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Abstract: This study provides a robust inference for a varying-coefficient4

additive model for sparse or dense longitudinal/functional data. A5

spline-based three-step M-estimation method is proposed for esti-6

mating the varying-coefficient component functions and the additive7

component functions. In addition, the consistency and asymptotic8

normality of sparse data and dense data are investigated within a uni-9

fied framework. Furthermore, employing a regularized M-estimation10

method, a model identification procedure is proposed that consis-11

tently identifies an additive term and a varying-coefficient term. Sim-12

ulation studies are used to evaluate the finite-sample performance of13

the proposed methods, and confirm the asymptotic theory. Last-14

ly, real-data examples demonstrate the applicability of the proposed15
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methods.16

Key words and phrases: B-spline, M-estimator, SCAD, tensor prod-17

uct, varying-coefficient additive model.18

1. Introduction19

Repeated-measurement data arise often in clinical, biometrical, epidemio-20

logical, social, and economic research (Diggle, Liang, and Zeger , 1994). Here,21

longitudinal and functional data are particularly common, and have differen-22

t sampling mechanisms. Typically, data are termed functional when they are23

recorded densely over time in a continuum without noise, and are termed lon-24

gitudinal when the measurements are made at a few discrete time points and25

include experimental error. However, in practice, functional data are analyzed26

after smoothing noisy observations (Ramsay and Ramsey , 2002). A vast body27

of literature considers statistical inferences for functional data that are based on28

observations at discrete time points and are contaminated with measurement er-29

rors, a practice that makes it possible to analyze longitudinal data and functional30

data within a unified framework (Li and Hsing, 2010; Yao , 2007). Others have31

studied longitudinal data using a functional principal components analysis (Yao,32

Müller and Wang , 2005).33

In a typical repeated-measurement-data setting, a sample of n subjects or34

curves is observed at ni discrete time points. If each ni exceeds some power35
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ROBUST INFERENCE FOR VCAMs 3

of n, then the data are referred to as dense data. If each ni is bounded by a36

finite positive number or follows a fixed distribution, then the data are referred37

to as sparse data. Recently, Zhang and Wang (2016) considered nonparametric38

estimations of the mean and covariance functions for sparse and dense functional39

data within a unified framework, where they categorized the data as sparse,40

dense, or ultra-dense, based on the magnitude of ni relative to n.41

Many studies have investigated nonparametric regression methods for func-42

tional data and longitudinal data with sparsity or/and denseness. Because of43

their simplicity, flexibility, and interpretability, varying-coefficient models (VCM-44

s) have been used extensively to analyze longitudinal data (Hoover et al. , 1998;45

Xue and Zhu , 2007). Additive models (AMs) provide an alternative regression46

method (Carroll et al. , 2009; Xue, Qu, and Zhou , 2010). Here, Zhang, Park,47

and Wang (2013) proposed a time-varying AM for analyzing longitudinal da-48

ta to capture dynamic effects. Recently, for analyzing functional data, Zhang49

and Wang (2015) proposed a novel nonparametric regression method called the50

varying-coefficient additive model (VCAM), which includes the classical AMs and51

VCMs as special cases. Specifically, let Y (t) be a smooth random response pro-52

cess and X = (X1, ..., Xp)
τ be a p-vector of covariates. The regression function53

m(t,x) := E[Y (t)|X = x] of a VCAM has the form54

m(t,x) = α0(t) +

p∑
k=1

αk(t)βk(xk), (1.1)

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0483
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where αk is the varying-coefficient component function, and βk is the additive55

component function.56

Zhang and Wang (2015) proposed a two-step spline estimation method for57

varying-coefficient component functions and additive component functions, based58

upon two key assumptions: (i) each subject (smooth process or function curve)59

is observed at dense time points; and (ii) each predictor is subject specific, but60

independent of the observation time. The above conditions are easily satisfied61

for functional data, but are restrictive for longitudinal data. Furthermore, if62

conditions (i) and/or (ii) are violated, then the estimation method of Zhang and63

Wang either fails or performs poorly, as shown in Table 6 of the Supplementary64

Material. In this study, we consider two real-data examples, namely, the CD4 cell65

count in HIV seroconversion (Zeger and Diggle , 1994), and the cigarette data set66

from the R package “phtt” (Bada and Liebl , 2012), which we investigate in the67

Supplementary Material. Note that each example violates condition (i) and/or68

(ii), meaning that the two-step spline estimation method proposed by Zhang and69

Wang (2015) is not appropriate. One of our aims herein is to relax conditions (i)70

and (ii), and to develop a general estimation method that has wider application71

in practical fields.72

Although much of the literature focuses on the classical mean regression73

method, the method is sensitive to outliers and nonnormal error distributions.74
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ROBUST INFERENCE FOR VCAMs 5

An alternative is the M-type robust regression method, which can treat mean,75

median, quantile, and more general robust-type regression methods within a76

unified framework. Many scholars have considered robust regression techniques,77

such as Koenker and Bassett (1978) for quantile regressions of linear models,78

He and Shi (1994) and He, Zhu, and Fung (2002) for M-estimators of partially79

linear models, and Tang and Cheng (2008) for M-estimators of VCMs.80

Here, we consider a robust inference for a VCAM for sparse and dense81

longitudinal or functional data, allowing the predictors to be smooth process-82

es covering condition (ii). We propose spline-based three-step M-estimators for83

varying-coefficient component functions and additive component functions. The84

asymptotic properties of the newly proposed estimators are presented within a85

unified framework, and we separate sparse data and dense data based on the rela-86

tive order of ni to n, which can be viewed as a generalization of Zhang and Wang87

