussian matrix with zero mean and Cov(Wij,Wi′,j′) = Dll′ , given by

Proposition 1. It remains to interpret the quantities in (4.14) in terms of Model M.

Substituting xl = ξ̄i and yl = ξ̄j into (4.16) and chasing definitions, we obtain Jll′ =

κij′κji′+κii′κjj′ andKll′ = κiji′j′ . Observing that zl = xlyl = χij and wl = ρl(x
2
l +y

2
l )/2 =

ψij, we similarly find that K2,ll′ = κ̌iji′j′ .

5. Proofs of the eigenvalue results

In this section, we derive the main eigenvalue results, presented in Theorem 1 and

Theorem 3-(i).

5.1 Preliminaries

Convergence properties of the eigenvalues of R22. It is well known that the

empirical spectral density (ESD) of S22 converges weakly a.s. to the Marchenko–Pastur
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(MP) law Fγ, and that the extreme non-trivial eigenvalues converge to the edges of the

support of Fγ. For the sample correlation case, Jiang (2004b) shows that the same is

true for R22. That is, the empirical distribution of the eigenvalues µ1 ≥ . . . ≥ µp of the

“noise” correlation matrix R22 = n−1X̄2X̄
T
2 converges weakly a.s. to the MP law Fγ,

supported on [aγ, bγ] = [(1−√γ)2, (1 +
√
γ)2] if γ ≤ 1, and on {0} ∪ [aγ, bγ] otherwise.

Furthermore, the ESD of the n× n companion matrix Cn = n−1X̄T
2 X̄2, denoted by Fn,

converges weakly a.s. to the “companion MP law” Fγ = (1− γ)1[0,∞) + γFγ, where 1A

denotes the indicator function on set A.

In addition, Jiang (2004b) shows that

µ1
a.s.−−→ bγ and µp∧n

a.s.−−→ aγ. (5.18)

Based on these results, if fn → f uniformly as continuous functions on the closure I of

a bounded neighborhood of the support of Fγ, then:

∫
fn(x)Fn(dx)

a.s.−−→
∫
f(x)Fγ(dx). (5.19)

If supp(Fn) is not contained in I, then the left side integral may not be defined. However,

such an event occurs for at most finitely many n with probability one.

Almost sure limit of ˆ̀
ν. The statements in Theorem 1-(i) and Theorem 3-(i)

follow easily from known results. Specifically, denote the νth eigenvalue of the sample

covariance S by λ̂ν . The almost sure limits

λ̂ν
a.s.−−→


ρν , `ν > 1 +

√
γ

(1 +
√
γ)2, 1 < `ν ≤ 1 +

√
γ

(5.20)

were established in Baik and Silverstein (2006). From the proof of El Karoui (2009,
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Lemma 1),

max
i=1,...,m

|λ̂i − ˆ̀
i|

a.s.−−→ 0.

Therefore, the same almost sure limits as (5.20) hold for ˆ̀
ν .

High-probability events Jnε, Jnε1. When necessary, we may confine attention

to the event Jnε = {ˆ̀ν > min(ρν , ρνn) − ε, µ1 ≤ bγ + ε} or Jnε1 = {µ1 ≤ bγ + ε}, with

ε > 0 chosen such that ρν− bγ ≥ 3ε, because from (2.5) (proven above) and (5.18), these

events occur with probability one for all large n.

Asymptotic expansion of K(ˆ̀
ν). We establish an asymptotic stochastic expan-

sion for the quadratic form K(ˆ̀
ν). Specifically, using the decomposition

K(ˆ̀
ν) = K(ρνn) +

[
K(ˆ̀

ν)−K(ρνn)
]
, (5.21)

we show that

K(ρνn)
a.s.−−→ −ρν m(ρν ; γ) Γ = (ρν/`ν)Γ (5.22)

and

K(ˆ̀
ν)−K(ρνn) = −(ˆ̀

ν − ρνn) [c(ρν)Γ + oa.s.(1)], (5.23)

where, for t /∈ supp(Fγ),

m(t; γ) =

∫
(x− t)−1Fγ(dx), c(t) =

∫
x(t− x)−2Fγ(dx).

