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Abstract: Handling data with nonignorable missing responses is difficult because

of the identifiability issue caused by a nonignorable nonresponse. An effective ap-

proach described in the literature is to impose a parametric model on the nonresponse

propensity (while the conditional distribution of the response, given covariates, is

totally unspecified). Then, use a nonresponse instrument, which is a useful covari-

ate vector that can be excluded from the propensity, given the response and other

covariates. However, how to find a nonresponse instrument from a given set of co-

variates is not well addressed. In addition, we may want to select a parametric

propensity model from a set of candidate models. Therefore, we propose a simul-

taneous propensity model and instrument selection criterion. In the presence of a

nonignorable nonresponse, the proposed method consistently selects the most com-

pact correct parametric propensity model and instrument from a group of candidate

models, assuming one of these candidate models is correct and an instrument exists.

Simulation results show that our proposed method works quite well. A real-data

example is presented for illustration.
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1. Introduction

Consider the problem in which a univariate outcome or response Y is subject

to a nonresponse and a vector X of covariates is always observed. Here, we

wish to estimate or infer unknown quantities in FY (i.e., the distribution of Y ),

or in FY |X (i.e., the conditional distribution of Y , given X). The conditional

probability Pr(δ = 1|Y,X) is called the nonresponse propensity, or simply the

propensity, where δ is the indicator of observing Y . When Y can be excluded

from the propensity Pr(δ = 1|Y,X) such that the latter is a function ofX only,

the propensity is ignorable and missing data are at random (Little and Rubin,

2002). In this case, unknown quantities in FY or FY |X can be estimated using

FY |X,δ=1 and FX because FY |X = FY |X,δ=1; see, for example, Rubin (1987),

Cheng (1994), Robins et al. (1994), Ibrahim et al. (2005), Kim and Shao

(2013), and the references therein. When Y cannot be excluded from Pr(δ =

1|Y,X), the propensity is nonignorable, and developing a valid estimation

method is notoriously challenging. In this case, the population parameters

are, in general, not identifiable, and estimates based on an assumption of
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ignorable nonresponses may have large biases (Fitzmaurice et al., 1995; Wang

et al., 2014). Thus, methods very different to those for an ignorable propensity

have to be applied; see, for example, Scharfstein et al. (1999), Qin et al.

(2002), Tang et al. (2003), Kim and Yu (2011), Xie et al. (2011), Wang et

al. (2014), Tang et al. (2014), Zhao and Shao (2015), Shao and Wang (2016),

Guan and Qin (2017), and the references therein.

When the propensity is nonignorable, the distribution of (δ, Y,X) is typ-

ically not identifiable (Robins and Ritov, 1997; Wang et al., 2014). Two

general and sufficient conditions for the identifiability of the distribution are

the following:

Pr(δ = 1|Y,X) = π(Y,U), X = (U ,Z),

FY |X depends on Z,

(1.1)

and

there is a parametric component in either FY |X or π(Y,U). (1.2)

Condition (1.1) means that when Y cannot be excluded from the propensity,

a sub-vector Z of X can be excluded, and Z is still a useful covariate for Y .

Wang et al. (2014) refer to such a Z as a nonresponse instrument. Excluding

Y or Z simplifies the form of the propensity and enables us to identify it.

Although (1.1) and (1.2) are sufficient conditions, either of them missing leads
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to a nonidentifiable distribution of (δ, Y,X); see Wang et al. (2014) for (1.1),

and Robins and Ritov (1997) for (1.2).

For condition (1.2), we can impose parametric models on both π(Y,U)

and FY |X ; see, for example, Molenberghs and Kenward (2007). Several studies

have attempted to derive results under semiparametric models. Tang et al.

(2003) and Zhao and Shao (2015) studied a pseudo-likelihood method under

a parametric model on FY |X , but an unspecified propensity π(Y,U ), with a

given instrument Z. In contrast, as in this study, Wang et al. (2014) derived

estimators under a parametric model on the propensity π(Y,U), but allowed

an unspecified FY |X ; that is, (1.2) is replaced by

π(Y,U) follows a parametric model but FY |X is unspecified. (1.2A)

The main technique in Wang et al. (2014) is to use a given instrument Z to

create sufficient estimating equations to enable the estimation of the paramet-

ric propensity π(Y,U ) in (1.2A); once the propensity is estimated, unknown

quantities can be estimated using the inverse propensity weighting method.

However, two important issues related to this approach have not been studied.

The first is how to find an instrument, a sub-vector Z ofX, that satisfies (1.1).

The second is how to select a parametric model for the propensity π(Y,U ).

Although many works have examined model selections with ignorable missing

responses, to the best of our knowledge, only two examine model selection with
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nonignorable missing responses. Fang and Shao (2016) and Zhao et al. (2018)

considered model/variable selection for FY |X when FY |X is parametric and

π(Y,U) is unspecified, which is different to (1.2A), which is the focus of our

research. Furthermore, they do not consider how to search for an instrument.

This study proposes a method that simultaneously searches for an instru-

ment satisfying (1.1) and selects a parametric model for the propensity from

a set of available models. We formulate this search for an instrument and

propensity model within a single model selection framework. Our key idea

is to construct and compare two estimators of FX , the cumulative distribu-

tion function of the covariate vector X. Because X is always observed, a

simple consistent estimator that does not depend on a model and instrument

is the empirical cumulative distribution function F̂X , based on X data. On

the other hand, for a candidate parametric propensity model k on π(Y,U ),

with a possible instrument Z, we construct an inverse propensity estimator

F̂k of FX using Y data, X data, and the model information in the presence

of nonignorable missing Y data. Because only a correct candidate model and

a correct instrument can produce a consistent estimator F̂k close to F̂X , we

select a model from a group of candidate models and an instrument by min-

imizing the distance between the two estimators F̂X and F̂k. Because some

propensity models may be correct, but overfitted, we add a penalty term in
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our model selection criterion, following the general principle of the well-known

BIC model selection.

When an instrument exists and the group of candidate models contains

at least one correct propensity model, our theory shows that, with probability

tending to one as the sample size increases to infinity, while the dimension ofX

remains fixed, the proposed method simultaneously selects the most compact

correct parametric propensity model and a correct instrument. Consequently,

parameter estimators using the inverse propensity weighting approach based

on the selected model and instrument are consistent and asymptotically nor-

mal. Simulation studies and a real-data example demonstrate the effectiveness

of the proposed method.

2. Methodology and Theory

Under conditions (1.1) and (1.2A), we would like to select sub-vectors Z and

U such that X = (U ,Z), where Z is an instrument and π(Y,U) is the

propensity. Choosing different components of X as Z and U can be viewed

as selecting different models. Thus, the instrument and propensity model

selection can be combined into a general model selection problem.