(2016) to a VCAM. Similarly to Hu, Huang, and You (2018), a remarkable as-88

pect of our estimators is the oracle property, which implies that the iteration step89

does not cause additional asymptotic errors. Furthermore, from the perspective90

of model parsimony, we develop a spline-based penalized M-estimator to decide91

whether the product term in (1.1) reduces to a varying-coefficient term or to an92

additive term, corresponding to an additive component function of linear form93

or a constant varying-coefficient component function, respectively. We also show94
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that an additive term and a varying-coefficient term can be selected correctly95

with probability approaching unity, under mild conditions.96

The remainder of the paper is organized as follows. In Section 2, we describe97

the model setup and propose the spline-based three-step M-estimators for uni-98

variate component functions. In Section 3, we present the asymptotic theory for99

the proposed estimators. In Section 4, we introduce a robust model identification100

procedure, and in Section 5, we select the smoothing parameters. In Section 6,101

we use simulation examples to investigate the finite-sample performance, and102

use empirical examples to demonstrate the applicability of the proposed method.103

Finally, Section 7 concludes the paper. All technical proofs and additional nu-104

merical studies are relegated to the Supplementary Material.105

2. Model and Estimation Method106

2.1. Model assumptions107

Let Y (t) be a smooth response process and X(t) = {X1(t), ..., Xp(t)}τ be a108

p-vector of smooth processes of covariates, where the superscript τ denotes the109

transpose of a vector or matrix. Without loss of generality, we assume that the110

response and covariates from a subject are L2-integrable stochastic processes on111

the interval [0, 1]. The relationship between the response and the covariates is112

modeled by a VCAM, as follows:113

Y (t) = α0(t) +

p∑
k=1

αk(t)βk(Xk(t)) + U(t), (2.1)
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where U(t) is the stochastic component of response process Y (t), independent of114

covariate process X(t), with mean function E[U(t)] = 0 and auto-covariance func-115

tion γ(t, s) = E[U(t)U(s)]. To uniquely identify univariate component functions,116

we impose the identification conditions
∫ 1

0 αk(t)dt = 1 and E[βk(Xk(t))] = 0, fol-117

lowing common practice for nonparametric regressions (Zhang and Wang , 2015;118

Wang and Yang , 2007; Vogt , 2012; Hu, Huang, and You , 2018).119

In practical applications, the process Y is not observable, but can be mea-120

sured at any given time with random error e, such that E(e) = 0, Var(e) = σ2
e .121

We sample n subjects independently, and observe subject i at ni time points122

(ti1, ..., tini
), denoting yij and xij = (xij1, ..., xijp)

τ as the observations of the123

response and the vector of covariates at time tij , respectively. Then, the sample124

version of VCAM (2.1) can be written as125

yij = α0(tij) +

p∑
k=1

αk(tij)βk(xijk) + Uij + eij , (2.2)

where Uij = Ui(tij) is a realization of the subject-specific random trajectory126

Ui(t) at observation time tij , and eij are independent and identical copies of127

the random measurement error e. As in Zhang and Wang (2015), we ignore128

the intra-subject covariance structure, and instead incorporate the covariance of129

{Uij , j = 1, ..., ni} into the random error term, denoted as εij = Uij + eij .130

Remark 1. The product term αk(t)βk(xk) in VCAM (2.1) reduces to an additive131

term if αk is a constant, and to a varying-coefficient term if βk is a linear function.132
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In other words, a VCAM is more flexible than either an AM or a VCM, and can133

greatly reduce the systematic bias of modeling.134

2.2. Three-step M-estimation method135

The spline method is a useful tool for fitting smooth nonparametric func-136

tions, and the B-spline basis is preferred for its computational stability. Let137

{b̃1(x), ..., b̃K+m(x)} be a normalizedm-order B-spline basis withK interior knots138

(De Boor , 1978). The scaled version of b̃k(x) is given by bk(x) =
√
K +mb̃k(x),139

the favorable properties of which are presented in the Supplementary Materi-140

al. Furthermore, similarly to Wang and Yang (2007), we construct a cen-141

tralized version, represented as {B1(x), ..., BK+m−1(x)}. Under the assumption142

that both αk(·) and βk(·) are r(≤ q)-order smooth, we adopt a q-order B-spline143

function to fit a univariate nonparametric function. For any t ∈ [0, 1] and x144

in the domain of βk(·), we use the B-spline bases bC(t) = {b1(t), ..., bJC
(t)}τ145

to approximate the varying-coefficient component function αk(t); then, we use146

Bk,A(x) = {Bk1(x), ..., BkJA
(x)}τ to approximate the additive component func-147

tion βk(x) for each k = 1, .., p, where JC and JA denote a sum of smooth degree148

r and the number of interior knots, respectively. The tensor product of Bk,A(xk)149

and bC(t) is defined as Tk(t, xk) = Bk,A(xk) ⊗ bC(t), where ⊗ represents the150

Kronecker product of matrices or vectors.151

Now, we propose a spline-based three-step M-estimation method. Specifi-152
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ROBUST INFERENCE FOR VCAMs 9

cally, we first obtain estimators for the varying-coefficient component functions.153

Then, we obtain an approximated AM and VCM by substituting the resultant154

estimators into VCAM (2.2). In this way, we estimate the varying-coefficient155

component functions and additive component functions.156

Step I: Initial M-estimators of varying-coefficient component functions157

In this step, we assume that B-spline bases have ~C and ~A interior knots for158

αk and βk, respectively. Using the tensor product of B-spline bases, the bivariate159

function gk(t, xk) = αk(t)βk(xk) can be approximated as gk(t, xk) ≈ γτkTk(t, xk),160

where γk is a {(q + ~C)(q + ~A − 1)}-vector. Assume that γ̂ = (γ̂τ0 , ..., γ̂
τ
p )τ is161

determined by the following minimization problem:162

min
γ

n∑
i=1

1

ni

ni∑
j=1

ρ
(
yij − γτ0 bC(tij)−

p∑
k=1

γτkTk(tij , xijk)
)
, (2.3)

where ρ is a given loss function and γ = (γτ0 , ..., γ
τ
p )τ .163

For each given k, we find a point (tk0, xk0), such that gk(tk0, xk0) 6= 0; then,164

ξk(t|tk0) = gk(t,xk0)
gk(tk0,xk0) = αk(t)

αk(tk0) is well defined and depends on the selection of165

tk0. Denoting ĝk(t, xk) = γ̂τkTk(t, xk), we approximate ξk(t|tk0) as ξ̂k(t|tk0, xk0) =166

