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Abstract: We study a high-dimensional Bayesian linear regression model in which

the scale parameter follows a general beta prime distribution. Under the assump-

tion of sparsity, we show that an appropriate selection of the hyperparameters

in the beta prime prior leads to the (near) minimax posterior contraction rate

when p � n. For finite samples, we propose a data-adaptive method for esti-

mating the hyperparameters based on the marginal maximum likelihood (MML).

This enables our prior to adapt to both sparse and dense settings and, under our

proposed empirical Bayes procedure, the MML estimates are never at risk of

collapsing to zero. We derive an efficient Monte Carlo expectation-maximization

(EM) and variational EM algorithm for our model, which are available in the R

package NormalBetaPrime. Simulations and an analysis of a gene expression data

set illustrate our model’s self-adaptivity to varying levels of sparsity and signal

strengths.

Key words and phrases: beta prime density, empirical Bayes, high-dimensional

data, scale mixtures of normal distributions, posterior contraction
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1. INTRODUCTION

1. Introduction

1.1 Background

Consider the classical linear regression model,

y = Xβ + ε, (1.1)

where y is an n-dimensional response vector,Xn×p = [X1, . . . ,Xp] is a fixed

regression matrix with n samples and p covariates, β = (β1, . . . , βp)
′ is a p-

dimensional vector of unknown regression coefficients, and ε ∼ N (0, σ2In),

where σ2 is the unknown variance. Throughout this paper, we assume that

y and X are centered at zero; as such, there is no intercept in our model.

High-dimensional settings in which p � n are receiving considerable

attention. This scenario is now routinely encountered in areas as diverse

as medicine, astronomy, and finance, among many others. In the Bayesian

framework, numerous methods have been proposed to handle the “large p,

small n” scenario, including spike-and-slab priors with point masses at zero

(e.g., Martin et al. (2017), Castillo et al. (2015), Yang et al. (2016)), con-

tinuous spike-and-slab priors (e.g., Narisetty and He (2014), Roc̆ková and

George (2018)), nonlocal priors (e.g. Johnson and Rossell (2012), Rossell

and Telesca (2017), Shin et al. (2018)), and scale-mixture shrinkage priors

(e.g. van der Pas et al. (2016), Song and Liang (2017)). These priors have
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1. INTRODUCTION

been shown to have excellent empirical performance and possess strong the-

oretical properties, including model selection consistency, (near) minimax

posterior contraction, and the Bernstein–von Mises theorems. In this study,

we restrict our focus to the scale-mixture shrinkage approach.

Under (1.1), scale-mixture shrinkage priors typically take the form,

βi|(σ2, ω2
i ) ∼ N (0, σ2ω2

i ), i = 1, . . . , p,

ω2
i ∼ π(ω2

i ), i = 1, . . . , p,

σ2 ∼ µ(σ2),

(1.2)

where π and µ are densities on the positive reals. Priors of this form (1.2)

have been considered by many authors, including Park and Casella (2008),

Carvalho et al. (2010), Griffin and Brown (2010), Bhattacharya et al. (2015),

Armagan et al. (2011), and Armagan et al. (2013).

Computationally, scale-mixture priors are very attractive. Discontin-

uous spike-and-slab priors require searching over 2p models, whereas con-

tinuous spike-and-slab priors and nonlocal priors almost always result in

multimodal posteriors. As a result, Markov chain Monte Carlo (MCMC)

algorithms are prone to being trapped at a local posterior mode and can suf-

fer from slow convergence. Scale-mixture shrinkage priors do not face these

drawbacks because they are continuous and typically give rise to unimodal

posteriors, as long as the signal-to-noise ratio is not too low. Additionally,
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1. INTRODUCTION

there have been recent advances in fast sampling from scale-mixture priors

that scale linearly in time with p; see, for example, Bhattacharya et al.

(2016) and Johndrow et al. (2017).

Scale-mixture priors have been studied primarily under sparsity as-

sumptions. If a sparse recovery of β is desired, the prior π(·) can be con-

structed so that it contains heavy mass around zero and heavy tails. This

way, the posterior density π(β|y) is heavily concentrated around 0 ∈ Rp,

while the heavy tails prevent overshrinkage of the true active covariates.

Although sparsity is often a reasonable assumption, it is not always ap-

propriate. Zou and Hastie (2005) demonstrated an example where this

assumption is violated: in microarray experiments with highly correlated

predictors, it is often desirable for all genes that lie in the same biological

pathway to be selected, even if the final model is not parsimonious. Zou

and Hastie (2005) introduced the elastic net to overcome the inability of

the LASSO (Tibshirani (1996)) to select more than n variables. Few works

in the Bayesian literature appear to have examined the appropriateness of

scale-mixture priors in dense settings. Ideally, we would like our priors on

β in (1.1) to be able to handle both sparse and non-sparse situations.

Another important issue to consider is the selection of hyperparameters

in our priors on β. Many authors, such as Narisetty and He (2014), Yang et
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al. (2016), and Martin et al. (2017), have proposed fixing hyperparameters a

priori based on asymptotic arguments (such as consistency or minimaxity),

or by minimizing some criterion such as the Bayesian information criterion

(BIC) or deviance information criterion (DIC) (e.g., Song and Liang (2017),

Spiegelhalter et al. (2002)). In this study, we propose a different approach

based on a marginal maximum likelihood (MML) estimation, which avoids

the need for hyperparameter tuning by the user.

