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Abstract

Conditional quantile estimations are an essential ingredient in modern risk man-

agement, and many other applications, where the conditional heteroscedastic struc-

ture is usually assumed to capture the volatility in financial time series. This study

examines linear quantile regression models with GARCH-X errors. These models

include the most popular generalized autoregressive conditional heteroscedasticity

(GARCH) as a special case, and incorporate additional covariates into the conditional

variance. Three conditional quantile estimators are proposed, and their asymptotic

properties are established under mild conditions. A bootstrap procedure is devel-

oped to approximate their asymptotic distributions. The finite-sample performance

of the proposed estimators is examined using simulation experiments. An empirical

application illustrates the usefulness of the proposed methodology.

Key words: Bootstrap method; GARCH-X errors; Joint estimation; Quantile regres-

sion; Two-step procedure; Value-at-Risk.
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1 Introduction

Linear models are powerful tools used to explore the relationship between response and pre-

dictive variables (Kutner et al., 2005). For example, one may aim to predict stock returns

based on related economic variables, such as crude oil and gold prices; see Chernozhukov

and Umantsev (2001) and Gay (2016). In economics and finance, considerable attention

has been devoted to regression models with autoregressive errors for time series data; see

Durbin (1960), Wang, Li, and Tsai (2007), and the references therein. Stylized facts in-

dicate that volatility clustering is a common feature for financial time series such as daily

stock returns and foreign exchange rates (Ryden, Terasvirta, and Asbrink, 1998; Taylor,

2008; Tsay, 2010). As a result, it is necessary to consider conditional heteroscedasticity

when a linear model is fitted to financial time series data.

Since the appearance of the autoregressive conditional heteroscedastic (ARCH) and

generalized autoregressive conditional heteroscedastic (GARCH) models (Engle, 1982; Boller-

slev, 1986), time series models with ARCH-type errors have become common in empirical

studies (Li, Ling, and McAleer, 2002). Motivated by these stylized facts and the success

of GARCH-X models in interpreting the volatility for financial data, this study focuses on

the following linear model:

Yt “ φ
1X t´1 ` ut,

where Yt P R is the response, X t´1 “ px1,t´1, . . . , xm,t´1q
1 P Rm consists of m covariates

that can be endogenous or exogenous, and φ “ pφ1, . . . , φmq
1 P Rm is a vector of linear

coefficients. The regression error ut follows the GARCH-X model (Apergis, 1998),

ut “ σ˚t ε
˚
t , σ˚2t “ ω˚ `

q
ÿ

i“1

α˚i u
2
t´i `

p
ÿ

j“1

β˚j σ
˚2
t´j ` π

˚1V t´1, (1.1)
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where ω˚ ą 0; α˚i ě 0, for i “ 1, . . . , q; β˚j ě 0, for j “ 1, . . . , p; V t´1 “ pυ
2
1,t´1, . . . , υ

2
d,t´1q

1 P

Rd includes d exogenous covariates; π˚ “ pπ˚1 , . . . , π
˚
d q
1 P Rd is the coefficient vector, with

π˚k ě 0, for 1 ď k ď d; and the innovations {ε˚t } are independent and identically distributed

(i.i.d.) random variables with mean zero and unit variance. Model (1.1) is very general,

and includes the ARCH and GARCH models as special cases. It reduces to the GARCH-X

model studied by Han and Kristensen (2014) when p “ q “ d “ 1, to Bollerslev’s GARCH

model when d “ 0, and to Engle’s ARCH model when p “ d “ 0. In practice, V t may com-

prise realized volatility measures (Engle and Gallo, 2006; Hwang and Satchell, 2005), or

economic and financial indicators (Glosten, Jagannathan, and Runkle, 1993). Model (1.1)

has become increasingly popular for modeling economic and financial series; see Shephard

and Sheppard (2010), Hossain and Ghahramani (2016), and Medeiros and Mendes (2016).

As a widely used measure of market risk, value-at-risk (VaR) plays an essential role in

risk management and capital regulation in the financial industry (Duffie and Pan, 1997;

Taylor, 2019). Because VaR is a tail quantile of the conditional return distribution, its

evaluation is explicitly a conditional quantile estimation problem; see Wu and Xiao (2002),

Kuester, Mittnik, and Paolella (2006), Francq and Zakoian (2015), Wang and Zhao (2016),

and Martins-Filho, Yao, and Torero (2018). Several methods have been proposed to esti-

mate and forecast VaR: the parametric approach, using a specific parametric model with

a known innovation distribution; the semiparametric approach, using a filtered historical

simulation or quantile regression; and the nonparametric approach, using the conditional

autoregressive VaR-method or a kernel density estimation; see, for example, Engle and

Manganelli (2004), Wang and Zhao (2016), and Taylor (2019) for further detail. Specifi-

cally, a quantile regression (Koenker and Bassett, 1978) is suitable when modeling the VaR

based on a specific parametric model, without assuming a distribution form on the innova-

tions. Moreover, it is robust to extreme values and facilitates a distribution-free inference.
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This motivates us to focus on the conditional quantile estimation and VaR prediction for

the linear model with GARCH-X errors. Many studies have examined quantile regressions

for conditional heteroscedastic models. For example, Koenker and Zhao (1996) and Xiao

and Koenker (2009) considered a quantile regression for the linear (G)ARCH models pro-

posed by Taylor (2008); Lee and Noh (2013) and Zheng et al. (2018) investigated a quantile

regression for Bollerslev’s GARCH models; and Noh and Lee (2016) studied a quantile re-

gression for ARMA models with asymmetric GARCH errors. However, few works have

examined quantile estimations for linear models with GARCH-X errors. This study aims

to fill this gap; the main contributions are summarized below. Section 2 contains the

methods and theoretical results.

(a) Section 2.1 proposes three conditional quantile estimators: a jointly weighted estima-

tor, a jointly unweighted estimator, and a two-step estimator for linear models with

GARCH-X errors. Specifically, the joint estimators are obtained by simultaneously

estimating the regression coefficients and the GARCH-X parameters using a quan-

tile regression. The two-step estimator is a hybrid of a least squares estimator for

linear coefficients and a conditional quantile estimator for GARCH-X parameters.

Moreover, to take into account conditional heteroscedasticity, we introduce a set of

weights into the joint estimation to improve efficiency.

(b) Section 2.2 establishes the root-n consistency and asymptotic normality of the pro-

posed estimators. Owning to the quadratic GARCH-X structure and the non-

smoothness of the quantile loss function, the objective function with respect to the

parameter vector is neither differentiable nor convex, which makes the theoretical

derivation and numerical optimization intractable. This study adopts the bracketing

method (Pollard, 1985) to overcome this difficulty. In addition, only EpY 2
t q ă 8
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is required in order to derive the asymptotic normality for an AR-GARCH model;

thus, the proposed estimating methods are suitable for heavy-tailed data.

(c) To circumvent difficulties in estimating the density function fεpbτ q in the asymptotic

covariance matrices, Section 2.3 introduces a random-weighting bootstrap method

that approximates the covariance matrices directly. A theoretical justification of the

bootstrap method is also provided.