To illustrate, consider three-dimensionalX = (X1, X2, X3) and π(Y,U , θ),

which are logistic in a linear combination of Xj and Y . Then, we have the
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following seven models:

π0(Y,U0, θ0) = 1/{1 + exp(α0 + γ0Y )},

πj(Y,Uj, θj) = 1/{1 + exp(αj + βjXj + γjY )}, j = 1, 2, 3,

π4(Y,U4, θ4) = 1/{1 + exp(α4 + β41X1 + β42X2 + γ4Y )}, (2.1)

π5(Y,U5, θ5) = 1/{1 + exp(α5 + β51X1 + β52X3 + γ5Y )},

π6(Y,U6, θ6) = 1/{1 + exp(α6 + β61X2 + β62X3 + γ6Y )},

where U0 = 0; Uj = Xj, for j = 1, 2, 3; U4 = (X1, X2); U5 = (X1, X3);

and U6 = (X2, X3). The model with U = X is excluded because we assume

the existence of an instrument. These seven models correspond to selecting a

propensity and an instrument, because if model k is selected, then the selected

instrument is Zk, which contains components in X in the propensity, but not

in Uk. If we need to select between a logistic and another model (e.g., a

probit model), then replacing 1/{1 + exp(·)} with another function results

in an additional seven models, and the total number of models becomes 14.

Alternatively, we may want to add a nonlinear term, such as Y 2, to the linear

combination of the logistic model, which results in a total of 3×7 = 21 models,

because we may have a Y term only, a Y 2 term only, or both Y and Y 2 terms.

Let K be the total number of candidate models under all combinations of
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U and Z decompositions, and let

M = {πk(Y,Uk,θk), k = 1, . . . , K}

be the collection of all K parametric models, where Uk is the vector U under

model k, πk is a known function of (Y,Uk,θk), and θk is an unknown parameter

vector with dimension dk under model k. If model k is selected, then Zk with

X = (Uk,Zk) is selected as an instrument, and model πk(Y,Uk,θk) is the

selected propensity model. We say that model k is correct if and only if Zk is

an instrument satisfying (1.1) and πk(Y,Uk,θk) is a correct propensity. Under

this framework, finding an instrument and selecting a propensity model is the

same as selecting a model from M.

For simplicity, we now consider a fixed model k; note that we omit the

subscript k in U and Z in the following discussion. Let Z = (Zc,Zd), where

Zc is a continuous covariate vector, and Zd is a Jk-dimensional vector in which

the jth component is the indicator of a discrete covariate, for j = 1, ..., Jk.

Following Wang et al. (2014), in order to estimate the parameter θk, we define

the vector-valued function

gk(Y,X, δ,θk) = hk(X)
{ δ

πk(Y,U ,θk)
− 1

}
, (2.2)

where hk(X) is a known vector-valued function of X with dimension Lk ≥ dk,

which is the dimension of θk. For example, we can use hk(X) = (U ,Zc,Zd)
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when the dimension of (U ,Zc) plus Jk is greater than or equal to dk. If

the dimension of (U ,Zc) plus Jk is smaller than dk, we add Z̃ to (U ,Zc,Zd),

where the components of Z̃ are higher moments of Zc, such that the dimension

of (U ,Zc,Zd, Z̃) is not smaller than dk. The efficiency of the estimation based

on (2.2) depends on the choice of hk(X). Several approaches for choosing

hk(X) have been proposed by Morikawa et al. (2017) and Ai et al. (2018).

However, because we focus on model and instrument selection, we assume a

fixed function hk(X) in (2.2).

If model k is correct and θ0
k is the unique true parameter value of θk, then

it can be verified that, under Pr(δ = 1|Y,X) = π(Y,U) and the first part of

condition (1.1),

E{gk(Y,X, δ,θ0
k)} = 0. (2.3)

Thus, the function gk in (2.2) provides an estimating equation for θk. The

second part of condition (1.1) ensures that the estimation equations in (2.3)

are not linearly dependent; thus, we have sufficient equations to estimate θk.

Throughout, model selection is based on a random sample of size n,

(Xi, Yi, δi), for i = 1, ..., n, taken from the distribution of (X, Y, δ), where

Xi is always observed and Yi is observed if and only if δi = 1. Because

Lk may be larger than dk, we apply the generalized method of moments

(GMM) to estimate θk, based on (2.2)–(2.3). Specifically, let Ḡkn(θk) =
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n−1
∑n

i=1 gk(Yi,Xi, δi,θk), θ̃k = argminθk
Ḡkn(θk)

⊤Ḡkn(θk), where a⊤ is the

transpose of a, and let Ŵkn = n−1
∑n

i=1 gk(Yi,Xi, δi, θ̃k)gk(Yi,Xi, δi, θ̃k)
⊤.

Then, the GMM estimator of θk is

θ̂k = argmin
θk

Ḡkn(θk)
⊤Ŵ−1

kn Ḡkn(θk). (2.4)

For simplicity, we denote the cumulative distribution function of X by

F = FX . Once we have θ̂k in (2.4), an inverse propensity weighting estimator

of F (x) is given by

F̂k(x) =
n∑

i=1

δiI(Xi ≤ x)

πk(Yi,Ui, θ̂k)
,

where I(Xi ≤ x) is the indicator function of Xi ≤ x and, for vectors a and

b, a ≤ b means that all components of b− a are nonnegative.

If model k is correct, then it can be shown that, as the sample size n → ∞,

θ̂k is consistent for θ0
k and F̂k(x) is consistent for F (x). On the other hand,

if either Z is not an instrument or πk(Y,U ,θk) is incorrect, then F̂k(x) is

inconsistent.

Without using a model, a consistent estimator of F (x) is the empirical

cumulative distribution function F̂ (x) = n−1
∑n

i=1 I(Xi ≤ x). We then use

the closeness between F̂ and F̂k to validate model k. Define the following

model validation criterion:

VC(k) =
1

n

n∑
i=1

|F̂k(Xi)− F̂ (Xi)|. (2.5)
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As we show later, if model πk(Y,U ,θk) with the corresponding instrument is

correct, then VC(k) → 0 in probability as n → ∞. Otherwise, VC(k) does not

converge to zero. Thus, correct and incorrect models can be detected using

VC(k).

A correct model may be an overfitted model that includes some redundant

parameters. For example, suppose X = (S,R,T ), (R,T ) is an instrument

and π(α+γY +β⊤S) is a correct propensity, where α, γ, and β are unknown.

Then, T is also an instrument and π(α + γY + β⊤S + 0⊤R) is a correct

propensity containing a redundant R, where 0 is a vector of zeros. A more

compact propensity model may result in a propensity and other parameter

estimators that are more efficient (see the simulation results in Section 3).