Here, m is the Stieltjes transform of the companion distribution Fγ.

In establishing (5.22), start by taking sufficiently large n such that |ρνn − ρν | ≤ ε,

with ε defined as above. For such n, on Jnε1, we have

‖Bn(ρνn)‖ ≤ ρν + ε

ε
.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0052



5 PROOFS OF THE EIGENVALUE RESULTS 28

Because Jnε1 holds with probability one for all large n, ‖Bn(ρνn)‖ = Oa.s.(1) and, there-

fore, it follows from Lemma 2 that

K(ρνn)− n−1 trBn(ρνn) Γ
a.s.−−→ 0 .

In addition, (5.19) yields

n−1 trBn(ρνn) =

∫
ρνn(ρνn − x)−1Fn(dx)

a.s.−−→
∫
ρν(ρν − x)−1Fγ(dx) = −ρν m(ρν ; γ) .

Explicit evaluation gives m(ρν ; γ) = −1/`ν , [JY, Appendix A], and (5.22) follows.

To establish (5.23), we start by recalling that Cn = n−1X̄T
2 X̄2, and introduce

the resolvent notation Z(t) = (tIn − Cn)−1, such that Bn(t) = tZ(t) and K(t) =

n−1X̄1tZ(t)X̄T
1 . From the resolvent identity, that is, A−1 − B−1 = A−1(B − A)B−1

for square invertible A and B, and noting that tZ(t) = CnZ(t) + I from the Woodbury

identity, we have, for t1, t2 > bγ,

t1Z(t1)− t2Z(t2) = −(t1 − t2)CnZ(t1)Z(t2)

and, therefore,

K(ˆ̀
ν)−K(ρνn) = −(ˆ̀

ν − ρνn)n−1X̄1CnZ(ˆ̀
ν)Z(ρνn)X̄T

1 .

Moreover, again by the resolvent identity, Z(ˆ̀
ν) = Z(ρνn)−(ˆ̀

ν−ρνn)Z(ˆ̀
ν)Z(ρνn), which

yields

K(ˆ̀
ν)−K(ρνn) = −(ˆ̀

ν−ρνn)n−1X̄1Bn1(ρνn, ρνn)X̄T
1 + (ˆ̀

ν−ρνn)2n−1X̄1Bn2(ˆ̀
ν , ρνn)X̄T

1 ,

(5.24)

with Bnr(t1, t2) defined as

Bnr(t1, t2) = CnZ(t1)Z
r(t2) . (5.25)
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We now characterize the first-order behavior of the two matrix quadratic forms in (5.24).

For the first, we simply mirror the arguments of the proof of (5.22) to obtain

n−1X̄1Bn1(ρνn, ρνn)X̄T
1

a.s.−−→ c(ρν)Γ .

For the second, we again apply similar reasoning, operating on the event Jnε. Specifically,

it is easy to establish that on Jnε, and for n sufficiently large that |ρνn − ρν | ≤ ε,

‖Bn2(ˆ̀
ν , ρνn)‖ is bounded. Hence, ‖Bn2(ˆ̀

ν , ρνn)‖ = Oa.s.(1), and it follows from Lemma 2

and (5.19) that

n−1X̄1Bn2(ˆ̀
ν , ρνn)X̄T

1 = Oa.s.(1).

The expansion in (5.23) is obtained by combining the latter two equations with (5.24).

CLT of K(ρνn). We now specialize Proposition 2 for the matrix quadratic form

K(ρνn).

Proposition 3. Assume Model M, and define ρνn by (1.1) and K(ρνn) by (3.13). Then,

Wn(ρνn) =
√
n
[
K(ρνn)− n−1 trBn(ρνn)Γ

] D−→ W ν ,

which is a symmetric Gaussian random matrix with entries W ν
ij, mean zero, and covari-

ances given by

Cov[W ν
ij,W

ν
i′j′ ] =

ρ2ν
`2ν ρ̇ν

(κij′κji′ + κii′κjj′) +
ρ2ν
`2ν

(κiji′j′ + κ̌iji′j′), (5.26)

where ρν and ρ̇ν are defined in (1.1), and the terms in parentheses are defined in (1.2)

and (1.4).

