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DISCUSSION OF “ENTROPY LEARNING

FOR DYNAMIC TREATMENT REGIMES”

Min Qian and Bin Cheng

Columbia University

We would like to congratulate Professors Jiang, Song, Li, and Zeng (JSLZ)

on their stimulating article on dynamic treatment regimes (DTR), in which they

make an interesting connection between the entropy loss and the optimal DTR.

We found the article enjoyable to read, and we thank the editors for the oppor-

tunity to discuss it.

DTRs employ treatment decision rules that can be used to tailor a treatment

based on a patient’s needs over time. Current methods for estimating DTRs can

be classified into two branches: the indirect approach (e.g., Q-learning; see Mur-

phy (2005)), and the direct approach. The direct approach requires that we deal

with a nonconvex optimization problem, owing to the existence of an indicator

loss, and a surrogate loss is often used (e.g., the hinge loss used in Zhao et al.

(2015)). JSLZ proposed replacing the indicator loss with a smooth surrogate

entropy loss, and obtained asymptotic normality results for the estimated pa-

rameters and value functions for inferences. Below, we first discuss the inference

problem and the conditions. Then, we examine the problem from a risk bound

point of view.

Inferences are critical in DTRs, because they help researchers to decide on

the best treatment for each patient with a measure of confidence. However, it is

challenging to make inferences when the data present around the decision bound-

ary (Robins (2004); Laber et al. (2014)). In a linear decision boundary setting,

following JSLZ’s notation, this means that |X∗Tt β0t | has a nonnegligible probabil-

ity mass around zero. Indeed, the asymptotic normality results in JSLZ rely on

a low-noise condition, namely that |X∗Tt β0t | is bounded away from zero in prob-

ability (Assumption A3). The same problem occurs in the (indirect) Q-learning

setting. Laber et al. (2014) showed that the parameters are asymptotically nor-

mal when |X∗Tt β0t | is bounded away from zero, and nonnormal otherwise; an

adaptive procedure was proposed to solve this problem. From a treatment deci-

sion point of view, for a patient with X∗t = x∗t , because the treatment decision is
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based on the sign of x∗Tt β0t , it is essential to test whether x∗Tt β0t = 0. Thus, the

behavior of X∗Tt β̂t around zero is of great interest. As such, we wish to address

the nonregularity issue in the entropy learning framework.

Interestingly, the low-noise condition is also related to the convergence rate,

in terms of the risk bounds. Below, we establish two risk bounds for the entropy

loss function, following Bartlett, Jordan and McAuliffe (2006). We demonstrate

these bounds in the single-stage decision setting. However, the results for the

multi-stage setting are similar.

Let X be a random vector containing patient pre-treatment variables, A ∈
{−1, 1} be the treatment assignment, and R be a positive scalar outcome that

is bounded from above. Let π(X) , P (A = 1|X) denote the known treatment

randomization probability. The value function for a treatment decision rule D :

X → {−1, 1}, namely V (D), is defined as the expected outcome if the study

population follows the decision rule. The goal is to estimate the optimal decision

rule Dopt that maximizes V (D). It is easy to see that

V (D) = E
[

RI(A = D(X))

(Aπ(X) + (1−A)/2)

]
.

Thus, maximizing V (D) is equivalent to minimizing E[(RI(A 6= D(X)))/

((Aπ(X) + (1−A)/2))]. JSLZ proposed replacing the indicator loss I(A 6= D(X))

with a surrogate entropy loss h : {−1, 1} × R → R+, defined as h(a, y) =

−(a+ 1)y/2 + log(1 + ey). Define

Rh(f) = E
[

Rh(A, f(X))

(Aπ(X) + (1−A)/2)

]
.

Minimizing Rh(f) yields fopt(x) = arg minf :X→RRh(f) = log(E(Y |X = x, A =

1)/E(Y |X = x, A = −1)). It can be shown that Dopt(X) = sign(fopt(X)).

The following theorem connects the excess value, V (Dopt)− V (D), to the excess

entropy risk, Rh(f)−Rh(fopt). The proof is similar to that of Bartlett, Jordan

and McAuliffe (2006), and thus is omitted.

Theorem 1. Suppose R is positive and bounded from above by a constant B > 0.

Then, for any f : X → R and D : X → {−1, 1}, such that D(X) = sign(f(X)),

we have

ψ
(
V (Dopt)− V (D)

)
≤ Rh(f)−Rh(fopt), (1.1)

where ψ : R+ → R is defined as

ψ(θ) , (θ + 2B) log

(
2B

θ + 2B

)
+ (θ +B) log

(
θ +B

B

)
.