ĝk(t,xk0)
ĝk(tk0,xk0) , which depends on the selection of tk0 and xk0. Together with the167

identification conditions of αk, we obtain the spline-based initial M-estimator of168

αk(k = 0, ..., p) as169

α̂0,I(t) =γ̂0
τbC(t), α̂k,I(t|tk0, xk0) =

ξ̂k(t|tk0, xk0)∫ 1
0 ξ̂k(t|tk0, xk0)dt

, (2.4)
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10 LIXIA HU, TAO HUANG AND JINHONG YOU

where the subscript “I” denotes the initial estimator of αk.170

Step II: M-estimators of additive component functions171

Substituting (2.4), the initial M-estimator of αk obtained in the Step-I es-172

timation, into VCAM (2.2), we obtain the approximated AM yij ≈ α̂0,I(tij) +173 ∑p
k=1 α̂k,I(tij |tk0, xk0)βk(xijk) + εij , which gives a spline-based M-estimator of174

βk. Denote the number of interior knots of the B-spline basis as KA. Let175

θ = (θτ1 , ..., θ
τ
p)τ , with θk a (q + KA − 1)-vector, such that θ̂ = (θ̂τ1 , ..., θ̂

τ
p)τ176

minimizes the following problem:177

n∑
i=1

1

ni

ni∑
j=1

ρ
(
yij − α̂0,I(tij)−

p∑
k=1

α̂k,I(tij |tk0, xk0)θτkBk,A(xijk)
)
. (2.5)

Then, the spline-based M-estimators β̂k, for k = 1, ..., p, of the additive compo-178

nent functions are given by179

β̂k(xk) = β̌k(xk)−
1

N

n∑
i=1

ni∑
j=1

β̌k(xijk), (2.6)

where β̌k(xk) = θ̂τkBk,A(xk) and N =
∑n

i=1 ni.180

Step III: Updated M-estimators of varying-coefficient component functions181

Substituting (2.6) into (2.2), we obtain an approximated VCM, yij ≈ α0(tij)+182 ∑p
k=1 αk(tij)β̂k(xijk)+εij . Let KC be the number of interior knots of the B-spline183

basis fitting αk. Denote h = (hτ0 , ..., h
τ
p)τ , with hk a (q + KC)-vector, such that184

ĥ = (ĥτ0 , ..., ĥ
τ
p)τ minimizes185

n∑
i=1

1

ni

ni∑
j=1

ρ
(
yij − hτ0bC(tij)−

p∑
k=1

β̂k(xijk)h
τ
kbC(tij)

)
. (2.7)
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Then the updated M-estimators of αk, for k = 0, ..., p, are given by186

α̂0(t) = ĥτ0bC(t), α̂k(t) =
ĥτkbC(t)∫ 1

0 ĥ
τ
kbC(t)dt

.

Common convex loss functions include the quadratic function ρ(u) = u2, the187

check function ρ(u) = |u| + (2τ − 1)u, with τ ∈ (0, 1), and the Huber function188

ρ(u) = 0.5u2I|u|<δ, where δ is a prespecified threshold value and IA denotes the189

indictor function of a nonempty set A. Our method also allows for a noncon-190

vex loss function, such as those of Hampel and Tukey. Note that the proposed191

estimation method has a wide range of applications, because the spline approx-192

imations in the three estimation steps are valid for both sparse data and dense193

data, allowing the covariates to depend simultaneously on the observation time.194

A simulation example given in Section S1.3 of the Supplementary Material com-195

pares our estimation method with that of Zhang and Wang (2015) when the196

covariates are independent of the observation time. Table 6 in the Supplemen-197

tary Material shows that our estimators are superior to Zhang’s estimators for198

sparse data and a small proportion of outliers, and perform similarly for dense199

data with a normal error distribution.200

3. Asymptotic Results201

In this section, we construct the consistency and asymptotic normality of202

the proposed M-estimators. Note that the asymptotic properties are considered203

for sparse data and dense data within a unified framework, which can be viewed204

Statistica Sinica: Preprint 
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as a generalization of Zhang and Wang (2016) to a VCAM. The assumptions205

necessary for deriving the asymptotic results are given in the Appendix.206

3.1. Consistency of three-step M-estimators207

Let N̄H =
(∑n

i=1 n
−1
i /n

)−1
be the harmonic average of sequence {ni}, and208

let h̄ = ~A ∨ ~C be the maximum of ~A and ~C. Denote J = {(xij , tij) :, i =209

1, ..., n; j = 1, ..., ni}. Theorem 1 presents the rate of convergence for the additive210

component function βk in the sense of the L2-norm and the mean squared errors211

(MSEs).212

Theorem 1. Under Assumptions A1–A5, M1 and M2, or N1 and N2, if h̄ =213

O(KA), h̄2K2r
A = o(nN̄H), K2

A = o(nN̄A), K2r
A /n → C1, K

2r+1
A /(nN̄H) → C2,214

and KA/N̄H → C3, where 0 ≤ C1 < ∞, 0 ≤ C2, C3 ≤ ∞, then we have the215

convergence rates216

∥∥∥β̂k − βk∥∥∥2

L2

= Op

(
K−2r

A +
KA

nN̄H
+

1

n

)
in the L2-norm sense, and217

1

N

n∑
i=1

ni∑
j=1

[
β̂k(xijk)− βk(xijk)

]2
= Op

(
K−2r

A +
KA

nN̄H
+

1

n

)
in the MSE sense.218

Remark 2. It is easy to show the following219

(i) 1
n = o

(
KA

nN̄H

)
if N̄H/n

1

2r → 0 and KA �
(
nN̄H

) 1

2r+1 ;220
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(ii) 1
n �

KA

nN̄H
if N̄H/n

1

2r → C and KA � n
1

2r ;221

(iii) KA

nN̄H
= o( 1

n) if N̄H/n
1

2r →∞ and KA = o(n
1

2r ).222

That is, the order of the variance term KA

nN̄H
+ 1

n has either a parametric rate of223

convergence 1
n or a nonparametric rate of convergence KA

nN̄H
, depending on the224

magnitude of N̄H/n
1

2r .225

Theorem 2 is the analogue of Theorem 1 for the varying-coefficient function226

αk.227

Theorem 2. Under Assumptions A1–A5, M1 and M2, or N1 and N2, if KAK
2r
C =228

o(nN̄H), KA = O(KC) or KA = o(KC), K2r
C /n→ C1, K

2r+1
C /(nN̄H)→ C2, and229

KC/N̄H → C3, where 0 ≤ C1 <∞, 0 ≤ C2, C3 ≤ ∞, then we have230

‖α̂k − αk‖2L2
= Op

(
K−2r

C +
KC

nN̄H
+

1

n

)

in the L2-norm sense, and231

1

N

n∑
i=1

ni∑
j=1

[
α̂k(tij)− αk(tij)