We consider a scale-mixture prior (1.2) with the beta prime density as

the scale parameters. We call our model the normal–beta prime (NBP)

model. Our main contributions are summarized as follows:

• We show that for a high-dimensional linear regression, the NBP model

can serve as both a sparse and a non-sparse prior. We prove that

under sparsity and appropriate regularity conditions, the NBP prior

asymptotically obtains the (near) minimax posterior contraction rate.

• In the absence of prior knowledge about sparsity or non-sparsity, we

propose an empirical Bayes variant of the NBP model that is self-

adaptive and learns the true sparsity level from the data. Under our

procedure, the hyperparameter estimates are never at risk of collaps-

ing to zero. This is not the case for many other choices of priors,

where empirical Bayes estimates can often result in degenerate priors.
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1. INTRODUCTION

• We derive efficient Monte Carlo expectation-maximization (EM) and

variational EM algorithms, which we use to implement the self-adaptive

NBP model. Our algorithms embed the EM algorithm used to esti-

mate the hyperparameters into posterior simulation updates; as such,

they do not need to be tuned separately.

The rest of the paper is structured as follows. In Section 2, we introduce

the NBP prior for a Bayesian linear regression. In Section 3, we derive

the posterior contraction rates for the NBP when p� n. In Section 4, we

introduce the self-adaptive NBP model, which automatically learns the true

sparsity pattern from the data. In Section 5, we introduce the algorithms

used to implement the self-adaptive NBP. Section 6 provides simulation

studies using our model, and Section 7 applies the proposed model to a

gene expression data set. Section 8 concludes the paper.

1.2 Notation

For two nonnegative sequences {an} and {bn}, we write an � bn to denote

0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞. If limn→∞ an/bn = 0, we

write an = o(bn) or an ≺ bn. We use an . bn or an = O(bn) to denote that,

for sufficiently large n, there exists a constant C > 0, independent of n,

such that an ≤ Cbn. For a vector v ∈ Rp, we let ||v||0 :=
∑

i 1(vi 6= 0),
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2. THE NBP MODEL

||v||1 :=
∑

i |vi|, and ||v||2 :=
√∑

i v
2
i denote the `0, `1, and `2 norms,

respectively. For a set A, we denote its cardinality as |A|.

2. The NBP Model

The beta prime density is given by

π(ω2
i ) =

Γ(a+ b)

Γ(a)Γ(b)
(ω2

i )
a−1(1 + ω2

i )
−a−b. (2.1)

In particular, setting a = b = 0.5 in (2.1) yields the half-Cauchy prior

C+(0, 1) for ωi. For a multivariate normal means estimation, Polson and

Scott (2012) conducted numerical experiments for different choices of (a, b)

in (2.1), and argued that the half-Cauchy prior should be a default prior

for scale parameters. Pérez et al. (2017) generalized the beta prime density

(2.1) to the scaled beta2 family of scale priors by adding an additional

scaling parameter to (2.1). However, these studies did not consider linear

regression models under general design matrices.

Under the NBP model, we place a normal-scale mixture prior (1.2),

with the beta prime density (2.1) as the scale parameter, for each of the

individual coefficients in β, and place an inverse gamma prior IG(c, d) prior

on σ2, where c, d > 0. Letting β′(a, b) denote the beta prime distribution
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2. THE NBP MODEL

(2.1) with hyperparameters a > 0 and b > 0, our full model is

βi|ω2
i , σ

2 ∼ N (0, σ2ω2
i ), i = 1, . . . , p,

ω2
i ∼ β′(a, b), i = 1, . . . , p,

σ2 ∼ IG(c, d).

(2.2)

For model (2.2), we can choose very small values of c and d in order to

make the prior on σ2 relatively noninfluential and noninformative (e.g., a

good default choice is c = d = 10−5). The most critical hyperparameter

choices governing the performance of our model are those related to (a, b).

Proposition 2.1. Suppose that we endow (β, σ2) with the priors in (2.2).

Then, the marginal distribution, π(βi|σ2), for i = 1, . . . p, is unbounded,

with a singularity at zero for any 0 < a ≤ 1/2.

Proof. See Proposition 2.1 in Bai and Ghosh (2019).

Proposition 2.1 implies that in order to facilitate a sparse recovery of β,

we should set the hyperparameter a to a small value. This forces the NBP

prior to place most of its mass near zero and thus, the posterior π(β|y) is

also concentrated near 0 ∈ Rp. Figure 1 plots the marginal density, π(β|σ2),

for a single β. When a = 0.1, the marginal density contains a singularity at

zero, and the probability mass is heavily concentrated near zero. However,

when a = 2, the marginal density does not contain a pole at zero, and the

tails are significantly heavier.
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2. THE NBP MODEL

Figure 1: The marginal densities of the NBP prior, π(β|σ2), with σ2 = 1.

A small a leads to a pole at zero. A large a removes the singularity.