Furthermore, if there exists β > 0 and c > 0 such that, for all ε > 0,
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P (0 < |E(Y |X, A = 1)− E(Y |X, A = −1)| < ε) ≤ cεβ, (1.2)

then we have

c′
{
V (Dopt)− V (D)

}β/1+β
ψ

{
(V (Dopt)− V (D))1/(1+β)

2c′

}
≤ Rh(f)−Rh(fopt),

(1.3)

for some c′ > 0.

The risk bounds provide a way to evaluate the performance of the estimated

decision rules. This type of result has been provided in Qian and Murphy (2011)

for indirect learning, and in Zhao et al. (2012, 2015) for direct learning meth-

ods. The left-hand side of risk bounds (1.1) and (1.3) characterize the distance

between the estimated decision rule and the optimal decision rule in terms of

value. The right-hand side, Rh(f) −Rh(fopt), describes the asymptotic behav-

ior of the entropy risk. To see that, we replace f and D in the above theorem

with the estimates f̂(X) , X∗T β̂ and D̂(X) , sign(X∗T β̂), respectively, where

X∗ = (1,XT )T , and β̂ is obtained by minimizing the empirical entropy risk.

Then, Rh(f̂)−Rh(fopt) can be decomposed as

Rh(f̂)−Rh(fopt) = [Rh(f̂)−Rh(f∗)] + [Rh(f∗)−Rh(fopt)], (1.4)

where f∗(X) , X∗Tβ∗ minimizes the entropy risk Rh(f) in the linear decision

space. The second term in (1.4), Rh(f∗)−Rh(fopt), is the approximation error,

which measures the distance between the model and the truth. The first term,

Rh(f̂)−Rh(f∗), is the estimation error. Using Taylor’s expansion, we can verify

that Rh(f̂)−Rh(f∗) = O((β̂ − β∗)2), which is Op(n
−1), as shown in JSLZ.

Owing to the convexity of ψ(·), it is easy to verify that the risk bound in

(1.3) always gives an equivalent or better rate than that in (1.1). The low-

noise condition (1.2) plays a critical role here. Note that (1.2) is a variant of

Assumption A3 in JSLZ. Intuitively, when it is less likely to have point mass

around the decision boundary, we would expect to learn the optimal decision

rule more quickly and thus, experience a faster rate of convergence.

In summary, when a nonnegligible noise presents around the decision bound-

ary (i.e., the low-noise condition is violated), there are difficulties in both learning

the optimal decision rules and making statistical inferences under the null for var-

ious direct and indirect learning methods. An interesting research direction in

this area would be to combine the inference with machine learning in order to

improve the learning efficiency at the decision boundary.

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0034



4 AUTHOR

Acknowledgements

The research is supported in part by NIH Grant R21MH108999.

References

Bartlett, P. L., Jordan, M. I. and McAuliffe, J. D. (2006). Convexity, classification, and risk

bounds. Journal of the American Statistical Association 101, 138–156.

Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E. and Murphy, S. A. (2014). Dynamic

treatment regimes: Technical challenges and applications. Electronic Journal of Statistics

8, 1225.

Murphy, S. A. (2005). A generalization error for Q-learning. Journal of Machine Learning Re-

search 6, 1073–1097.

Qian, M. and Murphy, S. (2011). Performance Guarantees for Individualized Treatment Rules.

The Annals of Statistics 39, 1180–1210.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In:

Proceedings of the Second Seattle Symposium on Biostatitics. Springer, pp. 189–326.

Zhao, Y., Zeng, D., Laber, E. B. and Kosorok, M. R. (2015). New statistical learning methods

for estimating optimal dynamic treatment regimes. Journal of the American Statistical

Association 110, 583–598.

Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012). Estimating individualized treatment

rules using outcome weighted learning. Journal of the American Statistical Association

107, 1106–1118.

Department of Biostatistics, Columbia University, 722 West 168th Street, New York City, NY

10032, USA.

E-mail: mq2158@cumc.columbia.edu

Department of Biostatistics, Columbia University, 722 West 168th Street, New York City, NY

10032, USA.

E-mail: bc2159@cumc.columbia.edu

(Received ; accepted )

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0034

mailto:mq2158@cumc.columbia.edu
mailto:bc2159@cumc.columbia.edu