Section 3 conducts simulation experiments to evaluate the finite-sample performance

of the three proposed estimators. Section 4 provides a real example on VaR prediction,

and Section 5 concludes the paper. Technical proofs of all theorems and corollaries are

relegated to the online Supplementary Material. Throughout this paper, we denote by } ¨ }

the norm of a matrix or column vector, defined as }A} “
a

trpAA1q “
b

ř

i,j a
2
ij.

2 Model, methodology, and asymptotic results

2.1 Quantile regression estimation

Consider a linear model with GARCH-X errors,

Yt “ φ
1X t´1 ` ut, (2.1)

and

ut “ σtεt, σ2
t “ 1`

q
ÿ

i“1

αiu
2
t´i `

p
ÿ

j“1

βjσ
2
t´j ` π

1V t´1, (2.2)

where φ “ pφ1, . . . , φmq
1 is an m-dimensional coefficient vector of the covariates X t´1 “

px1,t´1, . . . , xm,t´1q
1 in the regression model, ut is a regression error, π “ pπ1, . . . , πdq

1 is a
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d-dimensional coefficient vector of covariates V t´1 “ pυ21,t´1, . . . , υ
2
d,t´1q

1 in the volatility

model, αi ě 0 for 1 ď i ď q, βj ě 0 for 1 ď j ď p, πk ě 0 for 1 ď k ď d, and εt is an i.i.d.

random variable with mean zero and finite variance. In practice, X t´1 may include lagged

values of Yt.

Let Ft be the σ-field generated by tX t,X t´1, . . . ;V t,V t´1, . . . ; εt, εt´1, . . .u, and let bτ

be the τth quantile of εt. Assume that εt is independent of Ft´1; then the τth quantile of

Yt, conditional on Ft´1, has the form of

QYtpτ |Ft´1q “ φ
1X t´1 ` bτσt, (2.3)

where σt is defined in (2.2). Let ω˚ “ varpεtq, ε
˚
t “ εt{

?
ω˚, σ˚t “ σt

?
ω˚, α˚i “ ω˚αi,

β˚j “ βj, and π˚ “ ω˚π. The GARCH-X error in (2.2) then has the standard form of

(1.1). Note that the GARCH-X model extends Bollerslev’s GARCH model by including

additional predictors. Because model (1.1) suffers from an identifiability problem in the

quantile estimation (Xiao and Koenker, 2009; Lee and Noh, 2013; Noh and Lee, 2016), we

use the GARCH-X form given in (2.2).

Denote the parameter vector of models (2.1) and (2.2) by λ “ pγ 1,φ1q1, where γ “

pα1, . . . , αq, β1, . . . , βp, π1, . . . , πdq
1. Define functions utpφq “ Yt´φ

1X t´1 and σ2
t pλq “ 1`

řq
i“1 αiu

2
t´ipφq`

řp
j“1 βjσ

2
t´jpλq`π

1V t´1. Note that function σ2
t pλq is defined recursively

and, thus, depends on infinite past observations. Therefore, initial values are required,

in practice. Here, we set utpφq “ 0 and σ2
t pλq “ 1, for t ď 0, and denote the resulting

function of σtpλq as rσtpλq; see also Lee and Noh (2013). To estimate QYtpτ |Ft´1q at

(2.3), it is natural to simultaneously estimate the regression coefficients and the GARCH-

X parameters using a quantile regression. Then, a joint conditional quantile estimator can
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be defined as

rθτn “ prbτn, rλ
1

nq
1
“ argmin

b,λ

n
ÿ

t“1

ρτtYt ´ φ
1X t´1 ´ brσtpλqu, (2.4)

where ρτ pxq “ xrτ ´ Ipx ă 0qs is the check function. However, rθτn may suffer an efficiency

loss due to the presence of conditional heteroscedasticity in the regression errors. Therefore,

we consider a jointly weighted conditional quantile estimator,

pθτn “ ppbτn, pλ
1

nq
1
“ argmin

b,λ

n
ÿ

t“1

pσ´1t ρτtYt ´ φ
1X t´1 ´ brσtpλqu, (2.5)

where the weight pσ´1t “ rσ´1t ppλ
int

n q, and pλ
int

n is an appropriate estimator of λ0. The objective

functions in (2.4) and (2.5) are both non-convex with respect to θ “ pb,λq1, even if models

(2.1) and (2.2) are reduced to the ARCH(1) models, where θ “ pb, α1q
1. This makes the

theoretical derivation and numerical optimization challenging.

As in Koenker and Zhao (1996), a two-step procedure can be applied to models (2.1)

and (2.2). Specifically, the first step uses a least squares estimation to obtain an estimator

φ̌n for model (2.1), and then computes the regression residuals using ǔt “ utpφ̌nq. The

second step performs the conditional quantile estimation for model (2.2),

γ̌τn “ pb̌τn, γ̌
1
nq
1
“ arg min

b,γ

n
ÿ

t“1

ρτ tǔt ´ bσ̌tpγqu ,

where σ̌2
t pγq is calculated recursively using σ̌2

t pγq “ 1 `
řq
i“1 αiǔ

2
t´i `

řp
j“1 βjσ̌

2
t´jpγq `

π1V t´1, given the initial values ǔt “ 0 and σ̌2
t pγq “ 1, for t ď 0. It can be shown

that the preliminary estimator φ̌n is involved in the Bahadur representation of γ̌τn; see

Corollary 2 in Section 2.2. Denote θ̌τn “ pγ̌
1
τn, φ̌

1

nq
1. We call pθτn, rθτn, and θ̌τn the jointly

weighted estimator, jointly unweighted estimator, and two-step estimator, respectively.
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We can verify that the initial values of ǔt, utpφq, σ̌
2
t pγq, and σ2

t pλq have no effect on the

asymptotic distributions of the three proposed estimators.

For the jointly weighted estimator pθτn, we next define a Bayesian information criterion

(BIC) to select the orders of m, d, p, and q in model (2.3):

BICτ pm, d, p, qq “ 2n log pστn ` p1`m` d` p` qq log n, (2.6)

where pστn “ n´1
řn
t“1 pσ

´1
t ρτtYt´ qtppθτnqu, with pσt “ rσtppλ

int

n q and pθτn defined by (2.5); see

Zhu, Zheng, and Li (2018). Let ppm, pd, pp, pqq “ arg min
m,d,p,q

BICτ pm, d, p, qq, where 1 ď m ď

mmax, 1 ď d ď dmax, 1 ď p ď pmax, 1 ď q ď qmax, and mmax, dmax, pmax, and qmax are

predetermined integers. Using a method similar to that in the proof of Theorem 5 in Zhu,

Zheng, and Li (2018), we can show that the proposed BIC in (2.6) is consistent when the

true orders satisfy m0 ď mmax, d0 ď dmax, p0 ď pmax, and q0 ď qmax. We can define the BIC

for the jointly unweighted estimator rθτn and verify its consistency in a similar manner.

Note that the estimating procedure should be repeated mmaxˆdmaxˆpmaxˆqmax times

to search for the orders of m, d, p, and q, which is time-consuming when mmax, dmax, pmax,

and qmax are large. Alternatively, we may fix some orders in advance and search for the

others using the BIC. For example, we may select orders based on the background of the

data and using other quantitative tools, such as the autocorrelation function (ACF) and

the partial autocorrelation function (PACF).