Proof. Recall that Jnε1 = {µ1 ≤ bγ + ε}, and consider sufficiently large n such that

ρνn > ρν − ε. Then, we may apply Proposition 2 with Bn = Bn(ρνn)1Jnε1 , which is
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independent of X̄1, and for which ‖Bn‖ is bounded. Specifically, the result follows

by applying Proposition 2 to Wn(ρνn)1Jnε1 , along with the fact that 1Jnε1
a.s.−−→ 1, and

particularizing ω, θ, and φ in (4.17). These quantities, denoted respectively by ων , θν ,

and φν , can be computed as in [JY, Appendix A], yielding

ων = φν =
(`ν − 1 + γ)2

(`ν − 1)2
=
ρ2ν
`2ν

, θν =
(`ν − 1 + γ)2

(`ν − 1)2 − γ
=
ων
ρ̇ν
.

Tightness properties. Lastly, we establish some tightness properties essential to

the derivation of our second-order results.

We first establish a refinement of (5.22). Define K0(ρ; γ) := −ρm(ρ; γ)Γ, such that

(5.22) is rewritten as K(ρνn)
a.s.−−→ K0(ρν ; γ). Set gρ(x) = ρ(ρ− x)−1, and write

trBn(ρ) =
n∑
i=1

ρ(ρ− µi)−1 =
n∑
i=1

gρ(µi).

In addition, introducing

Gn(g) :=
n∑
i=1

g(µi)− n
∫
g(x)Fγn(dx),

we have

K(ρ)−K0(ρ; γn) = K(ρ)− n−1 trBn(ρ)Γ + ρn−1
[ n∑
i=1

(ρ− µi)−1 − n
∫

(ρ− x)−1Fγn(dx)

]
Γ

= n−1/2Wn(ρ) + n−1Gn(gρ)Γ. (5.27)

Lemma 3. Assume that Model M holds, and that `ν > 1 +
√
γ is simple. For some
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b > ρ1, let I denote the interval [bγ + 3ε, b]. Then,

{Gn(gρ), ρ ∈ I} is uniformly tight, (5.28)

{n1/2[K(ρ)−K0(ρ; γn)], ρ ∈ I} is uniformly tight, (5.29)

ˆ̀
ν − ρνn = Op(n

−1/2), (5.30)

aν − pν = Op(n
−1/2). (5.31)

Proof. The proofs of (5.28)–(5.30) appear in the Supplementary Material, S2. We show

(5.31) using the expansion aν − pν = −RνnDνpν + rν , given in (3.12), from which we

recall ‖rν‖ = O(‖Dν‖2) and note that ‖Rνn‖ ≤ C and Dν = K(ˆ̀
ν) −K0(ρνn; γn). We

then have aν − pν = Op(‖Dν‖+ ‖Dν‖2). Furthermore, from

‖Dν‖ ≤ ‖K(ˆ̀
ν)−K(ρνn)‖+ ‖K(ρνn)−K0(ρνn; γn)‖,

the first term is Op(n
−1/2) by (5.23) and (5.30), as is the second term by (5.29). Hence,

‖Dν‖ = Op(n
−1/2), (5.32)

and the proof is completed.

5.2 Eigenvalue fluctuations (Theorem 1-(ii))

The proof of Theorem 1-(ii) relies on the key expansion

√
n(ˆ̀

ν − ρνn)[1 + c(ρν)`ν + op(1)] = pTνWn(ρνn)pν + op(1), (5.33)

which is obtained by combining the vector equationsK(ˆ̀
ν)aν = ˆ̀

νaν andK0(ρνn; γn)pν =

ρνnpν with expansions (5.24) for K(ˆ̀
ν) − K(ρνn) and (5.27) for K(ρνn) − K0(ρνn; γn).