Thus, we define the best model as the most compact correct propensity mod-

el in M, and penalize the model dimension, following the well-known BIC;

that is, we choose a model by minimizing the following penalized validation

criterion (PVC):

PVCλ(k) = VC(k) + λ log(dk),

k̂ = argmin1≤k≤KPVCλ(k),

(2.6)

where dk is the dimension of θk, and λ ≥ 0 is a penalization factor that

may depend on n and the sample data. The selected instrument is Zk̂ with

X = (Uk̂,Zk̂), and the selected model is πk̂(Y,Uk̂,θk̂). Quantities of interest

Statistica Sinica: Preprint 
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can be estimated using the inverse propensity weighting with the estimated

propensity πk̂(Y,Uk̂, θ̂k̂). For example, the population mean µ = E(Y ) can

be estimated by

µ̂pvc =
n∑

i=1

δiYi

πk̂(Yi,Uk̂i, θ̂k̂)
. (2.7)

We now present several asymptotic properties of the proposed method for

instrument and model selection. If Z is an instrument and πk(Y,U ,θk) is

correct, as shown in Wang et al. (2014), θ̂k obtained by (2.4) is consistent

for θ0
k, and is asymptotically normal under some regularity conditions. When

either Z or πk(Y,U ,θk) is incorrect, the following lemma shows the property

of θ̂k under a misspecified model.

Lemma 1. Assume the following regularity conditions:

C1. (a) The dimension of X, p, and the number of candidate models, K,

remain fixed when the sample size n → ∞; (b) The parameter space

A for θk is a compact set of Rdk , and θ∗
k is the unique minimizer of

∥Gk(θk)∥ over θk, where Gk(θk) = E{gk(Y,X, δ,θk)} and ∥ · ∥ is the

l2-norm; (c) supθk
∥gk(Y,X, δ,θk)∥ < ∞; (d) The matrix Γk(θ

∗
k) =

E{hk(X)⊤δ[∂π−1
k (Y,U ,θ∗

k)/∂θk]} is of full rank, and the matrix Wk(θ
∗
k)

= E{gk(Y,X, δ,θ∗
k)gk(Y,X, δ,θ∗

k)
⊤} is positive definite;

C2. (a) πk(Y,U ,θk) is twice differentiable with respect to θk; (b) πk(Y,U ,θ∗
k)

≥ C > 0, for k = 1, ..., K; (c) ∂πk(Y,U ,θk)/∂θk is uniformly bounded.
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Then, as n → ∞,

n1/2(θ̂k − θ∗
k) → N(0, {Γk(θ

∗
k)

⊤W−1
k (θ∗

k)Γk(θ
∗
k)}−1) in distribution.

In the presence of misspecification, the proposed θ̂k consistently estimates

θ∗
k by minimizing the population version of the empirical generalized moment

discrepancy. If model πk(Y,U ,θk) is correct, then θ̂k is consistent for the true

parameter vector θ0
k.

Define

Fk(x) = E
{ δI(X ≤ x)

πk(Y,U ,θ∗
k)

}
= E

[
E
{ π(Y,U)

πk(Y,U ,θ∗
k)

}
I(X ≤ x)

]
.

Because θ̂k → θ∗
k in probability, it can be verified that F̂k(x) → Fk(x) in

probability. Define

∆k = E|Fk(X)− F (X)|.

Then, VC(k), defined in (2.5), converges in probability to ∆k. If πk(Y,U ,θk)

is a correct model and Z is an instrument, then Fk(x) = F (x) and ∆k = 0.

If ∆k > 0 for any incorrect model k, then we can distinguish between an

incorrect and a correct model.

The order of λ tending to 0 as n → ∞ determines the asymptotic behavior

of the proposed model selection procedure. Without loss of generality, we

assume that the most compact correct model is π1(Y,U ,θ1). The model

Statistica Sinica: Preprint 
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selection procedure is consistent as n → ∞ if and only if

Pr{PVCλ(k) > PVCλ(1)} → 1 (2.8)

holds for any model k with k > 1. Suppose that ∆k > 0 when πk(Y,Uk,θk) is

an incorrect model. To achieve (2.8), we need λ satisfying λ(log d1− log dk) <

VC(k) − VC(1); because VC(k) − VC(1) → ∆k > 0 and dk may be smaller

than d1, we need λ → 0 as n → ∞. Next, let πk(Y,Uk,θk) be a correct

model that is overfitted, such that dk > d1. In this case, we need to find λ

such that λ > {VC(1)− VC(k)}/(log dk − log d1) with probability tending to

one. Because both VC(1) and VC(k) converge to zero under correct models,

we need to choose λ that converges to zero at a rate slower than that of

VC(1)− VC(k). The following lemma, proved in the Appendix, provides the

convergence rate of VC(1)− VC(k).

Lemma 2. Under the conditions in Lemma 1, if π1(Y,U ,θ1) is the most

compact correct model and πk(Y,U ,θk) is an overfitted correct model, then

VC(1)− VC(k) = Op(n
−1/2).

This result and the previous discussion establish the following result about

the consistency of the proposed propensity and instrument selection method.

Theorem 1. Assume that M contains a correctly specified propensity mod-

el for π(Y,U), with an instrument Z satisfying (1.1). Under the regularity

Statistica Sinica: Preprint 
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conditions in Lemmas 1 and 2, if λ in (2.6) is chosen such that λ → 0 and

n1/2λ → ∞, then (2.8) holds; that is, Pr(k̂ = 1) → 1 as n → ∞, where model

1 is assumed to be the most compact correct model.

In practice, we propose using λ = Cn−1/2(log log n)1/2, with a constant

C chosen using cross-validation (CV). Specifically, we randomly split the set

{1, ..., n} into J nonoverlapping subsets {S1, . . . , SJ} of roughly equal size,

n1, ..., nJ . For each j = 1, ..., J and a given C, using all data from i /∈ Sj, we

compute

PVC−j(k) = (n− nj)
−1

∑
i/∈Sj

|F̂k(Xi)− F̂ (Xi)|+ λ log(dk),

k̂−j = argmin1≤k≤KPVC−j(k).

For a fixed C, we compute the error on the validation set Sj as

ej(C) =
1

nj

∑
i∈Sj

|F̂k̂−j
(Xi)− F̂ (Xi)|,

and then choose the value C as Ĉ that minimizes the average error over all

subsets; that is,

Ĉ = argmin
C

1

J

J∑
j=1

ej(C). (2.9)

The collection M may include all possible decompositions of X = (U ,Z),

which means we have at least K = 2p − 1 models when the dimension of X

is p. The grid search over all models may be computationally infeasible for
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a moderate p, for example p ≥ 7. For the purpose of searching for a correct

propensity and an instrument, however, it is not necessary to perform a grid

search. Here, we propose a forward instrument selection procedure that can

handle a moderate p. Consider the p-dimensional covariatesX = (X1, . . . , Xp)

and a fixed parametric function π(Y,U , θ) (e.g., a logistic function). Then,

we proceed as follows:

(i) Start with p models with Z = Xj and U = (Xt : t ̸= j), for j = 1, ..., p.

Select the model with the lowest PVC, yielding Z∗
1 = X1∗ and U ∗

1 =

(Xt : t ̸= 1∗).

(ii) Consider the next p− 1 models with Z = (X1∗ , Xj) and U = (Xt : t ̸=

j, t ̸= 1∗), for j = 1, ..., p, j ̸= 1∗. For these, select the model with the

lowest PVC. If this PVC value is higher than that in step 1, then stop,

and the model selected is π(Y,U ∗
1 , θ). Otherwise, set Z∗

2 = (X1∗ , X2∗)

and U ∗
2 = (Xt : t ̸= 1∗, t ̸= 2∗), and continue to the next step.