2.2 Asymptotic properties

Let θ “ pb,λ1q1 be the parameter vector of model (2.3), and let θτ0 “ pbτ ,λ
1
0q
1 “

pbτ ,γ
1
0,φ

1
0q
1 be its true value, where φ0 “ pφ10, . . . , φm0q

1 and γ0 “ pα10, . . . , αq0, β10, . . . , βp0,

π10, . . . , πd0q
1. Denote by qtpθq “ φ

1X t´1` bσtpλq and rqtpθq “ φ
1X t´1` brσtpλq the condi-
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tional quantile functions of Yt without and with initial values, respectively. Suppose that

the parameter space Θ Ă Rˆ Rp`q`d
` ˆ Rm is a compact set satisfying

b ď |b| ď b,
p
ÿ

j“1

βj ď ρ0, w ď minpα1, . . . , αq, β1, . . . , βp, π1, . . . , πdq

ď maxpα1, . . . , αq, β1, . . . , βp, π1, . . . , πdq ď w,

where R` “ p0,`8q, 0 ă b ă b, 0 ă w ă w, 0 ă ρ0 ă 1, and pw ă ρ0. We further assume

that θτ0 is an interior point of Θ. Moreover, denote by Fεp¨q and fεp¨q the distribution and

density functions of εt, respectively.

We first discuss the asymptotic properties for the jointly weighted estimator pθτn. Be-

cause the objective function in (2.5) is non-convex and non-differentiable, the convexity

lemma of Pollard (1991) cannot be applied directly. Instead, we derive the asymptotic

properties by verifying the stochastic differentiability condition defined by Pollard (1985).

As a result, we first prove the consistency of pθτn in Theorem 1, and then establish its

asymptotic normality in Theorem 2.

Assumption 1. (i) tX tu, tV tu, and tutu are strictly stationary and ergodic, with Ep}X t}
2q ă

8 and Ep}V t}q ă 8; (ii) The polynomials αpxq “
řq
i“1 αix

i and βpxq “ 1 ´
řp
j“1 βjx

j

have no common root.

Assumption 2. εt has a continuous density function fεp¨q at a neighborhood of bτ .

We focus on the model with stationary covariates; hence, Assumption 1(i) assumes that

tX tu and tV tu are strictly stationary. Assumption 1(ii) is the identifiability condition for

the GARCH-X model (2.2). Moreover, for the model identification, the intercept should

not be included in the regression model; that is, X t´1 does not incorporate an intercept.

Theorem 1. Under Assumptions 1 and 2, if pλ
int

n ´ λ0 “ opp1q and Epu2t q ă 8, then

pθτn Ñ θτ0 in probability as nÑ 8.
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Denote Σipτq “ Erσ´it Bqtpθτ0q{BθBqtpθτ0q{Bθ
1
s, for i “ 0, 1 and 2, where

Bqtpθτ0q

Bθ
“

ˆ

σt,
bτ
2σt

Bσ2
t pλ0q

Bγ 1
,X 1

t´1 `
bτ
2σt

Bσ2
t pλ0q

Bφ1

˙1

.

To study the asymptotic normality of pθτn, the following assumptions are required.

Assumption 3. Ep}X t}
4`δq ă 8, for some δ ą 0. The matrices EpX tX

1
tq and Σ0pτq

are positive definite.

Assumption 4. The density function fεp¨q is positive and differentiable almost every-

where on R, with fεp¨q satisfying supxPR fεpxq ă 8, and its derivative 9fεp¨q satisfying

supxPR | 9fεpxq| ă 8.

Assumption 3 is required to verify the root-n consistency and asymptotic normality of

pθτn. Assumption 4 is made to simplify the technical proofs, although it suffices to restrict

the boundedness of fεp¨q and | 9fεp¨q| in a small, but fixed neighborhood of bτ . Moreover,

Assumption 4 implies Assumption 2.

Theorem 2. Suppose that
?
nppλ

int

n ´ λ0q “ Opp1q and Epu2t q ă 8. If Assumptions 1, 3,

and 4 hold, then

(i)
?
nppθτn ´ θτ0q “ Opp1q; and

(ii)
?
nppθτn´θτ0q Ñ N p0,Ξ1q in distribution as nÑ 8, where Ξ1 “ τp1´τqf´2ε pbτ qΣ

´1
2 pτq.

To prove Theorem 2, we apply the bracketing method to verify the stochastic dif-

ferentiability condition (Pollard, 1985). This, together with the standard arguments for

conditional quantile estimators, implies the root-n consistency of pθτn. Then, the asymp-

totic normality follows. Moreover, in contrast to the condition on pλ
int

n in Theorem 1,

Theorem 2 requires that pλ
int

n is a root-n consistent estimator of λ0.

10
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Let W t “ pσt, 0.5σ
´1
t bτBσ

2
t pλ0q{Bγ

1q1 and M t “ X t´1 ` 0.5σ´1t bτBσ
2
t pλ0q{Bφ

1. It is

clear that Bqtpθτ0q{Bθ “ pW
1
t,M

1
tq
1. Define matrices Di “ EpσitX t´1X

1
t´1q for i “ 0 and

2, Ωi “ Epσ´it W tW
1
tq for i “ 0 and 1, Γ1 “ Epσ´1t W tM

1
tq, and Γ2 “ EpσtW tX

1
t´1q. Let

ω˚ “ varpεtq and κ “ ErεtIpεt ă bτ qs. Define the matrices

Ξ2 “
τp1´ τq

f 2
ε pbτ q

Σ´11 pτqΣ0pτqΣ
´1
1 pτq and Ξ3 “

¨

˚

˚

˝

Σ11pτq Σ12pτq

Σ112pτq Σ22

˛

‹

‹

‚

,

where Σ12pτq “ κf´1ε pbτ qΩ
´1
1 Γ2D

´1
0 ´ Ω´11 Γ1Σ22, Σ22 “ ω˚D´10 D2D

´1
0 , and

Σ11pτq “ Ω´11

„

τp1´ τq

f 2
ε pbτ q

Ω0 `
κ

fεpbτ q
pΓ2D

´1
0 Γ11 ` Γ1D

´1
0 Γ12q ` Γ1Σ22Γ

1
1



Ω´11 .

Using the same technique as that in Theorem 2, we derive the asymptotic properties for

the jointly unweighted estimator rθτn and the two-step estimator θ̌τn below.

Corollary 1. Suppose that Ep|ut|
2`δq ă 8, for some δ ą 0. If Assumptions 1, 3, and 4

hold, then

(i)
?
nprθτn ´ θτ0q “ Opp1q; and

(ii)
?
nprθτn ´ θτ0q Ñ N p0,Ξ2q in distribution as nÑ 8.