Figure 1 shows that the NBP model can serve as both a sparse and a

non-sparse prior. If we have prior knowledge that the true model is sparse

with a few large signal values, we can fix a to be a small value. On the other

hand, if we know that the true model is dense, we can set a to a larger value,

creating a more diffuse prior. Then, there is less shrinkage of individual

covariates in the posterior distribution. In Section 4, we introduce the self-

adaptive NBP model, which automatically learns the true sparsity level

from the data, thus avoiding the need for tuning by the user.
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3. POSTERIOR CONTRACTION RATES UNDER THE NBP PRIOR

3. Posterior Contraction Rates Under the NBP Prior

For our theoretical analysis, we allow p to diverge to infinity as the sample

size n grows. We write p as pn to emphasize its dependence on n. We

work under the frequentist assumption that there is a true data-generating

model; that is,

yn = Xnβ0 + εn, (3.1)

where εn ∼ N (0, σ2
0In) and σ2

0 is a fixed noise parameter.

Let sn = ||β0||0 denote the size of the true model, and suppose that sn =

o(n/ log pn). Under (3.1) and appropriate regularity conditions, Raskutti et

al. (2011) showed that the minimax estimation rate for any point estimator

β̂ of β0 under an `2 error loss is
√
sn log(pn/sn)/n. Many frequentist point

estimators, such as the LASSO (Tibshirani (1996)), have been shown to

attain the near -minimax rate of
√
sn log pn/n under `2 error loss.

In the Bayesian paradigm, we are mainly concerned with the rate at

which the entire posterior distribution contracts around the true β0. Let-

ting P0 denote the probability measure underlying (3.1) and Π(β|yn) denote

the posterior of β, our aim is to find a positive sequence rn, such that

Π(β : ||β − β0|| ≥Mrn|yn)→ 0 a.s. P0 as n→∞,

for some constant M > 0. The frequentist minimax convergence rate is
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3. POSTERIOR CONTRACTION RATES UNDER THE NBP PRIOR

a useful benchmark for the speed of contraction rn, because the posterior

cannot contract faster than the minimax rate (Ghosal et al. (2000)).

We are also interested in the posterior compressibility (Bhattacharya et

al. (2015)), which allows us to quantify how well the NBP posterior captures

the true sparsity level sn. Because the NBP prior is absolutely continuous,

it assigns zero mass to exactly sparse vectors. To approximate the model

size for the NBP model, we use the following generalized notion of sparsity

(Bhattacharya et al. (2015)). For some δ > 0, we define the generalized

inclusion indicator and generalized dimensionality as

γδ(β) = I(|β/σ| > δ) and |γδ(β)| =
pn∑
i=1

γδ(βi), (3.2)

respectively. The generalized dimensionality counts the number of covari-

ates in β/σ that fall outside the interval [−δ,+δ]. With an appropriate

choice of δ, the prior is said to have the posterior compressibility property

if the probability that |γδ(β)| asymptotically exceeds a constant multiple

of the true sparsity level sn tends to zero as n→∞; that is,

Π(β : |γδ(β)| > Asn|yn)→ 0 a.s. P0 as n→∞,

for some constant A > 0.
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3. POSTERIOR CONTRACTION RATES UNDER THE NBP PRIOR

3.1 Near-Minimax Posterior Contraction Under the NBP Prior

We first introduce the following set of regularity conditions, taken from

Song and Liang (2017). Let sn denote the size of the true model, and let

λmin(A) denote the minimum eigenvalue of a symmetric matrix A.

(A1) All the covariates are uniformly bounded. For simplicity, we assume

they are all bounded by one.

(A2) pn � n.

(A3) Let ξ ⊂ {1, . . . , pn}, and let Xξ denote the submatrix of Xn that

contains the columns with indices in ξ. There exists some integer p̄

(depending on n and pn) and fixed constant t0 such that s ≺ p̄ ≺ n

and λmin(X>ξ Xξ) ≥ nt0, for any model of size |ξ| ≤ p̄.

(A4) sn = o(n/ log pn).

(A5) maxj{|β0j/σ0|} ≤ γ3En for some γ3 ∈ (0, 1), and En is nondecreasing

with respect to n.

Assumption (A3) is a minimum restricted eigenvalue (RE) condition that

ensures that X>nXn is locally invertible over sparse sets. When pn � n,

minimum RE conditions are imposed to render β0 estimable. Assumption

(A4) restricts the growth of sn, and (A5) constrains the size of the signals

in β0 to be O(En) for some nondecreasing sequence En.
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3. POSTERIOR CONTRACTION RATES UNDER THE NBP PRIOR

As discussed in Section 2, the hyperparameter a in the NBP prior is

the main factor affecting the amount of posterior mass around zero. Hence,

it plays a crucial role in our theory. We rewrite a as an to emphasize its

dependence on n.

Theorem 3.1. Assume that Assumptions (A1)–(A5) hold, with log(En) =

O(log pn) for Assumption (A5). Let rn = M
√
sn log pn/n for some fixed

constant M > 0, and let kn � (
√
sn log pn/n)/pn. Suppose that we place

the NBP prior (2.2) on (β, σ2), with an . k2np
−(1+u)
n , for some u > 0, and

b ∈ (1,∞). Then, under (3.1), the following hold:

Π (β : ||β − β0||2 ≥ c1σ0rn|yn)→ 0 a.s. P0 as n→∞, (3.3)

Π
(
β : ||β − β0||1 ≥ c1σ0

√
srn|yn

)
→ 0 a.s. P0 as n→∞, (3.4)

Π
(
β : ||Xβ −Xβ0||2 ≥ c0σ0

√
nrn|Yn

)
→ 0 a.s. P0 as n→∞, (3.5)

Π (β : |γkn(β)| > Asn|yn)→ 0 a.s. P0 as n→∞, (3.6)

where c0 > 0, c1 > 0, A > 0, and |γkn(β)| =
∑

i I(|βi/σ| > kn).

