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We would like to congratulate Drs. Jiang, Song, Li, and Zeng (JSLZ)

for their well-written and thought-provoking work, which bridges machine

learning and statistical inferences when estimating optimal individualized

treatment rules (ITRs), and opens numerous avenues for future research on

related topics. Below we discuss the paper from two aspects: its extension to

kernel-based nonparametric ITRs, and inferences for nonparametric ITRs.

1. Kernel-based nonparametric ITRs

JSLZ assume that the decision functions ft(x), for t = 1, ..., T, have a

linear form, which facilitates the model fitting and statistical inferences.

However, in the machine learning community, much research is being con-

ducted on nonparametric decision functions, for example, in a reproducing
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kernel Hilbert space (RKHS; see [2, 3, 4, 6, 7, 8], and the references therein).

An RKHS provides a flexible framework for modeling nonparametric func-

tions without explicitly enumerating the functional basis. It can be fully

induced by any symmetric and nonnegative definite kernel function, where

the choice of kernel functions relies on the available prior information about

ft. In practice, if no prior information is available, it is a common practice

to use the Gaussian kernel, which is known to be universal in the sense that

any continuous function can be well approximated by the induced RKHS

under the infinity norm [5].

To extend JSLZ to estimate kernel-based nonparametric ITRs, we con-

sider the case of ft ∈ HK , an RKHS induced by some kernel function K(·, ·).

The formulation of the kernel-based nonparametric ITRs then becomes

min
ft∈HK

− 1

n

(
ωt �

(
0.5(At + 1n)� f t + ln ξt)

))T
1n + λn‖ft‖2K , (1.1)

where ωt = (ωt1, ..., ωtn)T , At = (At1, ..., Atn)T , f t = (ft(x
t
1), ..., ft(x

t
n))T ,

� denotes a componentwise product, ξt = (ξt1, ..., ξtn)T with ξti =
(
1 +

exp(ft(x
t
i))
)−1

, and ‖ft‖2K = 〈ft, ft〉K is the associated RKHS-norm of ft.
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By the representer theorem [2], the minimizer of (1.1) must have the form

ft(x
t) =

n∑
i=1

αtiK(xt
i,x

t) = αT
t Kn(xt),

where αt = (αt1, ..., αtn)T and Kn(xt) = (K(xt
1,x

t), ..., K(xt
n,x

t))T . More-

over, let K =
(
(K(xi,xj))

)n
i,j=1

. Then f t = Kαt and ‖ft‖2K = αT
t Kαt.

After substituting these into (1.1), the optimization task with respect to the

infinite-dimensional ft simplifies to an equivalent optimization task with re-

spect to the n-dimensional αt, which can be solved by a slightly modified

algorithm, as in JSLZ. It is evident that the kernel-based formulation in

(1.1) is fairly similar to the original linear model of JSLZ, while admitting

flexible model structures of ft, thus allowing for general covariate effects on

the ITRs.

We now examine the numerical performance of the kernel-based non-

parametric ITRs using the simulated example in [3], where R = Q(x) +

T (x, A) + ε, with T (x, A) = 3.8(0.8−x21−x22)A,Q(x) = 1 +x1 +x2 + 2x3 +

0.5x4, and ε ∼ N(0, 1). We consider the Gaussian kernel, set the training

sample size as 400 and the validation sample size as 200,000, and set the

ridge parameter λn = 0.001. The experiment is repeated 100 times, and

the averaged value function values are summarized in Table 1.
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Table 1: Comparison of value function of linear and nonparametric ITRs
with their standard errors in parenthesis.

Method Linear ITR Nonparametric ITR
Value function 1.568(0.010) 1.629(0.008)

Clearly, the nonparametric ITR outperforms its linear counterpart in

the simulated example with nonlinear decision boundaries. In practice,

as pointed out in [3], the selection of the kernel function can be regarded

as a tuning parameter selection problem, with the optimal function being

determined using some data-adaptive selection criterion.

2. Inference for nonparametric ITRs

Few studies examine inferences related to machine-learning-based methods,

partly because of their “parameter-free” frameworks. A similar concern

is raised in JSLZ, although their inference results are still developed for

linear ITRs. In fact, recent attempts have been made to develop inference

tools for kernel-based approaches. For example, [1] provides an inference

for the prediction error of a kernel-based support vector machine, and [8]

conducts an inference for kernel-based approaches to estimate the dynamic

treatment regimes. The key idea is to utilize resampling techniques to draw

inferences on a criterion about the prediction errors of the machine-learning-
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based methods. Similar treatments can be extended to inferences for the

predicated value function of the nonparametric ITRs.