Corollary 2. Suppose that matrices Ω0 and Ω1 are positive definite and Ep|ut|
2`δq ă 8,

for some δ ą 0. If Assumptions 1, 3, and 4 hold, then

(i)
?
npγ̌τn ´ γτ0q “ Opp1q, where γτ0 “ pbτ ,γ

1
0q
1; and

(ii) γ̌τn has the following Bahadur representation:

?
npγ̌τn ´ γτ0q “

Ω´11

fεpbτ q

1
?
n

n
ÿ

t“1

W tψτ pεt ´ bτ q ´ Ω´11 Γ1

?
npφ̌n ´ φ0q ` opp1q,

11
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where ψτ pxq “ τ ´ Ipx ă 0q and

?
npφ̌n ´ φ0q “

˜

1

n

n
ÿ

t“1

X t´1X
1
t´1

¸´1
1
?
n

n
ÿ

t“1

X t´1σtεt.

Moreover, it holds that
?
npθ̌τn ´ θτ0q Ñ Np0,Ξ3q in distribution as nÑ 8.

Note that Corollaries 1 and 2 require a stronger moment condition on ut than that in

Theorem 2. Corollary 2 provides a theoretical justification that
?
npλ̌n ´ λ0q “ Opp1q,

where λ̌n “ pγ̌ 1n, φ̌
1

nq
1. Hence, λ̌n can be used to construct the weights tpσ´1t u in (2.5)

for the jointly weighted estimation. Specifically, we set pσt “
a

1` γ̌ 1nžt, where žt “

pǔ2t´1, . . . , ǔ
2
t´q, σ̌

2
t´1pγ̌nq, . . . , σ̌

2
t´ppγ̌nq, υ

2
1,t´1, . . . , υ

2
d,t´1q

1.

A general theoretical comparison of the three proposed estimators is complicated, own-

ing to the iterative form of σt. However, given τ , the true parameter vector θτ0, and

the density function fεp¨q, we can obtain theoretical values for bτ , fεpbτ q, ω
˚, and κ, and

estimate all matrices in Ξi pi “ 1, 2, 3q using sample averages based on a large gener-

ated sequence. Then, we can compute the asymptotic relative efficiency (ARE) of pθτn

to rθτn and θ̌τn, defined as AREppθτn, rθτnq “ p|Ξ2|{|Ξ1|q
1{pp`q`d`1q and AREppθτn, θ̌τnq “

p|Ξ3|{|Ξ1|q
1{pp`q`d`1q, respectively, where | ¨ | is the determinant of a matrix; see Serfling

(2009). The simulation results in Section 3 indicate that the jointly weighted estimator

pθτn is asymptotically more efficient than the jointly unweighted estimator rθτn. In contrast,

the relative performance of pθτn versus that of the two-step estimator θ̌τn is mixed in terms

of asymptotic efficiency; see Section 3.2.

Based on pθτn, rθτn, and θ̌τn, the conditional quantile of Yt, given Ft´1, can be esti-

mated using qtppθτnq, qtprθτnq, and qtpθ̌τnq, respectively. Note that pθτn “ ppγ 1τn,
pφ
1

nq
1 and

rθτn “ prγ 1τn,
rφ
1

nq
1, where pγτn “ ppbτn, pγ

1

nq
1 and rγτn “ prbτn, rγ

1

nq
1. The following corollary

provides the theoretical results for the τth conditional quantile of Yn`1 based on the three
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approaches.

Corollary 3. If the conditions of Theorem 2 and Corollaries 1–2 hold, then, conditional

on Fn,

?
nrqn`1ppθτnq ´ qn`1pθτ0qs “W

1
n`1

?
nppγτn ´ γτ0q `M

1
n`1

?
nppφn ´ φ0q ` opp1q,

?
nrqn`1prθτnq ´ qn`1pθτ0qs “W

1
n`1

?
nprγτn ´ γτ0q `M

1
n`1

?
nprφn ´ φ0q ` opp1q,

and

?
nrqn`1pθ̌τnq ´ qn`1pθτ0qs “W

1
n`1

?
npγ̌τn ´ γτ0q `M

1
n`1

?
npφ̌n ´ φ0q ` opp1q.

Theorem 2 and Corollaries 1–3 still hold when model (2.2) reduces to an ARCH model or

a GARCH model. To establish Theorem 2, Ep}X t}
4`δq ă 8 is necessary if tX t´1u includes

exogenous variables. However, when d “ 0 and tX t´1u contains only lagged values of Yt,

that is, models (2.1) and (2.2) reduce to AR-GARCH models or AR(m)-ARCH(q) models

with m ď q, the moment condition on X t can be relaxed to Ep}X t}
2q ă 8. Moreover,

for Corollaries 1–2, the moment condition on X t can be reduced to Ep}X t}
2`δq ă 8 for

the AR-GARCH models and AR(m)-ARCH(q) models with m ď q. In addition, when

the GARCH-X errors reduce to ARCH errors, we can show that Ξ2 ´ Ξ1 is nonnegative

definite; that is, pθτn is asymptotically more efficient than rθτn.

2.3 Bootstrapping approximation

To circumvent difficulties in estimating the density function fεpbτ q, we propose using a

bootstrapping procedure to directly approximate the asymptotic distributions of pθτn, rθτn,

and θ̌τn.

For the joint estimators pθτn and rθτn, we define the corresponding randomly weighted
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bootstrapping estimators, as follows:

pθ
˚

τn “ p
pb˚τn,

pλ
˚1

n q
1
“ argmin

b,λ

n
ÿ

t“1

ωtpσ
´1
t ρτtYt ´ φ

1X t´1 ´ brσtpλqu (2.7)

and

rθ
˚

τn “ p
rb˚τn,

rλ
˚1

n q
1
“ argmin

b,λ

n
ÿ

t“1

ωtρτtYt ´ φ
1X t´1 ´ brσtpλqu, (2.8)

where tωtu are i.i.d. nonnegative random weights, with mean and variance both equal to

one; see also Zheng et al. (2018) and ?.

For the two-step estimator θ̌τn, the randomly weighted bootstrapping is involved in

both steps. In the first step, a randomly weighted least squares estimator is obtained using

φ̌
˚

n “
`
řn
t“1 ωtX t´1X

1
t´1

˘´1řn
t“1 ωtX t´1Yt, and the bootstrapped residuals are computed

using ǔ˚t “ utpφ̌
˚

nq. Then, a randomly weighted quantile estimation is performed:

γ̌˚τn “ pb̌
˚
τn, γ̌

˚1
n q
1
“ arg min

b,γ

n
ÿ

t“1

ωtρτ tǔ
˚
t ´ bσ̌

˚
t pγqu , (2.9)

where, given the initial values ǔ˚t “ 0 and σ̌˚2t pγq “ 1, for t ď 0, σ̌˚2t pγq is calculated

recursively using σ̌˚2t pγq “ 1 `
řq
i“1 αiǔ

˚2
t´i `

řp
j“1 βjσ̌

˚2
t´jpγq ` π

1V t´1. As a result, the

randomly weighted bootstrapping estimator for θ̌τn is defined as θ̌
˚

τn “ pγ̌
˚1
τn, φ̌

˚1

n q
1.

Assumption 5. The random weights tωtu are i.i.d. nonnegative random variables with

mean and variance both equal to one, satisfying E|ωt|
2`δ ă 8, for some δ ą 0.