(iii) At the kth step, consider p−k+1 models with Z = (X1∗ , ..., X(k−1)∗ , Xj)

and U = (Xt : t ̸= j, t ̸= 1∗, ..., t ̸= (k − 1)∗), for j = 1, ..., p, j ̸=

1∗, ..., j ̸= (k − 1)∗. For these, select the model with the lowest PVC.

If this PVC value is higher than that in step k − 1, then stop, and the

model selected is π(Y,U(k−1)∗ , θ). Otherwise, continue until k = p.
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The number of models considered in this procedure is at most p+(p−1)+

· · · + 2 + 1 = p(p + 1)/2. Furthermore, if we want select π(Y,U , θ) between

logistic and probit models or add a nonlinear term Y 2 to the linear combination

of Xj and Y , we can apply the previous idea and establish a similar multi-

step procedure. An asymptotic result similar to that in Theorem 1 can also

be established.

3. Simulation Studies

Under assumptions (1.1) and (1.2A), we use a simulation to examine the finite-

sample performance of the proposed method in terms of the rate of selecting

the most compact correct model. We also examine the bias and root mean

squared error (RMSE) of the resulting inverse propensity weighting estimator

µ̂pvc, defined in (2.7). All results are based on 1,000 simulation replications.

In simulation 1, we select a model from the seven models in (2.1). Here

X = (X1, X2, X3) is generated from a three-dimensional normal distribution

with mean one and covariance Cov(Xj, Xj′) = 0.5, for 1 ≤ j < j′ ≤ 3, and

Var(Xj) = 1 and Y = X2
1 +X2

2 +X2
3 + ε, where ε is drawn from N(0, 2), and

is independent of X. For convenience, we denote the seven models in (2.1)

by M0, M1(X1), M1(X2), M1(X3), M2(X1, X2), M2(X1, X3), and M2(X2, X3),

respectively, where the subscript s in Ms(U) is the dimension of U ; for ex-
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ample, M0 is the model with U = 0 and Z = (X1, X2, X3), and M2(X1, X3)

is the model with a two-dimensional U = (X1, X3) and Z = X2.

Given (Y,X), we generate δ from a Bernoulli distribution using the logistic

function in (2.1) as the probability and the parameter vector θ0 = (−0.4,−0.3)

for M0; in addition, θ0 = (−0.8, 1.2,−0.3) for M1(Xj), with j = 1, 2, 3,

and θ0 = (−0.8, 1.2, 1.2,−0.3) for M2(Xj, Xj′), with 1 ≤ j < j′ ≤ 3. The

coefficients in the propensity models are chosen such that the unconditional

rates of missing data are between 20% and 40%. As in Wang et al. (2014), we

use hk(X) = (1,U ,Z) in (2.2) and (2.4) to obtain the GMM estimator θ̂k.

If the true propensity π(Y,U ) = M1(X1), then Z = (X2, X3) is an

instrument; models M0, M1(X2), M1(X3), and M2(X2, X3) are incorrect;

M2(X1, X2) and M2(X1, X3) are also correct propensity models, with Z = X3

and Z = X2 as instruments, respectively. Because both M2(X1, X2) and

M2(X1, X3) are overfitted, the penalty term in (2.6) forces us to chooseM1(X1)

more frequently. The discussion is similar if M1(X2) or M1(X3) is correct. If

the true propensity π(Y,U) = M2(X1, X2), then M2(X1, X2) is the only cor-

rect propensity model, and Z = X3 is the only correct instrument. Finally,

if π(Y,U) = M0, then all models are correct, and M0 is the most compact

model with Z = X.

For n= 300, 500, and 1,000, we implement the PVC in (2.6), using a 10-
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fold CV method to determine the tuning parameter λ (see the end of Section

2), where the range for the minimization in (2.9) is (0.1, 20). Table 1 reports

the rates for 1,000 Monte Carlo replications, in which each model is selected

using the proposed PVC under different best models (i.e., the most compact

correct models). The results show that the proposed method selects the best

model most of the time; that is, the simulation rates when selecting the best

model are very high when the sample size n = 300, and are close to one when

n = 500 or 1,000.

Put Tables 1–2 about here.

Following the model and instrument selection, we can estimate µ = E(Y ),

using the proposed estimator µ̂pvc, defined in (2.7), based on the selected and

estimated propensity. By way of comparison, we also include three other

estimators: Ȳ = n−1
∑n

i=1 Yi, the sample mean when there is no missing data,

which is used as a benchmark; µ̂cc =
∑n

i=1 δiYi/
∑n

i=1 δi, the sample mean

of observed Y data, which is a biased estimator; and the inverse propensity

weighting estimators µ̂k =
∑n

i=1 δiYi/πk(Yi,Ui, θ̂k), for k = 0, . . . , 6, which

differs from µ̂pvc in (2.7) because µ̂k uses a fixed propensity without model

selection, and may be biased when the propensity model is incorrect. The

mean, µ, is 6 in all cases.

Owing to symmetry, the simulation results when M1(X2) or M1(X3) are
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best are similar to those whenM1(X1) is best, and the results whenM2(X1, X3)

or M2(X2, X3) are best are similar to those when M2(X1, X2) is best. Hence,

we present only those results when M0, M1(X1) and M2(X1, X2) are best. Ta-

ble 2 shows the biases and RMSEs of the point estimators based on different

methods. In terms of bias and RMSE, when M0 is best, we find that the pro-

posed PVC estimator and the estimator based on the seven propensity models

are comparable. When M1(X1) is the best, it can be seen that the proposed

PVC estimator and the estimator based on M1(X1) are comparable, both of

which exhibit negligible bias and a slightly larger RMSE than that of Ȳ in all

cases; as expected, the estimators based on M1(X1, X2) and M1(X1, X3) are

also unbiased, but less efficient. Lastly, the estimators based on observed Y

values and other propensity models have larger biases and RMSEs, support-

ing our theory. Similar results are obtained when M2(X1, X2) is best. In this

case, because only M2(X1, X2) is correct, we find that µ̂k based on the incor-

rect models have much larger biases and RMSEs than those of the method

based on observed Y values, which is consistent with the findings of Shao

and Wang (2016), and is our motivation for studying model and instrument

selection.

Simulation 2 evaluates the performance of the proposed method in select-

ing Y or Y 2 in the logistic propensity model; that is, in addition to the seven
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candidate models in (2.1), we include the following seven candidate models:

M̃0 = 1/{1 + exp(α + γY 2)}, θ = (α, γ)

M̃1(Xj) = 1/{1 + exp(α + βXj + γY 2)}, θ = (α, β, γ)

M̃2(Xj, Xj′) = 1/{1 + exp(α + β1Xj + β2Xj′ + γY 2)}, θ = (α, β1, β2, γ),

with θ0 = (0.8,−0.1) for M̃0, θ0 = (−0.8, 2,−0.3) for M̃1(Xj), and θ0 =

(−0.8, 1.5, 1.5,−0.1) for M̃2(Xj, Xj′) in the simulation, for 1 ≤ j ≤ j′ ≤ 3.