The proof of Theorem 3.1 is based on verifying a set of conditions

proposed by Song and Liang (2017), and can be found in the Supple-

mentary Material. In particular, (3.3)–(3.5) show that by fixing an .

p
−(3+u)
n

√
sn log pn/n, for u > 0, and b ∈ (1,∞) as the hyperparameters
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3. POSTERIOR CONTRACTION RATES UNDER THE NBP PRIOR

(an, b) in (2.2), the NBP model’s posterior contraction rates under `2, `1,

and prediction error loss are the familiar near-optimal rates of
√
sn log pn/n,

sn
√

log pn/n, and
√
sn log pn, respectively. By setting δ = kn � (

√
sn log pn/n)/pn

in our generalized inclusion indicator (3.2), (3.6) also shows that the NBP

possesses posterior compressibility, that is, the probability that the gener-

alized dimension size |γkn(β)| is a constant multiple larger than sn asymp-

totically vanishes.

Our result relies on setting the hyperparameter an to a value dependent

upon the sparsity level sn. Previous theoretical studies on scale-mixture

shrinkage priors, such as van der Pas et al. (2016) and Song and Liang

(2017), also adopt similar strategies in order for these priors to obtain min-

imax posterior contraction. If we want to a priori fix the hyperparameters

(a, b) based on asymptotic arguments, we could first obtain an estimate of

sn, ŝn, and then set an = p
−(3+u)
n

√
ŝn log pn/n, for u > 0. For example, we

could take ŝn = ||β̂ALasso||0, where β̂ALasso is an adaptive LASSO solution

(Zou (2006)) to (1.1). Fixing an := p
−(3+u)
n

√
log n/n, for u > 0, would

also satisfy the conditions in our theorem (because log n ≺ sn log pn), thus

removing the need to estimate sn.
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4. Empirical Bayes Estimation of Hyperparameters

Although fixing (a, b) a priori as a = p−(3+u)
√

log n/n, for some u > 0,

and b ∈ (1,∞) leads to (near) minimax posterior contraction under con-

ditions (A1)–(A5), this does not allow the NBP prior to adapt to varying

patterns of sparsity or signal strengths. The minimum RE assumption (A3)

is also computationally infeasible to verify in practice. Dobriban and Fan

(2016) showed that, given an arbitrary design matrix X, verifying that

the minimum RE condition holds is an NP-hard problem. Finally, there

is no practical way of verifying that the model size condition (A4) (i.e.

s = o(n/ log p)) holds, or that the true model is even sparse.

For these reasons, we do not recommend fixing the hyperparameters in

the NBP model based on asymptotic arguments. Instead, we prefer to learn

the true sparsity pattern from the data. One way to do this is to use the

MML. The marginal likelihood, f(y) =
∫
f(y|β, σ2)π(β, σ2)d(β, σ2), is the

probability the model gives to the observed data with respect to the prior

(or the “model evidence”). Hence, choosing the prior hyperparameters to

maximize f(y) gives the maximum “model evidence,” and we can learn

the most likely sparsity level from the data. One potential shortcoming of

the MML method is that it can lead to degenerate priors. However, this

problem is avoided under the NBP prior.
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We propose an EM algorithm to obtain the MML estimates of (a, b).

Henceforth, we refer to this empirical Bayes variant of the NBP model as

the self-adaptive NBP model. To construct the EM algorithm, we first

note that the beta prime density can be rewritten as the product of an

independent gamma density and an inverse gamma density. Thus, we may

reparametrize (2.2) as

βi|(ω2
i , λ

2
i ξ

2
i ) ∼ N (0, σ2λ2i ξ

2
i ), i = 1, . . . , p,

λ2i ∼ G(a, 1), i = 1, . . . , p,

ξ2i ∼ IG(b, 1), i = 1, . . . , p,

σ2 ∼ IG(c, d).

(4.1)

The logarithm of the joint posterior under the reparametrized NBP prior

(4.1) is given by

−
(
n+ p

2

)
log(2π)−

(
n+ p

2
+ c+ 1

)
log(σ2)− 1

2σ2
||y −Xβ||22

−
p∑
i=1

β2
i

2λ2i ξ
2
i σ

2
− p log(Γ(a)) +

(
a− 3

2

) p∑
i=1

log(λ2i )−
p∑
i=1

λ2i − p log(Γ(b))

−
(
b+

3

2

) p∑
i=1

log(ξ2i )−
p∑
i=1

1

ξ2i
+ c log(d)− log(Γ(c))− d

σ2
. (4.2)

Thus, at the kth iteration of the EM algorithm, the conditional log-likelihood
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on ν(k−1) = (a(k−1), b(k−1)) and y in the E-step is given by

Q(ν|ν(k−1)) = −p log(Γ(a)) + a

p∑
i=1

Ea(k−1)

[
log(λ2i )|y

]
− p(log Γ(b))

− b
p∑
i=1

Eb(k−1)

[
log(ξ2i )|y

]
+ terms not involving a or b. (4.3)