Specifically, we first use [K(ˆ̀
ν)− ˆ̀

νIm]aν = 0 to obtain

pTν [K(ˆ̀
ν)− ˆ̀

νIm]pν = (aν − pν)T [K(ˆ̀
ν)− ˆ̀

νIm](aν − pν) = Op(n
−1), (5.34)
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because ‖K(ˆ̀
ν)− ˆ̀

νIm‖ = Op(1) from (5.21)–(5.23) and (2.5), and aν − pν = Op(n
−1/2)

from Lemma 3. In addition, because [K0(ρνn; γn)− ρνnIm]pν = 0, it follows that

pTν [K(ˆ̀
ν)− ˆ̀

νIm]pν = pTν [K(ˆ̀
ν)−K0(ρνn; γn)− (ˆ̀

ν − ρνn)Im]pν

= pTν [K(ˆ̀
ν)−K(ρνn)− (ˆ̀

ν − ρνn)Im]pν + pTν [K(ρνn)−K0(ρνn; γn)]pν

= −(ˆ̀
ν − ρνn)[1 + c(ρν)`ν + op(1)] + n−1/2pTνWn(ρνn)pν + op(n

−1/2),

(5.35)

where the last equality follows from (5.23), (5.27), and (5.28). Combining (5.34) and

(5.35) yields (5.33).

The asymptotic normality of
√
n(ˆ̀

ν − ρνn) now follows from Proposition 3, with

asymptotic variance

σ̃2
ν = [1 + c(ρν)`ν ]

−2 Var
[
pTνW

νpν
]

= (ρ̇ν`ν/ρν)
2
∑
i,j,i′,j′

Pνiji′j′Cov[W ν
ij,W

ν
i′j′ ],

where W ν is the m ×m symmetric Gaussian random matrix defined in Proposition 3,

with covariance Cov[W ν
ij,W

ν
i′j′ ] given by (5.26). Using this in the developed expression

for the variance above leads to

σ̃2
ν = ρ̇ν

∑
i,j,i′,j′

Pνiji′j′(κij′κji′ + κii′κjj′) + ρ̇2ν [Pν , κ+ κ̌]. (5.36)

By symmetry and the eigen equation (Γpν)i =
∑

j κijpν,j = `νpν,i, we have

∑
i,j,i′,j′

Pνiji′j′κii′κjj′ =
∑
i,j,i′,j′

Pνiji′j′κij′κji′ =
∑
i,j

pν,ipν,j(Γpν)i(Γpν)j = `2ν
∑
i,j

(pν,ipν,j)
2 = `2ν .

Therefore, the first sum in (5.36) reduces to 2ρ̇ν`
2
ν , yielding formula (2.6) of Theorem 1.

6. Proofs of the eigenvector results

We now derive the main eigenvector results, presented in Theorem 2 and Theorem 3-(ii).
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6.1 Eigenvector inconsistency (Theorem 2-(i))

The convergence result of Theorem 2-(i) follows from two facts: aν
a.s.−−→ pν and Qν

a.s.−−→

c(ρν)Γ, which are shown below. Once these facts are established, from (3.10),

‖p̂ν‖−2
a.s.−−→ pTν (Im + c(ρν)Γ)pν = 1 + c(ρν)`ν =

ρν
`ν ρ̇ν

,

which leads to

a.s. lim 〈p̂ν , pν〉2 = a.s. lim 〈p̂ν , pν〉2 = a.s. lim ‖p̂ν‖2 =
`ν ρ̇ν
ρν

.

Proof of aν
a.s.−−→ pν. This is a direct consequence of (3.12) and

Dν = K(ρνn)− (ρνn/`ν)Γ +K(ˆ̀
ν)−K(ρνn)

a.s.−−→ 0,

which follows from (5.22), (5.23), and the fact that ˆ̀
ν − ρνn

a.s.−−→ 0, given in (2.5).

Proof of Qν
a.s.−−→ c(ρν)Γ. With Ž(t) = (tIp −R22)

−1, we have

Qν = R12Ž
2(ρν)R21 +R12[Ž

2(ˆ̀
ν)− Ž2(ρν)]R21 , Qν1 +Qν2.