Theorem 3. Suppose that Assumption 5 and the conditions in Theorem 2 and Corollaries

1–2 hold. Then, conditional on Fn:

(i)
?
nppθ

˚

τn ´
pθτnq Ñd N p0,Ξ1q in probability as nÑ 8;

(ii)
?
nprθ

˚

τn ´
rθτnq Ñd N p0,Ξ2q in probability as nÑ 8; and
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(iii)
?
npθ̌

˚

τn ´ θ̌τnq Ñd N p0,Ξ3q in probability as nÑ 8;

where Ξi, for i “ 1, 2, and 3, is defined in Theorem 2 and Corollaries 1–2.

From Theorem 3, we can approximate the covariance matrices of pθτn, rθτn, and θ̌τn using

the bootstrapped covariance matrices of
?
nppθ

˚

τn´
pθτnq,

?
nprθ

˚

τn´
rθτnq, and

?
npθ̌

˚

τn´θ̌τnq,

respectively. As a result, we can construct confidence intervals (CIs) for the estimators

by substituting in the approximated asymptotic standard deviations (ASDs) calculated

using the bootstrap method. Moreover, we can conduct hypothesis tests to detect the

significance of the parameters by replacing the covariance matrices with their bootstrap

approximations.

For the random weights, many distributions satisfy Assumption 5, including the stan-

dard exponential distribution and the Rademacher distribution, which takes the values zero

or two with probability 0.5. According to the simulation findings in Zheng et al. (2018)

and Zhu, Zeng, and Li (2020), the performance of the randomly weighted bootstrapping

approximation is not sensitive to the choice of random weights. As a result, we simply use

the random weights generated from the standard exponential distribution in the following

sections.

3 Simulation studies

3.1 Finite-sample performance of the three proposed estimators

The first experiment evaluates the finite-sample performance of the three proposed esti-

mators, pθτn, rθτn, and θ̌τn, and their bootstrapping approximations. The data tYtu
n
t“1 are

generated from a linear model with GARCH-X errors,

Yt “ 0.5Xt´1 ` ut, ut “ σtεt, σ2
t “ 1` αu2t´1 ` βσ

2
t´1 ` 0.1υ2t´1, (3.1)
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where tXt´1u and tυt´1u are i.i.d. standard normal random variables, pα, βq “ p0.15, 0.8q,

and tεtu is an i.i.d. standard normal or standardized Student’s t5 random variable with

variance one. Three sample sizes, n “ 500, 1000, and 2000, are considered, and 1000

replications are generated for each sample size.

We apply the three estimating methods in Section 2.1 to the data, and obtain pθτn, rθτn,

and θ̌τn at two quantile levels, τ “ 0.05 and 0.10. The bootstrapping procedure in Section

2.3 is conducted to approximate the covariance matrices Ξi, for i “ 1, 2, 3, where the size

of each bootstrapped sample is B “ 500, and the random weights {ωt} are generated

from the standard exponential distribution. Then, the ASDs can be calculated using the

bootstrapping approximation. We can also construct CIs for each parameter based on the

three estimators and their ASDs. Specifically, given pθτn, the 95% CI of θτ0,j pj “ 1, . . . , 5q

can be constructed using pθτn,j˘1.96ˆASDppθτn,jq, where θτ0,j and pθτn,j are the jth elements

of θτ0 and pθτn, respectively, and ASDppθτn,jq is the ASD of pθτn,j. The CIs based on the

other two estimation methods can be constructed in a similar way.

Tables 1–3 report the biases, empirical standard deviations (ESDs), and ASDs of pθτn,

rθτn, and θ̌τn, respectively, as well as the empirical coverage rates (ECR) of the 95%

CIs. To save space, the simulation results for the setting with n “ 1000 are provided

in the Supplementary Material. It can be seen that, as the sample size n increases, the

biases, ESDs, and ASDs decrease, and the ESDs and ASDs move closer to each other.

In addition, as the innovations become more heavy-tailed, the standard deviations with

respect to λ become larger, in general, whereas those related to bτ become smaller. This

is expected because the value of |bτ | is smaller for t5 distributed innovations than it is for

normally distributed innovations. Moreover, as the quantile level τ increases from 0.05 to

0.10, the performance of the three estimators improves, in general, when {εt} follows a

t5 distribution. However, when {εt} follows a normal distribution, the performance with
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respect to bτ and φ improves, but that with respect to γ worsens slightly as τ increases.

This may be because, as τ gets closer to the center, more observations are available, but bτ

approaches zero. Finally, except for α, the ECRs of the 95% CIs for the other parameters

are close to the nominal level of 0.95 in all settings. This may be because the true value

of α is relative small, and including υt´1 in the GARCH model may hinder an accurate

estimation for α.

For the comparison between the three estimators, we have the following findings. First,

as the sample size increases, the standard deviations of the jointly weighted estimator are

smaller than those of the jointly unweighted estimator. This is expected because the

efficiency gain from the weighting procedure becomes more evident when the sample size

is larger. Second, the two-step method outperforms the jointly weighted method when

estimating bτ and φ, but performs a bit worse for the other parameters. Note that φ

is estimated using the least squares method in the two-step estimation, but is estimated

using the conditional quantile method in the joint estimation, which leads to more available

observations for the former. Moreover, the better performance for bτ is probably the result

of the better performance for φ. Finally, in general, the accuracy of the CIs for the three

estimators is comparable.

3.2 Theoretical comparison between the three estimators

The second experiment compares the asymptotic efficiency of the jointly weighted esti-

mator pθτn with that of the jointly unweighted estimator rθτn and the two-step estimator

θ̌τn. We generate a sequence of sample size n “ 10, 000 from model (3.1), where tεtu are

i.i.d. standard normal or standardized Student’s t5 random variables with variance one.

For covariates Xt´1 and υt´1, we consider two cases: (1) Xt´1 “ υt´1, where both are

i.i.d. standard normal random variables; and (2) Xt´1 “ Yt´1 and {υt´1} are i.i.d. stan-
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dard normal random variables. We consider different values for pα, βq and conduct the

estimation at two quantile levels, τ “ 0.05 and 0.10. Table 4 shows the calculated AREs,

AREppθτn, rθτnq and AREppθτn, θ̆τnq.

The Table shows that AREppθτn, rθτnq ą 1 for all cases; that is, the jointly weighted

estimator is asymptotically more efficient than the jointly unweighted estimator. However,

the observations are mixed for the AREs of the estimator pθτn and the two-step estimator

θ̌τn. First, the jointly weighted estimator becomes more efficient as the coefficient α or the

quantile level τ increases. This is expected because larger α results in greater volatility,

and more data become available as τ increases, leading to better performance by the

weighting procedure. Moreover, the efficiency gain from the jointly weighted estimator is

more evident when Xt´1 is endogenous, although it becomes smaller as the innovations

become more heavy-tailed. Based on these simulation findings, we focus on the jointly

weighted and two-step estimating methods in the next section.

4 Empirical analysis

This section analyzes the daily log returns of the Occidental Petroleum security (NYSE:OXY).