The M-step maximizes Q(ν|ν(k−1)) over ν = (a, b) to produce the next

estimate ν(k) = (a(k), b(k)). That is, we find (a, b), a ≥ 0, b ≥ 0, such that

∂Q
∂a

= −pψ(a) +

p∑
i=1

Ea(k−1)

[
log(λ2i )|y

]
= 0,

∂Q
∂b

= −pψ(b)−
p∑
i=1

Eb(k−1)

[
log(ξ2i )|y

]
= 0,

(4.4)

where ψ(x) = d/dx (Γ(x)) denotes the digamma function. We can solve

for (a, b) in (4.4) numerically using a fast root-finding algorithm, such as

Newton’s method. The summands, Ea(k−1) [log(λ2i )|y] and Eb(k−1) [log(ξ2i )|y],

for i = 1, . . . , p, in (4.4) can be estimated from either the mean of M Gibbs

samples based on ν(k−1), for sufficiently large M > 0 (as in Casella (2011)),

or the (k − 1)th iteration of the mean field variational Bayes (MFVB)

algorithm (as in Leday et al. (2017)).

Theorem 4.1. At every kth iteration of the EM algorithm for the self-

adaptive NBP model, there exists a unique solution ν(k) = (a(k), b(k)) that

maximizes (4.3) in the M-step. Moreover, a(k) > 0 and b(k) > 0 at the kth

iteration.
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4. EMPIRICAL BAYES ESTIMATION OF HYPERPARAMETERS

The proof of Theorem 4.1 can be found in the Supplementary Material.

Theorem 4.1 ensures that we do not encounter the issue of the sparsity

parameter a (or the parameter b) collapsing to zero. Empirical Bayes esti-

mates of zero are a major concern for MML approaches used to estimate

hyperparameters in Bayesian regression models. For example, in g-priors,

β|σ2 ∼ Np
(
γ, gσ2(X>X)−1

)
,

George and Foster (2000) showed that the MML estimate of the parameter

g could equal zero. In global-local shrinkage priors of the form,

βi|(λ2i , σ2) ∼ N (0, σ2τ 2λ2i ), λ
2
i ∼ π(λ2i ), i = 1, . . . , p,

the variance rescaling parameter τ is also at risk of being estimated as zero

under an MML (Polson and Scott (2010), Tiao and Tan (1965), Carvalho

et al. (2009), Datta and Ghosh (2013)). Finally, Scott and Berger (2010)

proved that if we endow (1.1) with a binomial model selection prior,

π(Mγ|θ) = θkγ (1− θ)p−kγ ,

where Mγ is the model indexed by γ ⊂ {1, . . . , p} and kγ represents the

number of variables included in the model, the MML estimate of the mix-

ing proportion θ could be estimated as either zero or one, leading to a

degenerate prior. Clearly, the MML approach to tuning hyperparameters

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0037



4. EMPIRICAL BAYES ESTIMATION OF HYPERPARAMETERS

is not without problems, because it can lead to degenerate priors in high-

dimensional regression. However, using the NBP prior, we can incorporate

a data-adaptive procedure that estimates the hyperparameters, while avoid-

ing this potential pitfall.

In the aforementioned examples, placing priors on g, τ , or θ with strictly

positive support or performing cross-validation or a restricted MML esti-

mation over a range of strictly positive values can help avoid a collapse to

zero. The hierarchical Bayes approach does not quite address the issue of

misspecification of hyperparameters, because these still need to be specified

in the additional priors. If we use cross-validation, the “optimal” choice or

spacing of grid points is also not clear-cut.

In a general regression setting, it is unclear what the endpoints should

be if we use a truncated range of positive values to estimate the hyper-

parameters from a restricted MML. Recently, for a sparse normal means

estimation (i.e., X = I, p = n, and σ2 = 1 in (1.1)), van der Pas et

al. (2017) advocated using the restricted MML estimator for the spar-

sity parameter τ in the range [1/n, 1] for the horseshoe prior (Carvalho

et al. (2010)). This choice allows the horseshoe model to obtain the (near)

minimax posterior contraction rate for multivariate normal means. Al-

though this choice gives theoretical guarantees for a normal means esti-
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mation, it does not seem to be justified for a high-dimensional regression

(1.1), when p� n. Theorem 3.1 in Song and Liang (2017) shows that the

minimax optimal choice for τ in the horseshoe under model (1.1) satisfies

τ . (
√
s log p/n)p−(1+(u+1)/(r−1)), where u > 0, r > 1, and s = ||β0||0. It

would thus appear that any τ ∈ [1/n, 1] leads to a suboptimal contraction

rate in a sparse high-dimensional regression. In our numerical experiments

in Section 6, we demonstrate that for the horseshoe prior, endowing τ with

a C+(0, 1) prior fares better than the truncation suggested by van der Pas

et al. (2017) under the general linear regression model (1.1).

The self-adaptive NBP prior circumvents these issues by obtaining the

MML estimates of (a, b) over the range [0,∞)× [0,∞), while ensuring that

(a, b) are never estimated as zero. Thus, the self-adaptive NBP’s automatic

selection of hyperparameters provides a practical alternative to the hierar-

chical Bayes or cross-validation approaches used to tune hyperparameters.