Rewrite Qν1 = n−1X̄1B̌n1X̄
T
1 , with B̌n1 = n−1X̄T

2 Ž
2(ρν)X̄2. On the high-probability

event Jnε1 = {µ1 ≤ bγ + ε}, with ε > 0 such that ρν − bγ ≥ 2ε, it is easily established

that ‖B̌n1‖ is bounded and, consequently, that ‖B̌n1‖ = Oa.s.(1). Hence, Lemma 2 can

be applied to Qν1. Moreover, from (5.19) and noting that

n−1 tr B̌n1 = n−1 trBn1(ρν , ρν) ,

with Bn1 defined in (5.25), we have

n−1 tr B̌n1
a.s.−−→

∫
x(ρν − x)−2Fγ(dx) = c(ρν) .
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This and Lemma 2 imply that Qν1
a.s.−−→ c(ρν)Γ.

It remains to show Qν2
a.s.−−→ 0. Using a variant of the resolvent identity, that is,

A−2 −B−2 = −A−2(A2 −B2)B−2 for square invertible A and B, we rewrite

Qν2 = −2(ˆ̀
ν − ρν)n−1X̄1B̌n2X̄

T
1 ,

with B̌n2 = n−1X̄T
2 Ž

2(ˆ̀
ν)
[
1
2
(ˆ̀
ν + ρν)I −R22

]
Ž2(ρν)X̄2. Working on the high-probability

event Jnε, it can be verified that ‖B̌n2‖ = Oa.s.(1). Thus, Lemma 2 together with (5.19)

imply that n−1X̄1B̌n2X̄
T
1 = Oa.s.(1). Because ˆ̀

ν
a.s.−−→ ρν , we conclude that Qν2

a.s.−−→ 0.

6.2 Eigenvector fluctuations (Theorem 2-(ii))

Again, we use the key expansion (3.12). Because ‖rν‖ = O(‖Dν‖2) = Op(n
−1) from

(5.32), we have

√
n(aν − pν) = −Rνn

√
nDνpν + op(1).

Furthermore, using a similar decomposition to the derivation of (5.35),

√
nDν =

√
n [K(ˆ̀

ν)−K(ρνn)] +
√
n [K(ρνn)−K0(ρνn, γn)]

= Wn(ρνn)−
√
n(ˆ̀

ν − ρνn)c(ρν)Γ + op(1),

where we use (5.23) and (5.27), along with (5.28) and (5.30) of Lemma 3. Hence, noting

that RνnΓpν = `νRνnpν = 0 from the definition of Rνn in (3.12), we have

√
n(aν − pν) = −RνnWn(ρνn)pν + op(1),

or equivalently,

√
n(P Taν − eν) = −R̃νnW̃n(ρνn)eν + op(1),
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where

R̃νn =
`ν
ρνn

m∑
k 6=ν

(`k − `ν)−1ekeTk , W̃n(ρνn) = P TWn(ρνn)P.

The CLT for P Taν now follows from Proposition 3. In particular,

√
n(P Taν − eν)

D−→ R̃νwν ∼ N(0,Σν),

where R̃ν = (`ν/ρν)Dν , recall (2.8), and wν = P TW νpν , with W ν defined in Proposi-

tion 3. The covariance matrix Σν = R̃νE[wνw
T
ν ]R̃ν = DνΣ̃νDν , with Σ̃ν = (`ν/ρν)

2E[wνw
T
ν ].

The kth component of wν is given by wν(k) = pTkW
νpν =

∑
i,j pk,iW

ν
ijpν,j and, therefore,

Σ̃ν,kl =
∑
i,j,i′,j′

pk,ipν,jpl,i′pν,j′ (`ν/ρν)
2Cov[W ν

ij,W
ν
i′j′ ] . (6.37)

Theorem 2-(ii) follows after substituting (5.26) for Cov[W ν
ij,W

ν
i′j′ ] and noting that, when

k, l 6= ν,

∑
i,j,i′,j′

pk,ipν,jpl,i′pν,j′(κii′κjj′ + κij′κji′) = pTk Γpl · pTν Γpν + pTk Γpν · pTν Γpl = δkl`k`ν .