The data on daily closing prices, denoted as pt, cover the period January 2, 2008, to De-

cember 29, 2017, with 2470 observations in total. A time plot of centered log returns (as

percentages), that is, Yt “ rt ´ n´1
řn
t“1 rt with rt “ 100pln pt ´ ln pt´1q, provides clear

evidence of volatility clustering; see Figure 1. The summary statistics for tYtu are provided

in Table 5. The negative sample skewness and the kurtosis greater than three imply that

the data are skewed and heavy-tailed.

The Occidental Petroleum Corporation is an oil and gas producer; therefore, its stock

returns are likely to be affected by lagged values of Yt and the oil price (Chernozhukov
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and Umantsev, 2001). Moreover, studies have indicated that gold can be a hedge against

stock returns (Baur and McDermott, 2010; Iqbal, 2017). This study focuses on the ef-

fects of tYt´1u, the lagged crude oil returns and gold returns on tYtu. We use the WTI

Crude Oil price and the Gold Fixing Price at 10:30 A.M. in the London Bullion Mar-

ket as the price series. The data cover the period January 2, 2008, to December 29,

2017, and can be downloaded from the website of the Federal Reserve Economic Data

(FRED, https://fred.stlouisfed.org/ ). Figure 2 shows time plots of their log returns as

percentages, denoted as Oilt and Goldt, respectively. We first regress Yt on the lagged

returns Yt´1, Oilt´1, and Goldt´1. The linear model is fitted using the least squares

method, and the regression residuals are calculated using ǔt “ Yt ´ φ̌
1

nX t´1, where

X t´1 “ pYt´1,Oilt´1,Goldt´1q
1 and φ̌n is the least squares estimate. The ACF and PACF

plots of {ǔ2t} show strong ARCH effects, implying that a linear model with ARCH-type

errors can be applied to tYtu. To further capture the possible influence of market volatil-

ity on tYtu, we include the realized kernel variance (ˆ1002) of the S&P 500 Index, de-

noted by tυ2t u, as the covariate in the GARCH model. The realized variance series can

be downloaded from the Oxford-Man Institute’s realized library (http://realized.oxford-

man.ox.ac.uk/ ); see the time plot of tυ2t u in Figure 2. Hansen and Lunde (2005) show

that the GARCHp1, 1q model performs satisfactorily in most practical applications. Fi-

nally, we consider a linear model with GARCH(1,1)-X errors for tYtu, where the regressors

are Yt´1, Oilt´1, and Goldt´1, and the covariate in the GARCH-X model is tυ2t´1u.

We aim to estimate the VaR for tYtu. Because a 5% VaR is often of interest to prac-

titioners, we focus on the conditional quantile of Yt at τ “ 0.05, that is, the negative 5%
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VaR. We first apply the two-step method, and obtain the following conditional quantile:

Q̌Ytp0.05|Ft´1q “ ´ 0.0710.044Yt´1 ´ 0.0290.034Oilt´1 ` 0.0740.063Goldt´1 ´ 0.7660.202σ̌t,

σ̌2
t “1` 0.2030.311ǔ

2
t´1 ` 0.7650.100σ̌

2
t´1 ` 2.9890.710υ

2
t´1, (4.1)

where the standard errors are shown as subscripts, and are calculated using the bootstrap

method in Section 2.3. The estimates of bτ and γ are significant at the 5% level, but the

regressors in the linear model are nonsignificant. Based on the weights calculated from

model (4.1), we employ the jointly weighted estimation, and obtain the following fitted

model:

pQYtp0.05|Ft´1q “ ´ 0.0500.072Yt´1 ` 0.0290.051Oilt´1 ´ 0.2130.070Goldt´1 ´ 0.6860.163pσt,

pσ2
t “1` 0.3670.144pu

2
t´1 ` 0.7660.097pσ

2
t´1 ` 3.4550.131υ

2
t´1, (4.2)

where the standard errors in subscripts are computed using the bootstrapping procedure.

Compared with model (4.1), the estimate of Goldt´1 in model (4.2) is significantly negative

at the 5% level, implying that gold can be a safe haven in a bearish market (lower quantiles).

Note that the regression coefficients of models (4.1) and (4.2) are quite different, in both

magnitude and sign. This is expected because they are estimated using different methods.

Furthermore, conditional heteroscedasticity is taken into account when performing the

estimation in model (4.2), but is ignored in model (4.1). Moreover, because we include

market volatility in the GARCH models, the estimates of the GARCH parameter β in

models (4.1) and (4.2) are smaller than the usual estimates provided by GARCH models

without exogenous variables. A similar finding was documented in Hwang and Satchell

(2005), who concluded that the long persistency frequently found in volatility processes
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may be due to missing time-varying components. In addition, the estimate of the top

Lyapunov component for model (4.2) is -0.194; hence, the process defined by model (4.2)

is stationary.

We next evaluate the forecasting performance of the jointly weighted (JW) and two-step

(TS) estimating methods using a rolling procedure for the conditional quantile forecasts

at τ “ 0.01 and τ “ 0.05, which are the negative 1% VaR and 5% VaR, respectively. A

fixed moving window of size 1000 is used for the rolling forecasting procedure. Specifically,

we conduct the conditional quantile estimation using the linear model with GARCH(1, 1)-

X errors for each moving window, and compute the one-step-ahead conditional quantile

forecast for the next trading day, that is, the forecast of QYn`1pτ |Fnq. The model estimates

are updated by moving the window forward until we reach the end of the data set. Finally,

we obtain 1469 one-day-ahead 1% (or 5%) VaRs. For illustration, the rolling forecasts at

τ “ 1% and 5% for tYtu are displayed in Figure 1; these forecasts are obtained using the

jointly weighted approach. The magnitudes of the VaRs clearly increase as the volatility

of the data increases. In addition, Yt occasionally falls below its one-day negative 5% VaR,

and, even more rarely, falls below its one-day negative 1% VaR.

To compare the forecasting performance of the proposed methods with that of the

existing conditional quantile estimation, we perform the rolling forecasting procedure using

the fully parametric (PAR) method, filtered historical simulation (FHS) method (Kuester,

Mittnik, and Paolella, 2006), and conditional autoregressive VaR-method, called CAViaR

(Engle and Manganelli, 2004). For the PAR and FHS, a linear model with GARCH(1,1)-X

errors defined by (2.1) and (1.1) is fitted to the data, and the parameters are estimated

using the maximum likelihood estimation, with the innovations {ε˚t } following a skewed

Student’s t distribution. Figure 3 gives the QQ plot of the residuals {ε̆˚t } against the fitted

skewed Student’s t distribution, as well as their density plots. The figure shows that they
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are very close to each other; thus, we may argue that the PAR and FHS methods reach

almost their maximum power. The 100τ% negative VaR for the PAR is computed using

φ̆
1

nX t´1`Q̆τ σ̆
˚
t , where φ̆n and σ̆˚t “ σ˚t pλ̆nq are the maximum likelihood estimates, and Q̆τ

is the τth quantile of the estimated skewed Student’s t distribution. The 100τ% negative

VaR for the FHS is calculated by replacing Q̆τ with the sample τth quantile of the filtered

residuals. CAViaR refers to the indirect GARCH(1,1)-based CAViaR method in Engle and

Manganelli (2004).