If the true propensity π(Y,U) = M0, X is an instrument and Z = sub-

vectors of X under all other models are correct instruments, even though M0

is the most compact model. Furthermore, modelsM1(Xj) andM2(Xj, Xj′) are

correct, but M̃0, M̃1(Xj) and M̃2(Xj, Xj′) are incorrect, owing to their use of

Y 2 instead of Y ; the discussion is similar if M̃0 is correct. If π(Y,U) = M1(X1),

only models M1(X1), M2(X1, X2), M2(X1, X3), M̃1(X1), M̃2(X1, X2), and

M̃2(X1, X3) give correct instruments Z = X2, X3, or (X2, X3). However,

M̃1(X1), M̃2(X1, X2), and M̃2(X1, X3) are incorrect models, and M2(X1, X2)

andM2(X1, X3) are correct, but overfitted. The discussion is similar ifM1(Xj)

or M̃1(Xj) is correct. If π(Y,U) = M2(X1, X2), onlyM2(X1, X2) and M̃2(X1, X2)

give correct instrument Z = X3, but M̃2(X1, X2) is incorrect. The discussion

is similar if M2(Xj, Xj′) or M̃2(Xj, Xj′) is correct.

The model selection probabilities and estimation results for µ = E(Y ) are
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shown in Figure 1 and Table 3, respectively. Figure 1 shows that our proposed

method performs well in terms of selecting the best propensity model and

instrument simultaneously. The results in Table 1 show that the selection

rates for the best model decrease slightly when M0 or M1(Xj) is best, but are

close to one when n = 1, 000.

Put Figure 1 and Table 3 about here.

For the seven propensity models using Y , the results are symmetric; thus,

we present only those results when M0, M1(X1), or M2(X1, X2) are best. Ta-

ble 3 shows the biases and RMSEs of the point estimators based on different

methods. The results show that when M0 is best, the proposed PVC esti-

mator and the estimator based on the seven propensity models using Y are

comparable. When M1(X1) is best, the proposed PVC estimator and the es-

timators based on M1(X1) and M̃1(X1) are comparable, exhibiting negligible

bias and slightly larger RMSEs than those of Ȳ in all cases. The estimators

based on M2(X1, X2), and M2(X1, X3) are also unbiased, but M̃2(X1, X3) and

M̃2(X1, X2) have much larger RMSEs, owing to their use of Y 2. The esti-

mators based on observed Y values and other propensity models have larger

biases and RMSEs, supporting our theory. When M2(X1, X2) is best, the

proposed PVC estimator and the estimator based on M2(X1, X2) are compa-

rable, exhibiting negligible bias and slightly larger RMSEs than those of Ȳ in

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0025



PROPENSITY SELECTION WITH INSTRUMENT 23

all cases. Furthermore, the µ̂k based on the incorrect models have much larger

biases and RMSEs than those of the method based on observed Y values. For

the seven propensity models using Y 2, the conclusions are similar and, hence,

the results are omitted.

Our final simulation examines the forward instrument selection procedure

discussed in Section 3 when the dimension of X is 10. As in simulation 1,

X = (X1, X2, . . . , X10) is generated from a 10-dimensional normal distribution

with mean one and covariance Cov(Xj, Xj′) = 0.5 for 1 ≤ j < j′ ≤ 10 and

Var(Xj) = 1; Y is generated from

Y = X2
1 +X2

2 + . . .+X2
10 + ε,

where ε is taken from N(0, 2) and is independent of X. We denote the 10 pos-

sible models in (2.1) by M0 and Mj(Uj) = 1/{1+exp(α+βTUj + γY )}, with

Uj = (X1, . . . , Xj) for j = 1, . . . , 9. In addition, we consider θ0 = (0.2,−0.2)

for M0, θ0 = (−0.8, 0.8,−0.2) for M1(U1), θ0 = (−0.8, 0.8, 0.8,−0.2) for

M2(U2), θ
0 = (−0.8, 0.8, 0.8, 0.8,−0.4) forM3(U3), θ

0 = (−0.8, 1, 1, 1, 1,−0.6)

forM4(U4), θ
0 = (−2, 0.8, . . . , 0.8,−0.4) forM5(U5), θ

0 = (−2, 0.8, . . . , 0.8,−0.4)

forM6(U6), θ
0 = (−0.8, 0.8, . . . , 0.8,−0.8) forM7(U7), θ

0 = (−1, 0.8, . . . , 0.8,−0.6)

for M8(U8), and θ0 = (−2, 0.8, . . . , 0.8,−0.6) for M9(U9). For n = 1, 000 or

1,500, we compute the simulation rates for the forward instrument selection

procedure when selecting the correct, best (the most compact correct), and
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incorrect models. The results, shown in Table 4, indicate that the procedure

performs well, especially when the dimension of U is small.

Put Table 4 about here.

4. Real-data example

We consider a data set from the National Health and Nutrition Examination

Survey (NHNES) conducted in 2005 by the United States Centers for Disease

Control and Prevention. The survey was designed to assess the health and

nutritional status of adults and children in the United States. The data are

available at www.cdc.gov/nchs/nhanes.htm.

As in Fang and Shao (2016), we consider body fat percentage, measured

by dual-energy X-ray absorptiometry (dxa), as the response variable Y ; body

mass index (bmi), gender, and age as covariates, that is, X = (bmi, gender,

age); and middle-aged and older people (age ≥ 45). This yielded n = 1591

subjects, 393 (24.7%) of which have missing Y data.

As in the first simulation study in Section 3, we consider the seven candi-

date propensity models in (2.1), based on the assumption that the underlying

true propensity model is a logistic model linear in Y and X. Then, we imple-

ment the proposed method to select an instrument Z. Thus, we have seven

choices of instrument: Z = bmi, Z = gender, Z = age, Z = (bmi, gender),
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Z = (bmi, age), Z = (gender, age), and Z = (bmi, gender, age). For each

choice of Z, the covariates not included in Z are treated as U . We use the

proposed PVC in (2.6), with a tuning parameter λ̂ obtained from a 10-fold

cross-validation. For each candidate propensity model, the values of the pro-

posed PVC, estimate of the population mean of dxa, and its standard error are

based on a bootstrap with 200 replications (see Table 4). The proposed PVC

method selects M1(bmi) (i.e., Z =(gender, age)), which is consistent with the

results of Fang and Shao (2016), which were obtained under a different setting

in which FY |X is parametric and the propensity π(Y,U) is unspecified. Of the

seven choices of instruments, the mean estimates based on Z = bmi, Z =

(bmi, age), Z = (bmi, gender), and Z = (bmi, age, gender) differ from the

proposed mean estimate based on Z = (gender, age), indicating that these

are wrong choices of instruments. On the other hand, as mentioned in Section

2, Z = age and Z = gender are correct choices of instruments if Z = (gender,

age) is an instrument; they provide similar mean estimates, but the estimates

based on Z = age and Z = gender have much larger SEs. Therefore, to ensure

an efficient mean estimator, we should select an instrument with the largest

possible dimension.