Given the training sampleOn = {(R1i, A1i,x
1
i , ...., RT i, AT i,x

T
i )}ni=1, the

estimated optimal decision functions f̂ = (f̂1, ..., f̂T )T can be obtained as in

Section 1. Then, for a new observationO0 = (R10, A10,x
1
0, ...., RT0, AT0,x

T
0 ),

we consider the predicted value function V 0
t (f̂t), with f̂t = (f̂t, ..., f̂T ),

and its estimate V̂t(f̂t,On). Here, V 0
t (f̂t) and V̂t(f̂t,On) are defined as in

JSLZ. We then randomly split On into K disjoint subsets O
(1)
n , ..., O

(K)
n

of equal size. For each k, we use all observations not in O
(k)
n to obtain

f̂ (−k) = (f̂
(−k)
1 , ..., f̂

(−k)
T )T , as in Section 1, and use O

(k)
n to compute the

cross-validated value function. The procedure is repeated for k = 1, ..., K,

and the final cross-validated value function is

V̂CV
t,n =

1

K

K∑
k=1

V̂t(f̂
(−k),O(k)

n ).

As shown in [1], the asymptotic distribution of
√
n
(
V̂CV
t,n − V 0

t (f̂t)
)

is the

same as that of
√
n
(
V̂t(f̂t,On)− V 0

t (f̂t)
)
.

To approximate the distribution of
√
n
(
V̂CV
t,n − V 0

t (f̂t)
)
, we consider a
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perturbed version of (1.1), such that

f̃t = argmin
ft∈HK

− 1

n
Gt �

(
ωt �

(
0.5(At + 1n)� f t + ln ξt)

))T
1n + λn‖ft‖2K ,

(2.1)

where Gt = (Gt1, ..., Gtn)T is drawn from an exponential distribution with

unit mean and variance. By sequentially solving (2.1), we obtain f̃ =

(f̃1, ..., f̃T )T . Specifically, for stage t, we calculate

W̃t = n−1/2
n∑

i=1

(
V̂t(f̃t, oi)− V̂t(f̂t,On)

)
Gti, (2.2)

where oi denotes the ith sample of On. Note that, given On, the only

random variable in (2.1) is Gti. More importantly, the computed W̃t in (2.2)

can be regarded as a realization of a random variable whose distribution

can approximate the distribution distribution of
√
n
(
V̂CV
t,n − V 0

t (f̂t)
)

very

well, given On. Thus in practice, we generate {Gti}ni=1 repeatedly M times,

and obtain a large number of realizations W̃t = {W̃tm}Mm=1 to approximate

the distribution of
√
n
(
V̂CV
t,n − V 0

t (f̂t)
)
. Therefore, the confidence interval

for the prediction value function in stage t can be obtained based on the

empirical distribution of W̃t.

We now construct an approximate confidence inference for the pre-

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0035



dicted value function of the nonparametric ITRs in the simulated example

in Section 1, with sample size 500 and five-fold cross-validation. We first

calculate the true prediction value function by repeatedly generating On in-

dependently 1000 times. Then, for eachOn, we calculate the cross-validated

value function V̂CV
n . Therefore, the true value function can be computed

as the average of V̂CV
n . To obtain the interval estimators, we generate On

independently 100 times. For each On, we compute V̂CV
n , generate G re-

peatedly to obtain 250 realizations of W̃ , and compute the estimated 95%

confidence interval. This leads to a 94% coverage rate, which is comparable

to the reported coverage rates in JSLZ for parametric ITRs, and may be

improved upon with further computational efforts.

3. Concluding remarks

We appreciate the opportunity to contribute to the discussion on this excel-

lent paper. JSLZ provide proper statistical inferences for machine-learning-

based methods when estimating ITRs, and leave numerous open questions

for further research. For example, it is of great interest to investigate the

statistical inferences for the kernel-based nonparametric ITRs theoretically,

which enjoy model flexibility and can be adjusted based on prior informa-

tion. We would like to congratulate JSLZ again on their enlightening work,
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and look forward to seeing similar future research.
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