To evaluate the forecasting performance of aforementioned five VaR estimating meth-

ods, we calculate the ECR, and perform VaR backtests for the VaR forecasts. Specifically,

the ECR is calculated as the proportion of observations that fall below the corresponding

conditional quantile forecast for the last 1469 data points. We use two VaR backtests,

the likelihood ratio test for correct conditional coverage (CC) in Christoffersen (1998),

and the dynamic quantile (DQ) test in Engle and Manganelli (2004). Denote a hit by

Ht “ IpYt ă QYtpτ |Ft´1qq. The null hypothesis of the CC test is that, conditional on Ft´1,

tHtu are i.i.d. Bernoulli random variables with success probability τ . For the DQ test,

following Engle and Manganelli (2004), we regress Ht on regressors that include a constant,

four lagged hits Ht´i, for i “ 1, 2, 3, 4, and the contemporaneous VaR forecast. The null

hypothesis of the DQ test is that all regression coefficients are zero and the intercept is

equal to the quantile level τ .

Table 6 reports the ECRs and p-values of two VaR backtests for the five estimating

methods at the upper and lower 1% and 5% conditional quantiles. None of the five methods

perform well at the lower 5% quantile, with p-values smaller than 0.05; however, they are

adequate at the other three quantiles. In terms of the backtests, the JW and TS methods

are comparable with the other three methods. With respect to the ECRs, we find that

those of the JW and TS methods are closest to the nominal quantile level τ . We conclude
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that, overall, the proposed JW and TS methods outperform the three competitors in terms

of forecasting VaRs for Occidental Petroleum returns. Moreover, our estimating methods,

especially the JW method, use information at one quantile level only. Given that the

corresponding estimator of the parameter vector λ can be much less efficient when the

quantile level is near to zero or one (Zou and Yuan, 2008), this further demonstrates the

usefulness of two proposed methods.

5 Conclusion

This study examines a conditional quantile estimation for linear models with GARCH-X

errors. As such, we propose three conditional quantile estimators, a jointly weighted esti-

mator, a jointly unweighted estimator, and a two-step estimator. The root-n consistency

and asymptotic normality are established for the three proposed estimators. Here, we use

the bracketing method (Pollard, 1985) to overcome the theoretical difficulties due to the

non-convex and non-differentiable objective functions. Simulation results indicate that, in

general, the jointly weighted approach outperforms its unweighted counterpart when the

sample size is large. Compared with the two-step estimating method, the jointly weighted

method is preferred when the data exhibit greater volatility. This efficiency gain is es-

pecially evident when the linear regressors are endogenous and the quantile level is not

too far from the center. Better VaR forecasting performance can be achieved using the

proposed methods, as confirmed by our empirical evidence.

It is also of interest to consider the linear model with conditional heteroscedasticity

of unknown form, Yt “ φ1X t´1 ` σpX t´1qεt, where σp¨q is an unknown function; see

Zhao (2001). Then, conditional on Ft´1, the τth quantile of Yt is given by QYtpτ |Ft´1q “

φ1X t´1 ` bτσpX t´1q. As a result, an adaptive weighted conditional quantile estimation
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(WCQE) can be constructed, as follows:

ppφ
1

n,
pbτn, pσp¨qq “ arg min

φ,b,σp¨q

n
ÿ

t“1

pwtρτtYt ´ φ
1X t´1 ´ bσpX t´1qu,

where the weights { pwt} are the initial estimators of tσ´1pX t´1qu. Here, nonparametric

methods, such as the k-nearest neighbors and kernel smoothing approaches, may be used

to fit the unknown function σp¨q. We leave this topic for future research.

Supplementary Material

The online Supplementary Material provides proofs for all theorems and corollaries,

together with additional simulation results for Section 3.1.
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Table 1: Biases, ESDs, ASDs, and ECRs of the 95% CIs for pθτn at τ “ 0.05 and 0.10,
for normally distributed Xt´1 and υt´1. The innovations follow a normal or a Student’s t5
distribution.

Normal t5
τ n Bias ESD ASD ECR Bias ESD ASD ECR

0.05 500 bτ -0.405 0.604 0.476 0.895 -0.282 0.523 0.420 0.911
α -0.023 0.068 0.067 0.890 -0.011 0.084 0.079 0.881
β -0.074 0.114 0.108 0.934 -0.065 0.123 0.119 0.939
π 0.148 0.326 0.256 0.933 0.157 0.346 0.291 0.932
φ -0.007 0.375 0.334 0.931 0.005 0.400 0.384 0.946

2000 bτ -0.122 0.255 0.259 0.938 -0.110 0.261 0.249 0.941
α -0.007 0.040 0.039 0.917 -0.004 0.049 0.044 0.905
β -0.023 0.044 0.051 0.956 -0.025 0.054 0.059 0.951
π 0.066 0.171 0.161 0.922 0.070 0.205 0.181 0.924
φ -0.002 0.183 0.180 0.943 0.024 0.213 0.208 0.946

0.10 500 bτ -0.358 0.539 0.462 0.909 -0.237 0.427 0.377 0.933
α -0.025 0.070 0.069 0.883 -0.017 0.077 0.074 0.876
β -0.079 0.129 0.126 0.953 -0.066 0.129 0.130 0.949
π 0.121 0.295 0.266 0.943 0.111 0.296 0.276 0.942
φ 0.000 0.303 0.302 0.942 0.008 0.287 0.295 0.951

2000 bτ -0.104 0.231 0.230 0.950 -0.081 0.216 0.198 0.945
α -0.008 0.041 0.040 0.915 -0.004 0.046 0.042 0.903
β -0.023 0.048 0.056 0.967 -0.023 0.056 0.059 0.961
π 0.054 0.181 0.165 0.917 0.056 0.189 0.171 0.910
φ 0.003 0.149 0.152 0.947 0.014 0.153 0.150 0.940
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Figure 1: Time plot for centered daily log returns in percentage (solid line) of NYSE:OXY
stock from January 3, 2008, to December 29, 2017, with one-day negative VaR forecasts
at levels of 1% (dotted line) and 5% (dashed line) from February 3, 2012, to December 31,
2017.
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Table 2: Biases, ESDs, ASDs, and ECRs of the 95% CIs for rθτn at τ “ 0.05 and 0.10,
for normally distributed Xt´1 and υt´1. The innovations follow a normal or a Student’s t5
distribution.