Put Table 5 about here.

As in the second simulation in Section 3, we further include the seven
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candidate propensity models that are logistically linear in (Y 2,X). The results

are also presented in Table 5. The proposed PVC method still selects M1(bmi)

from all 14 candidate models, indicating that the propensity models with a

term Y 2, but not Y , are incorrect.

The United States Centers for Disease Control and Prevention indicated

that, in this problem, missing responses may not be ingorable, after examining

missing items in the data files. To determine the effect of addressing nonig-

norable nonresponses, we computed estimates of E(Y ) by assuming ignorable

nonresponses and excluding the Y term in the logistic propensity previously

discussed. The resulting models are denoted by M−Y
s (U ), and so on. For

example, M−Y
1 (bmi) = 1/{1+ exp(α+ β× bmi)}. The results are included in

Table 5. Note that the estimate under M−Y
0 is equal to the sample mean of

observed Y values, which is 34.44. Regardless of which ignorable propensity

model is used, all estimates of E(Y ) are between 34.17 and 34.68, which are

close to the sample mean of the observed Y data. Thus, in this example, we do

see some effect of addressing nonignorable nonresponses, although the extent

of this effect is unknown in a real data set.
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5. Discussion

Handling nonignorable nonresponses is a challenging problem, mainly because

of the identifiability of the nonresponse propensity. A nonresponse instrument

plays a crucial role in identifiability, but is often assumed as given in the liter-

ature. Furthermore, to obtain consistent estimators, the imposed parametric

propensity model must be verified. Thus, we have proposed a simultaneous

propensity model and instrument selection criterion in the presence of non-

ignorable nonresponses. We showed that the proposed method consistently

selects the most compact correct parametric propensity model and instrument

from a group of candidate models, assuming one of these candidate models is

correct and an instrument exists. The simulation studies and data analysis

show that the proposed method performs well.

The proposed method based on (1.1), (1.2A), and (2.2)–(2.6) can be ex-

tended to the situation where Y is multivariate (with δ changed to a vector of

indicators) or the situation where both Y and X have missing data. By way

of illustration, we consider the situation where Z is always observed, and U

and Y have missing values. Let δY and δU be the indicators of observing Y

and U , respectively. Instead of (1.1), we assume that

Pr(δY = t, δU = s|Y,U ,Z) = Pr(δY = t, δU = s|Y,U ),
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where t = 0, 1 and s is a vector of zeros and ones values. Then, we consider

the collection of all K parametric models M = {πk(Y,Uk,θk), k = 1, . . . , K},

for Pr(δY = t, δU = s|Y,U ). The proposed PVC can be adopted.

The proposed method has several limitations. First, our method is appli-

cable for small or moderate p only. For high-dimensional covariates, the model

selection and instrument search with nonignorable nonresponses is challeng-

ing. One possible solution is to first apply a proper variable/feature screening

method to reduce the dimensionality of the covariates, and then to apply the

proposed method to the reduced number of covariates. Second, the stepwise

selection procedure has some limitations. For example, the order of covariate

entry and the number of covariates may affect the selected model. Third, the

proposed method relies on the assumption that one of the candidate models

is correct and an instrument exists. In practice, we may consider a number

of potential candidate models, and try to ensure that at least one is correct.

When all candidate models are incorrect or no instrument exists, we may on-

ly derive some procedures that are approximately valid. Additional research

on the case in which no correct candidate model or instrument exists is still

interesting, although challenging, because no model is perfect in all practical

applications. These issues will be explored in further research.
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Appendix

Proof of Lemma 1: Recall

Ḡkn(θk) = n−1

n∑
i=1

gk(Yi,Xi, δi,θk) and Gk(θk) = E{gk(Y,U , δ,θk)}.

By the law of large number (LLN), it can be shown that Ḡkn(θk)−Gk(θk) =

op(1) for all θk ∈ A. Since both gk(Y,U , δ,θk) and Ḡkn(θk) are continuous at

each θk ∈ A,

sup
θk∈A

∥Ḡkn(θk)−Gk(θk)∥ = op(1).
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This, coupled with GMM identification (i.e., Lemma 2.3 of Newey and Mc-

Fadden, 1994), shows that the first-step estimator

θ̃k = θ∗
k + op(1).

By the LLN, it can be shown that Ŵ−1
kn = W−1

k (θ∗
k) + op(1). Let

Qk(θk) = Gk(θk)
⊤W−1

k (θ∗
k)Gk(θk) and Q̄k(θk) = Ḡkn(θk)

⊤Ŵ−1
kn Ḡkn(θk).

Based on Lemma 2.3 and Theorem 2.1 of Newey and McFadden (1994), to

prove θ̂k − θ∗
k = op(1), it is enough to show that

sup
θk∈A

|Q̄kn(θk)−Qk(θk)| = op(1).

Using the triangle and Cauchy-Schwartz inequalities, we have

sup
θk∈A

|Q̄kn(θk)−Qk(θk)|

≤ sup
θk∈A

∣∣∣{Ḡkn(θk)−Gk(θk)}⊤Ŵ−1
kn {Ḡkn(θk)−Gk(θk)}

∣∣∣
+ sup

θk∈A

∣∣∣Gk(θk)
⊤(Ŵ−1

kn + (Ŵ−1
kn )⊤){Ḡkn(θk)−Gk(θk)}

∣∣∣
+ sup

θk∈A

∣∣∣Gk(θk)
⊤(Ŵ−1

kn −W−1
k (θ∗

k))Gk(θk)
∣∣∣

≤ sup
θk∈A

∥∥Ḡkn(θk)−Gk(θk)}
∥∥2∥Ŵ−1

kn ∥

+ 2 sup
θk∈A

∥∥Gk(θk)
∥∥∥∥Ḡkn(θk)−Gk(θk)

∥∥∥W−1
k (θ∗

k)∥

+ sup
θk∈A

∥∥Gk(θk)
∥∥2∥Ŵ−1

kn −W−1
k (θ∗

k)∥ = op(1).

Thus, we prove that θ̂k = θ∗
k + op(1).
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Next, we derive the asymptotic normality of θ̂k. With probability ap-

proaching one, we have the first-order condition

2Γk(θ̂k)Ŵ
−1
kn Ḡkn(θ̂k) = 0,

where Γk(θk) = ∂Ḡkn(θk)/∂θk. Expanding Ḡkn(θ̂k) around θk∗ , we have

n1/2(θ̂k − θ∗
k) = −[Γ⊤

k (θ̂k)Ŵ
−1
kn Γk(θ̌k)]

−1Γ⊤
k (θ̂k)Ŵ

−1
kn n1/2Ḡkn(θ

∗
k),

where θ̌k is between θ̂k and θ0
k. By simple calculation and the LLN, for all

θk ∈ A,

Γk(θk) = E
{
hk(X)⊤δ

∂πk(Y,U ,θk)
−1

∂θk

}
+ op(1).