4.1 Illustration of the Self-Adaptive NBP Model

To illustrate the self-adaptive NBP prior’s ability to adapt to differing spar-

sity patterns, we consider two settings: one sparse (n = 60, p = 100, 10

nonzero covariates), and one dense (n = 60, p = 100, and 60 nonzero covari-

ates), where the active covariates are drawn from U ([−2,−0.5] ∪ [0.5, 2]).
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Our examples come from experiments 1 and 4, respectively, in Section 6.

We initialize (a(0), b(0)) = (0.01, 0.01) and implement the Monte Carlo EM

algorithm (described in Section 5.1) to obtain MML estimates of the pa-

rameters (a, b), which we denote as (â, b̂).

In Figure 2, we plot the iterations from two runs of the EM algorithm.

The algorithm terminates at iteration k when the square of the `2 distance

between (a(k−1), b(k−1)) and (a(k), b(k)) falls below 10−6. We then set (â, b̂) =

(a(k), b(k)). The top panel in Figure 2 plots the paths for a and b from the

sparse model, and the bottom panel plots the paths for a and b from the

dense model. The final MML estimates of a are â = 0.184 for the sparse

model, and â = 1.104 for the dense model.

Figure 3 shows the NBP’s marginal density, π(β|â, b̂, σ2), for a sin-

gle coefficient β using the MML estimates of (a, b) obtained in the sparse

and the dense settings. The left panel depicts the marginal density under

the sparse setting (10 active predictors, (â, b̂) = (0.184, 1.124)). Here, the

marginal density for β contains a singularity at zero, and most of the prob-

ability mass is around zero. We thus recover a sparse model for π(β|y)

under these MML hyperparameters. The right panel depicts the marginal

density in the dense setting (60 active predictors, (â, b̂) = (1.104, 1.645)).

Here, the marginal density for β does not contain a pole, and more mass
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Figure 2: Paths of the Monte Carlo EM algorithm for obtaining (â, b̂). The

dashed line indicates the final MML estimate at convergence.

is placed in neighborhoods away from zero. Thus, we recover a more dense

model. Figures 2 and 3 illustrate that, in both cases, the EM algorithm

was able to correctly learn the true sparsity (or non-sparsity) from the data,

and then incorporate this into its estimates of the hyperparameters.

As noted by a referee, a mixture prior of beta prime densities as the prior

for ω2
i in (1.2) could also accommodate dense situations. While we recognize

this fact, we believe that it is better to use the MML. First, putting a

mixture of beta primes as the prior on ω2
i , for i = 1, . . . , p, would make the

posteriors for βi, for i = 1, . . . , p, multimodal. The quality of our posterior
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Figure 3: The marginal densities of the NBP prior, π(β|a, b, σ2), with dif-

ferent MML estimates of (a, b).

approximation algorithms in Section 5 depends on the assumption that the

approximate posterior is unimodal (especially if we use a variational density

to approximate π(β|y)). Second, if we used a mixture prior, we would then

need to tune both the mixture weight(s) and the hyperparameters in each

mixture component. As we demonstrate in Sections 4.1 and 6, using a single

beta prime prior as the scale with MML estimates for the hyperparameters

performs quite well.

5. Computation for the NBP Model

5.1 Posterior Approximation

Using the reparametrization (4.1), the NBP model admits fully closed-form

conditional densities for the parameters (β, λ21, . . . , λ
2
p, ξ

2
1 , . . . , ξ

2
p , σ

2). Thus,
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the NBP model can be implemented using either an MCMC or a or mean

field variational Bayes (MFVB) approach. At the same time, the EM algo-

rithm of Section 4 is easily embedded into either the MCMC or the MFVB

updates, thus negating the need to estimate the hyperparameters (a, b) sep-

arately. The complete algorithms are given in the Supplementary Material.

The Monte Carlo EM and variational EM algorithms for the self-adaptive

NBP model are both implemented in the R package, NormalBetaPrime. In

our experience, although the Monte Carlo EM algorithm tends to be slower

than the variational EM algorithm, it is also more accurate. The Monte

Carlo EM algorithm is also relatively insensitive to the initialization of the

parameters, unlike the variational EM algorithm. This is not a problem in

our model, but an inherent shortcoming of MFVB; because the MFVB op-

timizes a highly nonconvex objective function over O(p2) parameters, it can

become “trapped” at a suboptimal local solution. In future research, we

will attempt to derive more efficient sampling algorithms and more accurate

variational algorithms for the NBP model.

5.2 Variable Selection

Because the NBP model assigns zero mass to exactly sparse vectors, selec-

tion must be performed using some post hoc method. We propose using
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the “decoupled shrinkage and selection” (DSS) method proposed by Hahn

and Carvalho (2015). Letting β̂ denote the posterior mean of β, the DSS

method selects the variables by finding the “nearest” exactly sparse vector

to β̂. The DSS method solves the optimization,

γ̂ = arg min
γ

n−1||Xβ̂ −Xγ||+ λ||γ||0, (5.1)

and chooses the nonzero entries in γ̂ as the active set. Because (5.1) is

an NP-hard combinatorial problem, Hahn and Carvalho (2015) propose

using a local linear approximation; that is, solving the following surrogate

optimization:

γ̂ = arg min
γ

n−1||Xβ̂ −Xγ||+ λ

p∑
i=1

|γi|
|β̂i|

, (5.2)

where β̂i is a components in the posterior mean β̂, and λ is chosen using

10-fold cross-validation to minimize the mean squared error (MSE). Solving

this optimization is not computationally expensive, because (5.2) is essen-

tially an adaptive LASSO regression (Zou (2006)) with weights 1/|β̂i|, for

i = 1, . . . , p, and very efficient gradient descent algorithms to find LASSO

solutions; see, for example, Friedman et al. (2010). We use the R package

glmnet, developed by Friedman et al. (2010), to solve (5.2). We select the

nonzero entries in γ̂ from (5.2) as the active set of covariates. The DSS

method is available for the NBP prior in the R package, NormalBetaPrime.
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6. Simulation Studies

For our simulation studies, we implement the self-adaptive NBP model (2.2)

for model (1.1) using the Monte Carlo EM algorithm described in Section

5. We set c = d = 10−5 in the IG(c, d) prior on σ2. We run the Gibbs

samplers for 15,000 iterations, discarding the first 10,000 as burn-in. We

use the posterior median estimator β̂ as our point estimator, and deploy

the DSS strategy described in Section 5.2 for the variable selection.

6.1 Adaptivity to Different Sparsity Levels

In the first simulation study, we evaluate the self-adaptive NBP model’s

performance under a variety of sparsity levels. Under model (1.1), we gen-

erate a design matrix X, where the n rows are independently drawn from

Np(0,Γ), Γ = (Γij)p×p, with Γij = 0.5|i−j|, and then centered and scaled.

The nonzero predictors in β0 are generated from U ([−2,−0.5] ∪ [0.5, 2]).

We fix σ2 = 2 and set n = 60 and p = 100, with varying levels of sparsity:

• Experiment 1: 10 active predictors (sparse model)

• Experiment 2: 20 active predictors (fairly sparse model)

• Experiment 3: 40 active predictors (fairly dense model)

• Experiment 4: 60 active predictors (dense model)
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We compare the results of self-adaptive NBP prior with those of sev-

eral other popular Bayesian and frequentist methods. For the competing

Bayesian methods, we use the horseshoe (Carvalho et al. (2010)) and the

spike-and-slab LASSO (SSL) (Roc̆ková and George (2018)). For the horse-

shoe, we consider two ways of tuning the global shrinkage parameter τ : 1)

endowing τ with a standard half-Cauchy prior C+(0, 1); and 2) estimating

τ from a MML on the interval [1/n, 1], as advocated by van der Pas et

al. (2017). These methods are denoted as HS-HC and HS-REML, respec-

tively. For the SSL model, the beta prior on the mixture weight θ controls

the sparsity of the model. We consider two scenarios: 1) endowing θ with

a B(1, p) prior, which induces strong sparsity; and 2) endowing θ with a

B(1, 1) prior, which does not strongly favor sparsity. Finally, we consider

the following frequentist methods: the minimax concave penalty (MCP)

(Zhang (2010)), smoothly clipped absolute deviation (SCAD) (Fan and Li

(2001)), and elastic net (ENet) (Zou and Hastie (2005)). These methods are

available in the R packages: horseshoe, SSLASSO, picasso, and glmnet.

For each method, we compute the MSE, false discovery rate (FDR),

false negative rate (FNR), and overall misclassification probability (MP),

For the HS-REML method, we slightly modified the code in the horseshoe function

in the horseshoe R package.
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averaged across 100 replications:

MSE = ||β̂ − β0||22/p, FDR = FP / (TP + FP),

FNR = FN / (TN + FN), MP = (FP + FN)/p,

where FP, TP, FN, and TN denote the number of false positives, true

positives, false negatives, and true negatives, respectively.

Tables 1 and 2 in the Supplementary Material show our results averaged

across 100 replications for the NBP, HS-HC, HS-REML, SSL-B(1, p), SSL-

B(1, 1), MCP, SCAD, and ENet methods. Across all sparsity settings, the

NBP has the lowest MSE, showing that it performs consistently well for

estimation. In Experiments 2, 3, and 4, the NBP model also achieves either

the lowest or the second lowest misclassification probability, demonstrating

that it is robust for variable selection.

The performance of the HS, SSL, MCP, and SCAD methods worsens

as the true model becomes more dense. The truncation of τ ∈ [1/n, 1]

in the HS-REML model lowers the FDR for the horseshoe. However, this

also tends to overshrink large signals, leading to a greater estimation error

than that of the HS-HC model. For the SSL model, endowing the sparsity

parameter θ with a B(1, 1) prior improves the model’s performance under

dense settings, but not enough to be competitive with the NBP. Finally, the

ENet method performs worst under sparsity, but its performance improves
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as the model becomes more dense. However, the NBP still outperforms the

ENet in terms of estimation.

6.2 Additional Numerical Experiments with Large p

In the following experiments, the design matrix X is generated in the same

way as that in Section 6.1. The active predictors are randomly selected and

fixed at a certain level, and the remaining covariates are set to zero.

• Experiment 5: ultra-sparse model with a few large signals (n =

100, p = 500, eight active predictors set equal to five)

• Experiment 6: dense model with many small signals (n = 200, p =

400, 200 active predictors set equal to 0.6)

We implement Experiments 5 and 6 for the self-adaptive NBP, HS-

HC, HS-REML, SSL-B(1, p), SSL-B(1, 1), MCP, SCAD, and ENet models.