6.3 Eigenvector inconsistency in the subcritical case (Theorem 3-(ii))

From (3.10) and (3.11), it suffices to show that aTνQνaν
a.s.−−→ ∞ in order for Theorem 3-

(ii) to hold. We establish this by showing that λmin(Qν)
a.s.−−→ ∞. The approach uses a

regularized version of Qν ,

Qνε(t) = R12[(tIp −R22)
2 + ε2Ip]

−1R21,

for ε > 0. Observe that Qν � Qνε(ˆ̀
ν), such that

lim inf λmin(Qν) ≥ lim inf λmin(Qνε(ˆ̀
ν)) = lim inf λmin(Qνε(bγ) + ∆νε),
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where ∆νε := Qνε(ˆ̀
ν)−Qνε(bγ) (Recall that ˆ̀

ν
a.s.−−→ bγ). We show that ∆νε

a.s.−−→ 0, and

Qνε(bγ)
a.s.−−→

∫
x[(bγ − x)2 + ε2]−1Fγ(dx) · Γ = cγ(ε)Γ, (6.38)

say. Because λmin(·) is a continuous function on m×m matrices, we conclude that

lim inf λmin(Qν) ≥ cγ(ε)λmin(Γ), (6.39)

and because cγ(ε) ≥ c(bγ + ε) and c(bγ + ε) ↗ ∞ as ε ↘ 0, by [JY, Appendix A], we

obtain λmin(Qν)
a.s.−−→∞. We write Qνε(t) = n−1X̄1B̌nε(t)X̄1, with

B̌nε(t) = n−1X̄T
2 [(tIp − n−1X̄2X̄

T
2 )2 + ε2Ip]

−1X̄2

= H diag{fε(µi, t)}HT ,

if we write the singular-value decomposition of n−1/2X̄2 = VM1/2HT , with M =

diag(µi)
p
i=1, and define fε(µ, t) = µ[(t − µ)2 + ε2]−1. Evidently, ‖B̌nε(t)‖ ≤ ε−2µ1 is

bounded almost surely. Thus, Lemma 2 may be applied to Qνε(bγ), and because

n−1 tr B̌nε(bγ)
a.s.−−→

∫
fε(x, bγ)Fγ(dx) = cγ(ε)

from (5.19), our claim (6.38) follows.

Now consider ∆νε. Fix a ∈ Rm such that ‖a‖2 = 1, and set b = n−1/2HT X̄T
1 a. We have

aT∆νεa =

p∑
i=1

b2i [fε(µi,
ˆ̀
ν)− fε(µi, bγ)].

Because |∂fε(µ, t)/∂t| = |2µ(t−µ)|/[(t−µ)2+ε2]2 ≤ µ/ε3, for µ, ε > 0, by the arithmetic-

mean–geometric-mean inequality, we have

|aT∆νεa| ≤ µ1ε
−3|ˆ̀ν − bγ| · ‖b‖22 = µ1ε

−3|ˆ̀ν − bγ|aTR11a ≤ µ1ε
−3|ˆ̀ν − bγ|ˆ̀1

a.s.→ 0,
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from Cauchy’s interlacing inequality for eigenvalues of symmetric matrices, Theorem 1-

(i) and Theorem 3-(i). Therefore, ∆νε
a.s.−−→ 0, and the proof of (6.39) and, hence, of

Theorem 3-(ii) is complete.

Supplementary Material

The online Supplementary Material provides proofs for the following: (i) the Gaus-

sian particularizations of our main results (Corollaries 1 and 2); (ii) the instrumental

tightness properties in Lemma 3; and (iii) the asymptotic properties of normalized bi-

linear forms in Lemma 1 and Proposition 1; see Sections S1, S2, and S3, respectively.
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Journal of Statistics (2003-2007) 66 (1), 35–48.

Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Annals

of Statistics 29 (2), 295–327.

Johnstone, I. M. and J. Yang (2018). Notes on asymptotics of sample eigenstructure for spiked models with

non-Gaussian data. arXiv:1810.10427.