]2
= Op

(
K−2r

C +
KC

nN̄H
+

1

n

)

in the MSE sense.232

A remark similar to that for Theorem 1 can be made for M-estimators of233

varying-coefficient functions. Based upon these statements, we say that the data234

are235
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doi:10.5705/ss.202018.0483
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• sparse if N̄H/n
1

2r → 0, which yields a nonparametric rate; or236

• dense if N̄H/n
1

2r → C, with 0 < C ≤ ∞, which yields a parametric rate.237

We generalize the way we split sparse data and dense data in that our conclusions238

reduce to those of Zhang and Wang (2016) when r = 2.239

3.2. Asymptotic normality of three-step M-estimators240

In this subsection, we present the asymptotic distribution of the M-estimators.

First, we introduce the following notation:

Wn,A =

n∑
i=1

1

ni

ni∑
j=1

$(tij)ΨijΨ
τ
ij , Un,A =

n∑
i=1

Ψτ
iGiΨi/n

2
i ,

Wn,C =

n∑
i=1

1

ni

ni∑
j=1

$(tij)ΦijΦ
τ
ij , Un,C =

n∑
i=1

Φτ
iGiΦi/n

2
i ,

where

Ψi ={Ψi1, ...,Ψini
}τ , Ψij =

{
ψ1(xij1)τ , ..., ψp(xijp)

τ
}τ
, ψk(xijk) = αk(tij)Bk,A(xijk),

Φi ={Φi1, ...,Φini
}τ , Φij = {1, β1(xij1), ..., βp(xijp)}τ ⊗ bC(tij).

Theorem 3 presents the asymptotic distribution for the additive function βk.241

Theorem 3. Under the conditions of Theorem 1, if K2r
A K̃A/n→∞,242

max
(
K

3/2
A

∑n
i=1 1/n2

i ,K
1/2
A

∑n
i=1(ni − 1)/n2

i ,
∑n

i=1(ni − 1)(ni − 2)/n2
i

)
(
∑n

i=1
1
ni

(KA − 1) + n)3/2
→ 0,

and the largest eigenvalue of KABk,A(x)Bk,A(x)τ is bounded, then given J , it243

follows that β̂k(x)− βk(x)
D−→ N(0, Dn,A(x)), where244

Dn,A(x) = Ak(x)τW−1
n,AUn,AW

−1
n,AAk(x), (3.1)
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and Ak(x) = {0, ...,Bτ
k,A(x), ...0}τ is a {pJA}-dimensional vector, with Bk,A(x)245

in its {(k − 1)JA}th to {kJA}th positions, and zeros in the rest.246

Theorem 4 is the analogue of Theorem 3 for the varying-coefficient function247

αk.248

Theorem 4. Under the conditions of Theorem 2, if K2r
C K̃C/n→∞,249

max
(
K

3/2
C

∑n
i=1 1/n2i ,K

1/2
C

∑n
i=1(ni − 1)/n2i ,

∑n
i=1(ni − 1)(ni − 2)/n2i

)
(
∑n

i=1
1
ni

(KC − 1) + n)3/2
→ 0, (3.2)

and the largest eigenvalue of KCbC(t)bC(t)τ is bounded, then given J , it follows250

that α̂k(t)− αk(t)
D−→ N(0, Dn,C(t)), where251

Dn,C(t) = Ck(t)
τW−1

n,CUn,CW
−1
n,CCk(t), (3.3)

and Ck(t) = {0, ...,bτC(t), ...0}τ is a {(p+ 1)JA}-dimensional vector, with bC(t)252

in its {kJC}th to {(k + 1)JC}th positions, and zeros in the rest.253

Now, we build a consistent estimate for the asymptotic variance given in

(3.1) and (3.3). Let Ĝi = φ(ε̂i)φ(ε̂i)
τ , with φ(ε̂i) = {φ(ε̂i1), ..., φ(ε̂ini

)}τ and

ε̂ij = yij − α̂0(tij)−
∑p

k=1 α̂k(tij)β̂k(xijk). Set

Ŵn,A =

n∑
i=1

1

ni

ni∑
j=1

$(tij)Ψ̂ijΨ̂
τ
ij , Ûn,A =

n∑
i=1

Ψ̂iĜiΨ̂i/n
2
i ,

Ŵn,C =

n∑
i=1

1

ni

ni∑
j=1

$(tij)Φ̂ijΦ̂
τ
ij , Ûn,C =

n∑
i=1

Φ̂iĜiΦ̂i/n
2
i ,
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where Ψ̂ij and Φ̂ij are the counterparts of Ψij and Φij , respectively, after re-

placing αk with α̂k,I and replacing βk with β̂k. Then, the natural estimates of

Dn,A(x) and Dn,C(t) are

D̂n,A(x) = Ak(x)τŴ−1
n,AÛn,AŴ

−1
n,AAk(x) and

D̂n,C(t) = Ck(t)
τŴ−1

n,CÛn,CŴ
−1
n,CCk(t).