This, together with Ŵ−1
kn = W−1

k (θ∗
k) + op(1) and θ̂k = θ∗

k + op(1), implies

that

[Γ⊤
k (θ̂k)Ŵ

−1
kn Γk(θ̌k)]

−1Γ⊤
k (θ̂k)Ŵ

−1
kn

=[Γk(θ
∗
k)

⊤W−1
k (θ∗

k)Γk(θ
∗
k)]

−1Γk(θ
∗
k)

⊤W−1
k (θ∗

k) + op(1).

By the Slutzky theorem, we can show

n1/2(θ̂k − θ∗
k)

L→ N(0, (Γk(θ
∗
k)

⊤W−1
k (θ∗

k)Γk(θ
∗
k))

−1).

Particularly, when the intermittent propensity model is correctly specified,

πk(Y,U ,θ∗
k) = πk(Y,U ,θ0

k), Ŵkn = Wk(θ
0
k) + op(1) and θ̂k = θ0

k + op(1).
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Proof of Lemma 2: Notice

|VC(1)− VC(k)| ≤ 1

n

n∑
i=1

|F̂1(Xi)− F̂k(Xi)|.

We just need to show n−1/2
∑n

i=1 |F̂1(Xi)− F̂k(Xi)| = Op(1). Note that

n−1/2

n∑
i=1

|F̂k(Xi)− F̂1(Xi)|

=n−1/2

n∑
i=1

∣∣∣∣ 1n
n∑

j=1

δjI(Xj ≤ Xi)
{ 1

πk(Yj,Uj, θ̂k)
− 1

π1(Yj,Uj, θ̂1)

}∣∣∣∣
Let

A
(1)
ni =

1

n

n∑
j=1

δjI(Xj ≤ Xi)
{ 1

πk(Yj,Uj, θ̂k)
− 1

πk(Yj,Uj,θ∗
k)

}
,

A
(2)
ni = − 1

n

n∑
j=1

δjI(Xj ≤ Xi)
{ 1

π1(Yj,Uj, θ̂1)
− 1

π1(Yj,Uj,θ∗
1)

}
,

A
(3)
ni =

1

n

n∑
j=1

δjI(Xj ≤ Xi)
{ 1

πk(Yj,Uj,θ∗
k)

− 1

π1(Yj,Uj,θ∗
1)

}
.

We have

n−1/2

n∑
i=1

|F̂k(Xi)− F̂1(Xi)| = n−1/2

n∑
i=1

|A(1)
ni + A

(2)
ni + A

(3)
ni |

≤ n−1/2
( n∑

i=1

|A(1)
ni |+

n∑
i=1

|A(2)
ni |+

n∑
i=1

|A(3)
ni |

)
.
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For n−1/2
∑n

i=1 |A
(1)
ni |, we have

n−1/2

n∑
i=1

|A(1)
ni |

≤ n−3/2

n∑
i=1

n∑
j=1

∣∣∣δjI(Xj ≤ Xi)
{ 1

πk(Yj,Uj, θ̂k)
− 1

πk(Yj,Uj,θ∗
k)

}∣∣∣
≤ n−3/2

n∑
i=1

n∑
j=1

∣∣∣ 1

πk(Yj,Uj, θ̂k)
− 1

πk(Yj,Uj,θ∗
k)

∣∣∣
= n−3/2

n∑
i=1

n∑
j=1

∣∣∣∂π−1
k (Yj,Uj,θ

∗
k)

∂θk

(θ̂k − θ∗
k) + op(θ̂k − θ∗

k)
∣∣∣

≤ |
√
n(θ̂k − θ∗

k)| ×
1

n

n∑
j=1

∣∣∣∂π−1
k (Yj,Uj,θ

∗
k)

∂θk

∣∣∣+ op(1)

= |
√
n(θ̂k − θ∗

k)| × E
∣∣∣∂π−1

k (Y,U ,θ∗
k)

∂θk

∣∣∣+ op(1)

= Op(1).

Similarly, we can show that n−1/2
∑n

i=1 |A
(2)
ni | = Op(1) and n−1/2

∑n
i=1 |A

(3)
ni | =

Op(1).
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Table 2: Simulated bias and RMSE when estimating E(Y ) in simulation 1

Best model Method
n = 300 n = 500 n = 1000

Bias RMSE Bias RMSE Bias RMSE

M0 PVC -0.022 0.357 -0.035 0.273 0.002 0.199
FULL -0.001 0.337 -0.022 0.261 0.006 0.188
CC 0.815 0.899 0.785 0.837 0.814 0.841
M0 -0.021 0.357 -0.034 0.272 0.002 0.199
M1(X1) -0.017 0.376 -0.032 0.283 0.006 0.204
M1(X2) -0.008 0.380 -0.032 0.285 0.005 0.204
M1(X3) -0.020 0.376 -0.029 0.280 0.002 0.205
M2(X1, X2) 0.005 0.429 -0.032 0.319 0.010 0.224
M2(X1, X3) -0.013 0.423 -0.027 0.322 0.004 0.226
M2(X2, X3) -0.002 0.438 -0.024 0.322 0.002 0.226

M1(X1) PVC -0.004 0.368 -0.028 0.279 -0.006 0.206
FULL -0.001 0.337 -0.025 0.261 0.001 0.192
CC 0.789 0.893 0.766 0.831 0.795 0.829
M0 0.096 0.382 0.090 0.296 0.083 0.231
M1(X1) -0.007 0.368 -0.027 0.279 -0.006 0.207
M1(X2) 0.502 0.882 0.450 0.710 0.447 0.665
M1(X3) 0.503 0.868 0.439 0.681 0.476 0.700
M2(X1, X2) 0.005 0.517 -0.014 0.443 -0.010 0.247
M2(X1, X3) 0.008 0.497 -0.035 0.360 -0.011 0.243
M2(X2, X3) 1.816 2.056 1.924 2.115 2.127 2.334

M2(X1, X2) PVC 0.018 0.453 -0.030 0.356 -0.008 0.251
FULL -0.001 0.337 -0.025 0.261 0.001 0.192
CC 0.309 0.618 0.253 0.469 0.291 0.414
M0 0.611 0.923 0.626 0.840 0.692 0.804
M1(X1) 0.458 0.783 0.477 0.668 0.507 0.585
M1(X2) 0.478 0.884 0.465 0.648 0.501 0.592
M1(X3) 2.633 2.826 2.756 2.912 2.922 3.072
M2(X1, X2) -0.012 0.476 -0.033 0.364 -0.008 0.251
M2(X1, X3) 2.807 3.088 2.941 3.205 3.139 3.371
M2(X2, X3) 2.922 3.225 3.026 3.297 3.039 3.244
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Table 3: Simulated bias and RMSE when estimating E(Y ) in simulation 2