Table 3 in the Supplementary Material shows our results, averaged across

100 replications. In Experiment 5, the NBP, HS, and SSL models all sig-

nificantly outperform their frequentist competitors, with the HS and SSL

performing slightly better than NBP. In Experiment 5, the NBP model

gives zero for FDR, FNR, and MP, showing that the self-adaptive NBP is

resilient against overfitting if the true model is very sparse. In Experiment
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6, the NBP model gives the lowest MSE and the lowest MP of all the meth-

ods, demonstrating that the self-adaptive NBP model can effectively adapt

to non-sparse situations.

It seems as though the horseshoe, SSL, MCP, and SCAD are well-suited

to sparse estimations but cannot accommodate non-sparse situations as

well. The elastic net seems to be a suboptimal estimator under sparsity

(e.g., in Experiment 5, its misclassification rate was 0.104, much higher

than those of the other methods), but it improves significantly in dense

settings.

In contrast, the self-adaptive NBP prior is the most robust estimator

across all sparsity patterns. If the true model is sparse, the sparsity pa-

rameter a is estimated to be small, and hence, place heavier mass around

zero. However, if the true model is dense, the sparsity parameter a will

be large, in which case, the singularity at zero disappears and the prior

becomes more diffuse.

7. Analysis of a Gene Expression Data Set

We analyze a real data set from a study on Bardet–Biedl syndrome (BBS)

(Scheetz et al. (2006)), an autosomal recessive disorder that leads to pro-

gressive vision loss, and is caused by a mutation in the TRIM32 gene. This
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data set, available in the R package flare, contains n = 120 samples, with

TRIM32 as the response variable and the expression levels of p = 200 other

genes as the covariates.

To determine TRIM32’s association with these other genes, we imple-

ment the self-adaptive NBP, HS-HC, HS-REML, SSL-B(1, p), SSL-B(1, 1),

MCP, SCAD, and ENet models on this data set after centering and scaling

X and y. To assess these methods’ predictive performance, we perform

five-fold cross-validation, using 80 percent of the data as our training set to

obtain an estimate of β, β̂train. We then use β̂train to compute the MSE of

the residuals on the remaining 20 percent of the data. We repeat this five

times, using different training and test sets each time, and take the average

MSE as our mean squared prediction error (MSPE).

Table 4 in the Supplementary Material shows the results of our analysis.

The NBP and ENet models exhibit the best predictive performance of the

methods, with 31 genes and 26 genes, respectively, selected as significantly

associated with TRIM32. The ENet model has a slightly lower MSPE, but

its performance is very similar to that of the NBP model. The HS, SSL,

MCP, and SCAD methods result in parsimonious models, with six or fewer

genes selected, but their average prediction errors are all higher.

Figure 4 plots the posterior medians and 95 percent posterior credible
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Figure 4: Point estimates and credible intervals for the 31 genes selected as

significantly associated with TRIM32 by the self-adaptive NBP.

intervals for the 31 genes selected by the NBP model as significant. Figure

4 shows that the self-adaptive NBP prior is able to detect small gene ex-

pression values that are very close to zero. On this particular data set, the

slightly denser models exhibited better prediction performance than that

of the most parsimonious models, suggesting that small signals may exist

in our data.
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8. Conclusion

We have introduced the NBP model for high-dimensional Bayesian linear

regressions. We proved that the NBP prior obtains the (near) minimax

posterior contraction rate in the asymptotic regime where p � n, and

that the underlying model is sparse. To make our prior self-adaptive in

finite samples, we introduced an empirical Bayes approach for estimating

the NBP’s hyperparameters based on the MML. This approach affords the

NBP a great deal of flexibility and adaptivity to different levels of sparsity

and signal strengths, while avoiding degeneracy.

In future work, we will extend the NBP prior to more complex and more

flexible models, such as a nonparametric regression or a semiparametric

regression with an unknown error distribution. The NBP prior can also be

employed for other statistical problems, including density estimation and

classification. Owing to its flexibility, we anticipate that the NBP prior will

retain its strong empirical and theoretical properties in these other settings.

Additionally, we would like to provide further theoretical support for

the MML approach described in Section 4. Although there are philosoph-

ical reasons for using an MML (i.e., it maximizes the “model evidence”),

it would be interesting to determine whether the MML estimates of (a, b)

also lead to a (near) minimax posterior contraction under the conditions
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described in Section 3.1. Currently, the theoretical justifications for the

MML under model (1.1) are confined to the simple normal means model

(X = I, n = p) and the scenario where p ≤ n and the MML estimate can

be explicitly calculated in closed form (as is the case for the hyperparameter

g in g-priors); see, for example, van der Pas et al. (2017), Johnstone and

Silverman (2004), George and Foster (2000), and Sparks et al. (2015). Re-

cently, Rousseau and Szabó (2017) extended the class of models for which

the posterior contraction rate can be obtained under MML estimates of a

hyperparameter in the prior. However, their framework does not seem to

be applicable to a high-dimensional linear regression model (1.1), which is

complicated by the presence of a high-dimensional design matrix X. We

hope to address the theoretical aspects of the self-adaptive NBP model with

MML-estimated hyperparameters in future work.

Supplementary Material

The Online Supplementary Material provides the results of the simula-

tion and the data analysis in Sections 6 and 7, respectively, proofs for The-

orems 3.1 and 4.1, and technical details for the Monte Carlo EM and vari-

ational EM algorithms from Section 5 used to implement the self-adaptive

NBP model.
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