Theorem 5 shows that the estimates of the asymptotic variances are consis-254

tent.255

Theorem 5. Suppose that supt∈[0,1] E(φ4(εij)|tij = t) <∞.256

(i) Under the conditions of Theorem 3, if KA = o(h̄r), K2
A = o(nN̄H), maxi niK

2
A257

= o(nN̄H), and K4
A maxi ni = o(n4), then it holds that D̂n,A(x)

p−→ Dn,A(x).258

(ii) Under the conditions of Theorem 4, if KC = o(KA), K2
C = o(nN̄H),259

K2
C maxi ni = o(nN̄H), and K4

C maxi ni = o(n4), then it holds that D̂n,C(x)
p−→260

Dn,C(x).261

In combination with Theorems 3–5, the (1 − α)% confidence intervals of262

univariate component functions are given by263

α̂k(t)± zα/2
{
D̂n,C(t)

}1/2
and β̂k(x)± zα/2

{
D̂n,A(x)

}1/2
. (3.4)

3.3. Quantile regression264
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Let 0 < τ < 1 and loss function ρ(u) = |u| + (2τ − 1)u; then, the proposed265

M-estimators reduce to τth quantile estimates. Denote α̂k,τ (t) and β̂k,τ (x) as266

the τth quantile estimates of αk and βk, respectively. We impose the following267

additional assumptions:268

(Q1) P (εij ≤ 0|xij , tij) = τ .269

(Q2) There exist positive constants c5 and C6 such that the conditional density270

function g(x|t) of εij , given tij = t, satisfies |g(x|t) − g(0|t)| ≤ C6|x|, for271

all x ∈ [−c5, c5] and t ∈ [0, 1], and g(0|t) is bounded away from zero and272

infinity uniformly over [0, 1].273

Noting that ρ(u) is convex and φ(u) = ρ′(u) = 2τI(u > 0) + 2(τ − 1)I(u <274

0), it is easy to show that Assumption M2 holds. If Assumption Q1 holds,275

then Eφ(εij) = 0 and Assumption M1 holds with $(t) = 2g(0|t). Employing276

Theorems 1 and 2, we obtain the following corollary.277

Corollary 1. Suppose that conditions Q1 and Q2 hold.278

• Under the conditions of Theorem 1, we have279

∥∥∥β̂k,τ − βk∥∥∥2

L2

= Op

(
K−2r

A +
KA

nN̄H
+

1

n

)
.

• Under the conditions of Theorem 2, we have280

‖α̂k,τ − αk‖2L2
= Op

(
K−2r

C +
KC

nN̄H
+

1

n

)
.
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18 LIXIA HU, TAO HUANG AND JINHONG YOU

Remark 3. Let $(t) = 2g(0|t) in Wn,A and Wn,C. If conditions Q1 and Q2 hold,281

then we can present the asymptotic distributions of β̂k,τ (x) and α̂k,τ (t) under the282

conditions of Theorems 3 and 4, respectively.283

4. Model Identification Procedure284

The VCAM (2.1) is a flexible nonparametric regression method. However,285

parsimony is always preferable when several potential options are available. To286

this end, we propose a model identification strategy based on the penalized M-287

estimators for identifying additive terms and varying-coefficient terms.288

The assumption of continuous covariates means that Xk 6= 0 almost surely,289

for k = 1, ..., p, and model (2.2) can be rewritten as290

yij = α0(tij) +

p∑
k=1

xijkαk(tij)β
∗
k(xijk) + εij ,

where β∗k(x) = βk(x)/x. Employing the tensor product of B-spline bases, the

bivariate function g∗k(t, xk) = αk(t)β
∗
k(xk) can be approximated as

g∗k(t, xk) ≈ {1,Bτ
k,AP(xk)} ⊗ {1,Bτ

CP(t)}ηk

= η00,k + ητ·0,kBCP(t) + η01,kBk1(xk) + ητ·1,kBk1(xk)⊗BCP(t)

+ · · ·+ η0JAP,kBkJAP
(xk) + ητ·JAP,kBk,JAP

(xk)⊗BCP(t),

where ηk =
{
η00,k, η

τ
·0,k, η01,k, η

τ
·1,k, ..., η0JAP,k, η

τ
·JAP,k

}τ
, η·j,k =

{
η1j,k, ..., ηJCPj,k

}τ
,291

and JAP and JCP are the cardinalities of the B-spline bases Bk,AP(xk) and292

BCP(t), respectively, for βk and αk, in the model identification procedure.293
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Let Mk(t, xk) = {0,Bτ
CP(t), 0, Bk1(xk)⊗Bτ

CP(t), ..., 0, BkJAP
(xk)⊗Bτ

CP(t)}τ294

and Fk(t, xk) = {0τJCP+1,B
τ
k,AP(xk)⊗(1,Bτ

CP(t))}τ , where 0l denotes the l-vector295

of zeros. Then, we can say that gk reduces to296

• an additive term if and only if ητkMk(t, xk) = 0, and297

• a varying-coefficient term if and only if ητkFk(t, xk) = 0,298

for any (t, x) ∈ [0, 1]× [ak, bk], where [ak, bk] is the domain of βk(·).299

We now propose a regularized M-estimation method in which we penalize the300

L2-norm of M τ
k ηk and F τk ηk, for k = 1, ..., p. Denote the numbers of interior knots301

for αk and βk in the model identification procedure as ~CP and ~AP, respectively.302

Let η = (ητ0 , ..., η
τ
p )τ , where η0 is a {q + ~CP}-vector and ηk(k = 1, ..., p) is303

a {(q + ~CP)(q + ~AP − 1)}-vector. Suppose η̂ = (η̂τ0 , ..., η̂
τ
p )τ minimizes the304

following problem:305

n∑
i=1

1

ni

ni∑
j=1

ρ
(
yij − ητ0bC(tij)−

p∑
k=1

xijk{1,Bτ
k,AP(xk)} ⊗ {1,Bτ

CP(t)}ηk
)

+ n

p∑
k=1

pλ1
(‖M τ

k ηk‖L2
) + n

p∑
k=1

pλ2
(‖F τk ηk‖L2

).