Normal t5
τ n Bias ESD ASD ECR Bias ESD ASD ECR

0.05 500 bτ -0.256 0.503 0.390 0.938 -0.184 0.449 0.386 0.944
α -0.016 0.069 0.066 0.900 -0.013 0.081 0.077 0.870
β -0.048 0.103 0.096 0.951 -0.041 0.113 0.113 0.946
π 0.149 0.365 0.302 0.942 0.154 0.363 0.338 0.955
φ 0.001 0.366 0.349 0.941 0.015 0.408 0.408 0.949

2000 bτ -0.076 0.250 0.230 0.936 -0.082 0.264 0.243 0.955
α -0.004 0.040 0.040 0.911 -0.004 0.049 0.047 0.910
β -0.015 0.045 0.047 0.950 -0.018 0.057 0.060 0.938
π 0.064 0.187 0.187 0.943 0.071 0.215 0.203 0.941
φ -0.004 0.192 0.187 0.936 0.024 0.220 0.217 0.950

0.10 500 bτ -0.223 0.423 0.382 0.947 -0.153 0.362 0.339 0.959
α -0.018 0.072 0.069 0.894 -0.014 0.078 0.073 0.878
β -0.049 0.108 0.113 0.963 -0.040 0.113 0.122 0.954
π 0.139 0.360 0.322 0.957 0.123 0.354 0.321 0.948
φ -0.001 0.307 0.309 0.938 0.009 0.290 0.305 0.961

2000 bτ -0.070 0.233 0.218 0.952 -0.064 0.220 0.200 0.952
α -0.004 0.044 0.042 0.920 -0.003 0.048 0.045 0.912
β -0.015 0.050 0.054 0.966 -0.018 0.060 0.061 0.948
π 0.063 0.217 0.194 0.932 0.053 0.204 0.191 0.922
φ 0.006 0.154 0.158 0.944 0.016 0.159 0.155 0.945

2008 2010 2012 2014 2016 2018

−
10

−
5

0
5

10
15

Crude Oil

2008 2010 2012 2014 2016 2018

−
5

0
5

10

Gold

2008 2010 2012 2014 2016 2018

0
10

20
30

40
50

Realized variance

Figure 2: Time plots for daily log returns (percentage) of WTI Crude Oil prices (left)
and LBMA Gold prices (middle), and the realized variance (ˆ1002) of the S&P 500 Index
(right) from January 3, 2008, to December 29, 2017.
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Table 3: Biases, ESDs, ASDs, and ECRs of the 95% CIs for θ̌τn at τ “ 0.05 and 0.10,
for normally distributed Xt´1 and υt´1. The innovations follow a normal or a Student’s t5
distribution.

Normal t5
τ n Bias ESD ASD ECR Bias ESD ASD ECR

0.05 500 bτ -0.229 0.437 0.383 0.951 -0.170 0.423 0.376 0.948
α -0.017 0.067 0.066 0.901 -0.013 0.080 0.076 0.875
β -0.041 0.096 0.095 0.953 -0.037 0.111 0.111 0.947
π 0.142 0.333 0.312 0.958 0.148 0.379 0.353 0.962
φ 0.005 0.204 0.208 0.953 0.009 0.208 0.203 0.953

2000 bτ -0.070 0.241 0.224 0.944 -0.080 0.257 0.237 0.952
α -0.004 0.040 0.040 0.918 -0.005 0.048 0.046 0.911
β -0.014 0.044 0.047 0.952 -0.017 0.056 0.059 0.940
π 0.067 0.193 0.187 0.940 0.066 0.214 0.202 0.935
φ 0.003 0.106 0.104 0.947 0.009 0.109 0.103 0.947

0.10 500 bτ -0.214 0.420 0.374 0.943 -0.146 0.346 0.331 0.960
α -0.018 0.071 0.068 0.889 -0.015 0.077 0.072 0.877
β -0.046 0.105 0.111 0.967 -0.038 0.111 0.120 0.957
π 0.129 0.336 0.331 0.963 0.128 0.362 0.334 0.960
φ 0.005 0.204 0.208 0.953 0.009 0.208 0.203 0.953

2000 bτ -0.068 0.227 0.215 0.955 -0.062 0.213 0.197 0.955
α -0.005 0.043 0.042 0.922 -0.003 0.047 0.045 0.920
β -0.015 0.049 0.053 0.962 -0.018 0.058 0.060 0.942
π 0.065 0.209 0.196 0.943 0.055 0.206 0.191 0.922
φ 0.003 0.106 0.104 0.947 0.009 0.109 0.103 0.947
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Figure 3: Density plots (left) of the model residuals ε̆t (dashed line) and the fitted skewed t
distribution (solid line), and a QQ plot (right) for the model residuals ε̆t against the fitted
skewed t distribution.
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Table 4: AREppθτn, rθτnq and AREppθτn, θ̌τnq for the regression model with GARCHp1, 1q-
X errors of different values for pα, βq. The innovations tεtu follow the standard normal
and Student’s t5 distributions, and τ “ 0.05 or 0.10, based on a generated sequence of
n “ 10, 000. ARE1 and ARE2 represent AREppθτn, rθτnq and AREppθτn, θ̌τnq, respectively.

β 0.15 0.30 0.80
τ α 0.40 0.60 0.80 0.40 0.60 0.15

Xt´1 and υt´1 are normal distributed
ARE1 0.05 Normal 1.076 1.201 1.599 1.099 1.311 1.089

t5 1.087 1.171 1.376 1.111 1.281 1.115
0.10 Normal 1.075 1.200 1.596 1.098 1.310 1.089

t5 1.086 1.169 1.373 1.110 1.279 1.115

ARE2 0.05 Normal 0.813 1.017 1.684 0.845 1.194 0.817
t5 0.736 0.873 1.202 0.766 1.022 0.759

0.10 Normal 0.895 1.107 1.810 0.930 1.298 0.905
t5 0.850 0.996 1.357 0.884 1.164 0.884

Xt´1 “ Yt´1 and υt´1 is normal distributed
ARE1 0.05 Normal 1.095 1.285 1.998 1.125 1.459 1.100

t5 1.118 1.243 1.550 1.151 1.403 1.142
0.10 Normal 1.095 1.284 1.992 1.124 1.458 1.100

t5 1.117 1.242 1.553 1.150 1.402 1.141

ARE2 0.05 Normal 0.930 1.638 4.172 0.992 2.242 0.856
t5 0.865 1.168 1.963 0.912 1.495 0.841

0.10 Normal 1.019 1.756 4.150 1.085 2.388 0.946
t5 0.991 1.315 2.172 1.046 1.682 0.979

Table 5: Summary statistics for centered log returns in percentage of NYSE:OXY stock.

Min Max Mean Median Std. Dev. Skewness Kurtosis
-20.436 16.656 0.000 0.027 2.271 -0.259 11.025

Table 6: Empirical coverage rate (ECR) (%) and p-values of two VaR backtests of five esti-
mation methods at the 1%, 5%, 95%, and 99% conditional quantiles. JW, TS, PAR, FHS,
and CAV represent the jointly weighted method, two-step method, parametric method,
filtered historical simulation method, and CAViaR method, respectively.

τ “ 1% τ “ 5% τ “ 95% τ “ 99%
ECR CC DQ ECR CC DQ ECR CC DQ ECR CC DQ

JW 0.95 0.86 0.70 4.77 0.65 0.01 94.96 0.92 0.76 98.64 0.32 0.69
TS 0.95 0.86 0.36 4.97 0.77 0.02 95.23 0.65 0.77 98.91 0.79 0.84

PAR 0.88 0.80 0.98 4.56 0.64 0.01 95.64 0.03 0.38 98.77 0.56 0.81
FHS 1.16 0.69 0.37 4.56 0.64 0.03 95.23 0.65 0.78 98.84 0.69 0.96
CAV 1.23 0.56 0.25 4.70 0.55 0.01 96.19 0.01 0.28 99.18 0.69 0.99
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