Kollo, T. and H. Neudecker (1993). Asymptotics of eigenvalues and unit-length eigenvectors of sample variance

and correlation matrices. Journal of Multivariate Analysis 47 (2), 283–300.

Konishi, S. (1979). Asymptotic expansions for the distributions of statistics based on the sample correlation

matrix in principal component analysis. Hiroshima Mathematical Journal 9 (3), 647–700.

Leshem, A. and A.-J. van der Veen (2001). Multichannel detection of Gaussian signals with uncalibrated

receivers. IEEE Signal Processing Letters 8 (4), 120–122.

Liu, H., Z. Hu, A. Mian, H. Tian, and X. Zhu (2014). A new user similarity model to improve the accuracy of

collaborative filtering. Knowledge-Based Systems 56, 156–166.

Mestre, X. and P. Vallet (2017). Correlation tests and linear spectral statistics of the sample correlation matrix.

IEEE Transactions on Information Theory 63 (7), 4585–4618.

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica

Sinica 17, 1617–1642.

Pillai, N. S. and J. Yin (2012). Edge universality of correlation matrices. Annals of Statistics 40 (3), 1737–1763.

Plerou, V., P. Gopikrishnan, B. Rosenow, L. Amaral, T. Guhr, and H. Stanley (2002). A random matrix

approach to cross-correlations in financial data. Physical Review E 65, 066126.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0052



REFERENCES 41

Quadeer, A. A., R. H. Y. Louie, K. Shekhar, A. K. Chakraborty, I.-M. Hsing, and M. R. McKay (2014).

Statistical linkage analysis of substitutions in patient-derived sequences of genotype 1a Hepatitis C virus

nonstructural protein 3 exposes targets for immunogen design. Journal of Virology 88 (13), 7628–7644.

Quadeer, A. A., D. Morales-Jimenez, and M. R. McKay (2018). Co-evolution networks of HIV/HCV are modular

with direct association to structure and function. PLoS Computational Biology 14 (9), 1–29.

Ruan, D., T. Meng, and K. Gao (2016). A hybrid recommendation technique optimized by dimension reduction.

In 2016 8th International Conference on Modelling, Identification and Control (ICMIC), pp. 429–433.

Schott, J. R. (1991). A test for a specific principal component of a correlation matrix. Journal of the American

Statistical Association 86 (415), 747–751.

Vallet, P., X. Mestre, and P. Loubaton (2015). Performance analysis of an improved MUSIC DoA estimator.

IEEE Transactions on Signal Processing 63 (23), 6407–6422.

Xiao, H. and W. Zhou (2010). Almost sure limit of the smallest eigenvalue of some sample correlation matrices.

Journal of Theoretical Probability 23 (1), 1–20.

Yang, L., M. R. McKay, and R. Couillet (2018). High-dimensional MVDR beamforming: Optimized solutions

based on spiked random matrix models. IEEE Transactions on Signal Processing 66 (7), 1933–1947.

Yao, J., S. Zheng, and Z. Bai (2015). Large Sample Covariance Matrices and High-Dimensional Data Analysis.

Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.

David Morales-Jimenez: ECIT Institute, Queen’s University Belfast, UK

E-mail: d.morales@qub.ac.uk

Iain M. Johnstone, Jeha Yang: Department of Statistics, Stanford University, USA

E-mail: imj@stanford.edu, jeha@stanford.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0052



REFERENCES 42

Matthew R. McKay: ECE Department, Hong Kong University of Science and Technology, Hong Kong

E-mail: m.mckay@ust.hk

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0052


	Main results
	Preliminaries
	Quadratic forms with normalized entries
	First-order convergence
	Central Limit Theorem

	Proofs of the eigenvalue results
	Preliminaries
	Eigenvalue fluctuations (Theorem 1-(ii))

	Proofs of the eigenvector results
	Eigenvector inconsistency (Theorem 2-(i))
	Eigenvector fluctuations (Theorem 2-(ii))
	Eigenvector inconsistency in the subcritical case (Theorem 3-(ii))