(4.1)

The product term αk(t)βk(xk) in (1.1) then becomes an additive term if ‖M τ
k η̂k‖L2

306

is close to zero (e.g., no larger than 10−4), and becomes a varying-coefficient term307

if ‖F τk η̂k‖L2
is close to zero.308

There are various ways to specify the penalty function pλ(·) ( Tibshirani ,309

1996; Fan and Li , 2001; Zou , 2006). We adopt the smoothly clipped absolute310
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deviation (SCAD) penalty function, and use the locally quadratic approximation311

(LQA) algorithm proposed by Fan and Li (2001).312

Let IA and IV be the index sets of additive terms and varying-coefficient313

terms, respectively, in VCAM (2.1). Denote %n = ~−rP +
√
κP/n, with ~P =314

~AP ∧ ~CP and κP = ~2
P/N̄H.315

Theorem 6 demonstrates the consistency of the model identification proce-316

dure.317

Theorem 6. Suppose that Assumptions A1–A5, M1 and M2, or N1 and N2318

hold.319

(i) If λ1 → 0,
√
%n/λ1 → 0, and lim infn→∞ lim infw→0+ p

′
λ1

(w)/λ1 = 1, then320

M τ
k (t, xk)η̂k = 0 ∀k ∈ IA with probability approaching unity.321

(ii) If λ2 → 0,
√
%n/λ2 → 0, and lim infn→∞ lim infw→0+ p

′
λ2

(w)/λ2 = 1, then322

F τk (t, xk)η̂k = 0 ∀k ∈ IV with probability approaching unity.323

5. Implementation Issues324

In this section, we address several practical problems related to the selection325

of smoothing parameters and tuning parameters in our methods. As is common326

practice in the spline literature, we select the number of interior knots using a327

data-driven method (i.e., the Bayes information criterion; BIC), and position the328

knots at equal intervals on the sample quantiles.329
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• Selecting the optimal number of interior knots (~C, ~A).330

The optimal number of interior knots (~̂C, ~̂A) in the Step-I estimation331

minimizes the following BIC function:332

BIC1(~C, ~A) = log
( 1

n

n∑
i=1

1

ni

ni∑
j=1

ρ(σ̂ij,1)
)

+
logN

2N
N1,

where σ̂ij,1 = yij − γ̂τ0 bC(tij)−
∑p

k=1 γ̂
τ
kTk(tij , xijk) and N1 = (q+ ~C)(1 +333

p(q + ~A − 1)).334

• Selecting the optimal number of interior knots (KA,KC).335

The optimal number of interior knots (K̂A, K̂C) in Steps II and III mini-336

mizes337

BIC2(KA,KC) = log
( 1

n

n∑
i=1

1

ni

ni∑
j=1

ρ(σ̂ij,2)
)

+
logN

2N
N2,

where σ̂ij,2 = yij − α̂0(tij) −
∑p

k=1 α̂k(tij)β̂k(xijk) and N2 = p(q + KA −338

1) + (p+ 1)(q +KC).339

• Selecting the optimal tuning parameters (λ1, λ2).340

We use the optimal number of interior knots (~̂C, ~̂A) and the optimal341

tuning parameters (λ̂1, λ̂2) that minimize the following BIC:342

BIC3(λ1, λ2) = log
( 1

n

n∑
i=1

1

ni

ni∑
j=1

ρ(σ̂ij,3)
)

+
logN

2N
N3,
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where σ̂ij,3 = yij−η̂τ0bCP(tij)−
∑p

k=1 xijk{1,B
τ
k,AP(xijk)}⊗{1,Bτ

CP(tij)}η̂k343

and N3 = mL + {q+ ~̂C}{mC + 1}+mA{q+ ~̂A− 1}+ {q+ ~̂C}{q+ ~̂A−344

1}{p−mL−mC−mA}, with mL linear terms, mA additive terms, and mC345

varying-coefficient terms.346

6. Numerical Studies347

Simulation examples are used to investigate the finite-sample performance348

of the proposed three-step M-estimation method and model identification proce-349

dure. Empirical examples are then presented to illustrate the usefulness of our350

method in practice.351

6.1. Simulation studies352

Example 1. A VCAM with repeated measurements is generated as follows:353

yij = α0(tij) + α1(tij)β1(xij) + wi(tij) + eij , i = 1, ..., n; j = 1...,m,

where tij are independent and identically distributed (i.i.d.) copies from U(0, 1),354

and xij = 0.8t2ij+ηij , with ηij drawn independently from N
(
0, (1+tij)/(2+tij)

)
.355

The subject-specific random trajectories wi(i = 1, ..., n) are independent copies356

of a zero-mean stationary Gaussian process with covariance function γ(u) =357

0.35θ|u|, where θ = 0 and 0.5. The random noise eij are i.i.d. from four error358

distributions: the normal distribution N(0, 0.2), the mixed normal distribution359

0.95N(0, 0.2) + 0.05N(0, 12.52), and the scaled t distributions of 0.5 × t(2) and360

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0483



ROBUST INFERENCE FOR VCAMs 23

0.2 × t(1). The univariate component functions are given by α0(t) = cos (2πt),361

α1(t) = {2t sin (2πt) + 1}/
∫ 1

0 {2t sin (2πt) + 1}dt, and β1(x) = 1.5 sin (πx/2) −362

x(1− x)− E[1.5 sin (πX/2)−X(1−X)].363

Three loss functions are considered: the quadratic function ρ1(x) = x2, the364

absolute value function ρ2(x) = |x|, and the Huber function ρ3(x) = 0.5x2I|x|<δ,365

with δ = 1.345. We evaluate the performance of the three-step M-estimator using366

the MSE, which is defined as367

MSE(g) =
1

nm

n∑
i=1

m∑
j=1

[
ĝ(tij)− g(tij)

]2
,

where g is either αk or βk. To obtain an intuitive impression of the robustness

of the M-estimators, we define the weighted average squared error (WASE) as

WASE =
1

nm

n∑
i=1

m∑
j=1

{
[α̂0(tij)− α0(tij)]

2

[range(α0)]2
+

[α̂1(tij)− α1(tij)]
2

[range(α1)]2
+

[β̂1(xij)− β1(xij)]
2

[range(β1)]2

}
,

where range(f) denotes the range of a given function f .368

For n = 30 and m = 20, based upon 500 Monte Carlo replications, Figure 1369

shows the average WASE of the three-step M-estimators with the four error370

distributions and two types of intra-subject covariance structure. In this figure,371

1, 2, and 3 denote the least-squares estimator, median estimator, and Huber372

estimator, respectively. We also compare the average MSE (AMSE) in Table 1373

of the Supplementary Material. The results show that the Huber estimator and374

the median estimator perform similarly, regardless of which error distribution375

is adopted. In terms of performance, they are comparable to the least-squares376
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estimators under normal error distributions, and are superior to the least-squares377

estimators under nonnormal error distributions. In addition, the influence of the378

intra-subject covariance structure is nonsignificant.379
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Figure 1: Box plot for the average WASE (AWASE) based on 500 Monte

Carlo replications; 1, 2, and 3 denote least-squares estimator, median esti-

mator, and Huber estimator, respectively.