Best model Method
n = 300 n = 500 n = 1000

Bias RMSE Bias RMSE Bias RMSE

M0 PVC -0.029 0.349 0.000 0.285 0.003 0.195
FULL -0.020 0.336 0.003 0.274 0.005 0.188
CC 0.791 0.878 0.814 0.869 0.819 0.846
M0 -0.037 0.349 -0.005 0.285 0.001 0.196
M1(X1) -0.021 0.359 -0.002 0.297 0.002 0.203
M1(X2) -0.036 0.359 -0.003 0.292 0.001 0.202
M1(X3) -0.034 0.364 -0.005 0.299 0.002 0.202
M2(X1, X2) -0.006 0.412 0.002 0.342 0.001 0.223
M2(X1, X3) -0.006 0.411 0.003 0.335 0.002 0.227
M2(X2, X3) -0.013 0.415 -0.001 0.328 0.001 0.226
M̃0 -0.017 0.345 0.015 0.282 0.020 0.195
M̃1(X1) -0.014 0.356 0.018 0.291 0.023 0.200
M̃1(X2) -0.018 0.354 0.018 0.286 0.021 0.199
M̃1(X3) -0.013 0.359 0.016 0.294 0.022 0.199
M̃2(X1, X2) 0.011 0.399 0.020 0.312 0.015 0.223
M̃2(X1, X3) 0.014 0.397 0.011 0.330 0.017 0.232
M̃2(X2, X3) -0.019 0.399 0.014 0.321 0.017 0.222

M1(X1) PVC -0.005 0.354 -0.007 0.287 0.000 0.205
FULL 0.003 0.329 0.004 0.269 0.006 0.190
CC 0.790 0.894 0.794 0.861 0.797 0.832
M0 0.097 0.382 0.101 0.308 0.114 0.240
M1(X1) -0.004 0.357 -0.004 0.288 0.002 0.206
M1(X2) 0.516 0.891 0.492 0.815 0.464 0.684
M1(X3) 0.510 0.866 0.455 0.679 0.468 0.648
M2(X1, X2) 0.003 0.490 -0.011 0.391 0.011 0.296
M2(X1, X3) -0.009 0.444 0.000 0.351 -0.006 0.245
M2(X2, X3) 1.836 2.071 1.957 2.175 2.103 2.284
M̃0 0.096 0.397 0.092 0.323 0.109 0.265
M̃1(X1) -0.026 0.376 -0.029 0.304 -0.022 0.220
M̃1(X2) 0.575 1.038 0.549 1.017 0.520 0.982
M̃1(X3) 0.589 1.063 0.595 1.053 0.505 0.993
M̃2(X1, X2) -0.026 0.527 -0.026 0.451 0.016 0.520
M̃2(X1, X3) -0.011 0.560 -0.009 0.537 0.024 0.577
M̃2(X2, X3) 1.973 2.247 2.218 2.473 2.465 2.694
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Table 3: Continued.

Best model Method
n = 300 n = 500 n = 1000

Bias RMSE Bias RMSE Bias RMSE

M2(X1, X2) PVC -0.010 0.448 -0.023 0.353 -0.001 0.247
FULL 0.005 0.338 -0.005 0.267 0.002 0.189
CC 0.282 0.595 0.280 0.497 0.290 0.412
M0 0.599 0.894 0.651 0.826 0.698 0.818
M1(X1) 0.473 0.838 0.479 0.689 0.534 0.811
M1(X2) 0.487 0.859 0.475 0.655 0.513 0.594
M1(X3) 2.662 2.864 2.853 3.076 2.918 3.055
M2(X1, X2) -0.034 0.482 -0.033 0.378 0.000 0.248
M2(X1, X3) 2.863 3.122 3.018 3.301 3.074 3.336
M2(X2, X3) 2.914 3.231 3.109 3.423 3.099 3.321
M̃0 0.632 1.174 0.591 1.193 0.627 1.287
M̃1(X1) 0.959 1.363 0.949 1.288 1.018 1.351
M̃1(X2) 0.960 1.356 0.963 1.286 1.018 1.313
M̃1(X3) 1.800 2.102 1.913 2.318 2.062 2.477
M̃2(X1, X2) 0.847 1.318 0.837 1.245 0.984 1.306
M̃2(X1, X3) 2.025 2.440 2.169 2.601 2.268 2.727
M̃2(X2, X3) 1.992 2.407 2.201 2.671 2.308 2.763
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Table 4: Instrument selection rates when the dimension of X is 10

n = 1000 n = 1500

Best model Correct Best Wrong Correct Best Wrong

M0 1.000 0.960 0.000 1.000 0.969 0.000

M1(X1) 0.995 0.955 0.005 1.000 0.988 0.000

M2(X1, X2) 0.980 0.795 0.020 0.986 0.916 0.014

M3(X1, X2, X3) 0.975 0.815 0.025 0.978 0.856 0.022

M4(X1, . . . , X4) 0.963 0.563 0.038 0.992 0.711 0.008

M5(X1, . . . , X5) 0.918 0.664 0.092 0.950 0.745 0.050

M6(X1, . . . , X6) 0.900 0.342 0.100 0.915 0.375 0.085

M7(X1, . . . , X7) 0.693 0.288 0.317 0.909 0.424 0.091

M8(X1, . . . , X8) 0.739 0.320 0.261 0.865 0.351 0.135

M9(X1, . . . , X9) 0.530 0.530 0.470 0.733 0.733 0.267
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Table 5: Values of PVC, µ̂, and standard error (SE) based on NHNES data

Model (U) Z PVC µ̂ SE

M0 bmi, age, gender 0.24 32.03 0.94
M1(bmi) age, gender 0.19 35.28 0.67
M1(age) bmi, gender 0.22 33.19 0.54
M1(gender) bmi, age 0.24 31.94 2.09
M2(bmi, age) gender 0.21 35.40 1.17
M2(bmi, gender) age 0.25 35.96 1.28
M2(age, gender) bmi 0.26 36.06 1.24

M̃0 bmi, age, gender 0.25 31.92 0.74

M̃1(bmi) age, gender 1.38 31.52 0.58

M̃1(age) bmi, gender 1.37 31.49 0.79

M̃1(gender) bmi, age 1.39 31.36 0.49

M̃2(bmi, age) gender 0.22 35.40 1.09

M̃2(bmi, gender) age 1.40 31.50 0.67

M̃2(age, gender) bmi 0.22 36.02 1.30

M−Y
0 34.44 0.95

M−Y
1 (bmi) 34.68 1.08

M−Y
1 (age) 34.46 0.95

M−Y
1 (gender) 34.16 1.13

M−Y
2 (bmi, age) 34.68 1.09

M−Y
2 (bmi, gender) 34.33 1.08

M−Y
2 (age, gender) 34.17 1.15

M−Y
3 (bmi,age, gender) 34.33 1.10
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Figure 1: Heat map of true selection rates in simulation 2. The model
numbers {1, 2, . . . , 13, 14} denote models {M0, M1(X1), . . ., M1(X2, X3), M̃0,
M̃1(X1), . . . , M̃1(X2, X3)}, respectively, in the second column in Table 3.
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