Furthermore, we provide a graphical representation of the iterative Huber380

estimator under a mixed normal error distribution. Figure 2 shows the pointwise381

95% confidence intervals (CIs) of the Huber estimator based on the central limit382

theorem (CLT) (dotted lines), and the 95% CIs based on 500 wild bootstrap sam-383

plings (dash-dotted lines). The true component function (solid line) and Huber384
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Figure 2: Three-step M-estimators under mixed normal error distribution.

Solid line: true component function; dashed line: three-step M-estimator;

dotted lines: 95% CIs based on (3.4); dash-dotted lines: 95% CIs based on

500 wild bootstrap resamplings.

M-estimator (dashed line) are also given. The figures show that the two types of385

CIs are not significantly different, which motivates our claim that the bootstrap386

method is sound. However, we do not investigate the theoretical justification for387

that claim to avoid straying from the primary aim of this study. However, note388

that the true curves and the Huber estimators are very close, and both fall into389

the 95% CIs, indicating the rationality of the proposed estimation method. Un-390

der a normal error distribution, the least-squares-based CIs are shown in Figure 1391

of the Supplementary Material.392

We also investigate the average experience coverage probability (AECP) of393

the three-step M-estimator with a normal error distribution and a mixed normal394
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error distribution in Figures 2 and 3, respectively, of the Supplementary Material,395

which show that the pointwise CLT-based CI performs well, even in the presence396

of a small proportion of outliers. In addition, Figure 4 in the Supplementary397

Material compares the AECP of the component functions under a more general398

sampling plan, namely, that of sparse observations for some subjects, and dense399

observations for other subjects. The results show that the more general sampling400

plan and a small proportion of outliers have no significant influence on the AECP401

of the component functions.402

Tables 2 and 3 in the Supplementary Material also compare the average403

of MSE (AMSEs) of the iterative M-estimator under different combinations of404

(n,m), with n = 20, 40 and m = 20, 30. We conclude that, as the total num-405

ber of observations grows, the AMSE decreases for a normal error distribution,406

regardless of which loss function is used. For nonnormal error distributions, the407

AMSEs of the estimators based on the loss functions ρ2 and ρ3 decrease, but the408

least-squares estimator shows no significant improvement as the total observation409

size grows.410

The numerical example considered in Section S1.2 of the Supplementary411

Material investigates the finite-sample performance of the model identification412

procedure. As expected, the results given in Tables 4 and 5 of the Supplementary413

Material verify our asymptotic theories and demonstrate the robustness of the414
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model identification.415

6.2. Analysis of real data416

Example 2. We now apply our method to CD4 data from the Multicenter AIDS417

Cohort Study, which contain 2,376 observations from 369 men infected with HIV.418

Zhang, Park, and Wang (2013) analyzed this data set using the time-varying419

AM yij = µ0(tij)+
∑2

k=1 µk(tij , xijk)+wij +eij . Following their work, we choose420

two covariates: X1 (age), the age at seroconversion (time-invariant variable); and421

X2 (cesd), the level of depression, which is recorded over time (in years).422

Employing the separability test proposed by Hu, Huang, and You (2018),423

we obtain a p-value of 0.84, which means the VCAM (2.2), a submodel of the424

time-varying AM introduced by Zhang, Park, and Wang (2013), is sufficient425

for this data set. Under loss function ρ3 in Example 1, we select optimal knots426

(~̂C, ~̂A, K̂C, K̂A) = (2, 2, 4, 3) using the BIC given in Section 5. Then, we obtain427

the optimal tuning parameters (λ̂1, λ̂2) = (3.06, 1.56), which are selected from428

[0.01, 5], with spacing 0.05. Based on the resulting optimal parameters, we obtain429

the penalized estimators. Thus, we conclude that α1 and α2 are time-variant and430

that β1 and β2 are nonlinear.431

The Huber estimator and the 95% CIs of the univariate component functions432

are presented in Figure 3, from which we conclude that the overall mean functions433

α0 and α1 for X1 (age) are monotonically decreasing, and that α2 for X2 (cesd)434
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is a bimodal function. For a fixed time, the effect of age on the CD4 count435

increases until around age = 12, after which it decreases. However, the effect of436

depression on the CD4 count decreases rapidly before cesd = 5, then increases437

until around cesd = 25, after which it decreases. The plot of the residuals in438

Figure 3(f) shows that our regression method is appropriate for this data set.439

Figure 6 in the Supplementary Material shows the estimated surfaces of the440

bivariate function gk(t, xk) = αk(t)βk(xk), for k = 1, 2.441
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Figure 3: Three-step M-estimators for CD4 data set. Solid line: three-

step M-estimators; dash-dotted lines: 95% CIs based on (3.4); (f) plots the

scaled residuals relative to the fitted values.
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Example 3. In this example, we consider a real diffusion-weighted imaging442

data set, with n = 213 subjects collected from the NIH Alzheimer’s Disease Neu-443

roimaging Initiative (ADNI) study. The observed response process is a fractional444

anisotropy (FA) curve at all 83 grid points along the skeleton of the midsagittal445

corpus callosum. Here, we want to explore the relationship between FA (Y ) and446

three covariates: (i) the age of the subject (X1); (ii) their educational level (X2);447

and (iii) the result of the ADNI Mini-Mental State Exam (X3). Luo, Zhu, and448

Zhu (2016) and Li, Huang, and Zhu (2017) analyzed this data set using a single-449

index VCM and a functional varying-coefficient single-index model, respectively.450

The two models both assume linear covariate effects with varying coefficients451

and/or nonlinear covariate effects only through the linear combination of the co-452

variates with varying coefficients. However, the linear effect is a somewhat strict453

constraint in practical applications. Furthermore, we are interested in the func-454

tion effect of each predictor on the response process, including the linear effect455

as its special case. Therefore, we apply a VCAM to this data set.456

Employing the proposed model identification procedure, we claim that the457

varying-coefficient functions are all time-variant, and that the additive functions458

are all nonlinear. Figure 4 shows the Huber estimators of the univariate com-459

ponent functions and the 95% pointwise CIs based on (3.4). Figure 4(e)–(g)460

show how the covariates affect the response process: the effect of age increases461
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initially, then decreases before the average age, and subsequently increases; the462

effect of educational level increases gently before the average educational level,463

then decreases, and finally increases; the effect of the ADNI Mini-Mental State464

Exam decreases until nearly the average value, and then increases. The estimat-465

ed bivariate functions gk(t, xk) = αk(t)βk(xk), for k = 1, 2, 3, are presented in466

Figure 10 of the Supplementary Material, which shows the dynamic effects of the467

covariates. The Q–Q plot shows that our regression method is appropriate for468

this data set.469
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Figure 4: Estimated univariate component functions for ADNI data. Solid

line: three-step M-estimator; dash-dotted lines: 95% CIs based on (3.4).

An analysis of the cigarette data mentioned in Section 1 shows that a reduced470
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VCAM is preferable. Details are given in Section S1.6 of the Supplementary471

Material.472

7. Conclusion473

The VCAM proposed by Zhang and Wang (2015) is a flexible structural474

nonparametric regression method that includes the classical VCM and AM as475

special cases. In this study, we developed an M-type robust regression method476

for this VCAM to enable analyses of longitudinal data and functional data, which477

may include sparse or dense repeated measurements for the selected subjects, and478

both the response and the covariates may be smooth processes that depend on479

the observation time.480

We have proposed spline-based three-step M-estimators for varying-coefficient481

component functions and additive component functions. The asymptotic proper-482

ties are considered for sparse and dense data within a unified framework, which483

separates these data based on the relative order of ni to n. Similarly to Hu,484

Huang, and You (2018), the proposed estimation method exhibits the oracle485

property in that the iterative estimation procedure does not cause additional486

asymptotic errors.487

To select as parsimonious a model as possible, we have also developed a model488

identification procedure based on the SCAD penalty function. Here, we showed489

that the proposed model identification method correctly selects an additive term490
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and a varying-coefficient term with probability approaching unity.491
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Appendix500

Let Cr[a, b] be the space of all functions m(x) defined on [a, b] such that the501

(r − 1)-order derivative m(r−1)(·) is continuous over [a, b], and502

∣∣m(r−1)(x)−m(r−1)(x′)
∣∣ ≤ C|x− x′|, ∀ x, x′ ∈ [a, b],

where C is a positive constant. The necessary conditions for the asymptotic503

results are listed below.504

• Basic assumptions.505

(A1) The time points {tij} are independent copies of T , whose probabil-506

ity density function fT (·) is uniformly bounded away from zero and507

infinity.508

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0483



ROBUST INFERENCE FOR VCAMs 33

(A2) The marginal density function fk(·) of Xk is uniformly bounded away509

from zero and infinity over the support set Sk of Xk. The joint510

density fX,T (x, t) of X and T is uniformly bounded away from zero511

and infinity on (x, t) ∈
∏p
k=1 Sk × [0, 1].512

(A3) αk ∈ Cr[0, 1] and βk ∈ Cr[ak, bk], where 1 ≤ r ≤ q and ak, bk are513

finite real numbers for k = 1, ..., p.514

(A4) The function φ(·) = ρ′(·) satisfies E[φ(εij)|tij = t] = 0 and E[φ2(εij)|tij =515

t] ≤ C1 for any t ∈ [0, 1], where C1 is a positive constant.516

(A5) There exists some positive constant λ̃ such that the smallest eigen-517

value λi1 of Gi = E[φ(εi)φ(εi)
τ |J ] satisfies λi1 ≥ λ̃ > 0.518

• Assumptions for convex loss function.519

(M1) The loss function ρ(·) is convex, and there exist some function $(t)520

and positive constants c1 and C2 such that521

|E[φ(εij + u)|tij = t]−$(t)u| ≤ C2u
2

for any |u| ≤ c1 and t ∈ [0, 1]. Moreover, $(t) satisfies 0 < c$ ≤522

mint∈[0,1]$(t) ≤ maxt∈[0,1]$(t) ≤ C$ <∞.523

(M2) There exist positive finite constants c2, C3, and C4 such that524

E[{φ(εij + u)− φ(εij)}2|J ] ≤ C3|u|
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and |φ(u+ v)− φ(v)| ≤ C4 for any |u| ≤ c2, t ∈ [0, 1], and v ∈ R.525

• Assumptions for non-convex loss function.526

(N1) The function φ(·) is continuous and has a derivative φ′(·) almost527

everywhere. Furthermore, φε(t) = E[φ′(εij)|tij = t] is positive and528

continuous at t.529

(N2) E
[

sup‖z‖≤δ |φ(εij + z)− φ(εij)− φ′(εij)z|tij = t
]

= o(δ) as δ → 0.530

Remark 4. Assumptions A1 and A2 relate to the distributions of time points531

tij and covariates xij . Assumption A3 specifies the degree of smoothness of532

varying-coefficient component functions and additive component functions. As-533

sumptions A4, M1, and M2 are standard assumptions about the score function534

φ of a convex loss function; see He, Zhu, and Fung (2002); Tang and Cheng535

(2008) for details. Assumptions N1 and N2 are necessary for a non-convex loss536

function; see Fan and Jiang (2000); Jiang and Mack (2001).537

Supplementary Material538

The online Supplementary Material includes additional numerical studies,539

an iterative algorithm for penalized M-estimators, and proofs of the asymptotic540

results.541
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