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Abstract:

Deep neural networks (DNNs) have recently demonstrated an excellent performance on many chal-

lenging tasks. However, overfitting remains a significant challenge in DNNs. Empirical evidence

suggests that inducing sparsity can relieve overfitting, and that weight normalization can accelerate

the algorithm convergence. In this study, we employ L1,∞ weight normalization for DNNs with

bias neurons to achieve a sparse architecture. We theoretically establish the generalization error

bounds for both regression and classification under the L1,∞ weight normalization. Furthermore,

we show that the upper bounds are independent of the network width and the
√
k-dependence on

the network depth k, which are the best available bounds for networks with bias neurons. These

results provide theoretical justifications for using such weight normalization to reduce the gener-

alization error. We also develop an easily implemented gradient projection descent algorithm to

practically obtain a sparse neural network. Finally, we present various experiments that validate

our theory and demonstrate the effectiveness of the resulting approach.

Key words and phrases: Deep neural networks, Generalization, Overfitting, Rademarcher complex-

ity, Sparsity.
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1. Introduction

Deep neural networks (DNNs) have recently attracted attention as a result of several

successful real-word applications (Goodfellow et al., 2016). On the one hand, advance-

ments in stochastic gradient descent (SGD) and graphical processing units (GPUs) have

made it possible to scale DNN training to millions of parameters (Krizhevsky et al., 2012;

Jaderberg et al., 2015; Szegedy et al., 2015). On the other hand, overfitting is a significant

problem in DNNs, leading to poor generalization. Recent works (Han et al., 2016; Louizos

et al., 2017; Molchanov et al., 2017) have shown that the networks can be pruned signifi-

cantly without loss in accuracy. At the same time, other methods have been developed to

address the issue of overfitting, including early stopping, weight penalties such as L1 and

L2 regularizations, weight sharing (Nowlan and Hinton, 1992), and dropout (Srivastava

et al., 2014).

Empirical evidence suggests that inducing sparsity can relieve overfitting and save

computation resources. A common strategy is to apply a sparsity-inducing regularizer

such as the L0 penalty (Louizos et al., 2018) or the total number of parameters in the

network (Srinivas et al., 2017). However, few theoretical investigations or justifications

on sparse DNNs appear in the literature.

Weight normalization, by bounding the Euclidean norm of the incoming weights of

each unit, has been shown to accelerate the convergence of SGD optimization across many

applications (Salimans and Kingma, 2016). As such, we employ weight normalization
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Sparse DNNs 3

and induce sparsity by bounding the L1,∞ norm of the weight matrix (including bias) for

each layer. By doing so, we induce sparsity in a systematic way. Furthermore, we have

developed capacity control for such models. We show that the generalization error upper

bounds are independent of the network width and the
√
k-dependence on the depth k of

the network, which are the best available bounds for networks with bias neurons. Our

results provide theoretical justifications for using weight normalization, which leads to a

sparse DNN. At the same time, the generalization error has minimal dependence on the

network architecture. L1,∞ norm-constrained fully connected DNNs without bias neurons

have been investigated in prior studies (Bartlett, 1998; Neyshabur et al., 2015; Sun et al.,

2016; Golowich et al., 2018). The Rademacher complexity bounds in (Bartlett, 1998;

Neyshabur et al., 2015; Sun et al., 2016) are 2k times larger than our result in Theorem

1, even without the bias neurons in each hidden layer. Furthermore, it is difficult to

extend the work of (Golowich et al., 2018) to include fully connected DNNs with bias

neurons, especially when the activation function, such as the tanh activation function,

fails to map the bias neuron to one. As a comparison, our result is applicable to all

Lipschitz-continuous activation functions.

This study contributes to the literature in three ways. First, we theoretically es-

tablish the generalization error bounds for both regression and classification under L1,∞

weight normalization for networks with bias neurons. Second, we develop an easily im-

plemented gradient projection descent algorithm to practically obtain a sparse neural
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network. Third, we perform various experiments to validate our theory and demonstrate

the effectiveness of the resulting approach.

The remainder of the paper is organized as follows. In Section 2, we define sparse

DNNs. Section 3 gives the Rademacher complexities, the generalization bounds for both

regression and classification. In Section 4, we propose a gradient projection descent

algorithm. Section 5 includes both synthetic and real-world experiments that validate

our theoretical findings.

2. The Model

In this section, we define the general prediction problem and introduce sparse DNNs.

2.1 The General Prediction Problem

Assume that x1, . . . ,xn are n independent random variables on X ⊆ Rm1 , z1, . . . ,zn are

on Z ⊆ Rm2 , y1, . . . , yn are on Y ⊆ R, and the noise ε1, . . . , εn are independent, while

satisfying that E(εi) = 0. The general prediction problem is defined as

zi = f(xi) + εi

yi = t(zi),

(2.1)

where t : Z → Y is a fixed function related to the prediction problem, and f : X → Z

is an unknown function. We provide two examples to show how to adapt equation (2.1)

to different settings. For a regression, we have m2 = 1, Z = Y , and t(z) = z. For
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a classification, we can define m2 as the number of classes, Y = {1, 2, · · · ,m2}, and

t = argmax.

2.2 Overfitting

We first provide a formal definition of overfitting. Let L(f(·), ·) : X × Y → R be the loss

function. Define the expected and empirical risks, respectively, as

EL(f) = E
(x,y)∼D[L(f(x), y)], ÊL(f) =

1

n

n∑
i=1

L(f(xi), yi),

whereD is the underlying distribution of (x, y). In practice, the empirical risk corresponds

to the training error, and the expected risk corresponds to the testing error. In general,

a learning algorithm is said to overfit if it is more accurate in fitting known data, but less

accurate in predicting new data. Mathematically, the difference between the expected

risk and the empirical risk, called generalization error, is a measure of how accurately an

algorithm is able to predict outcome values for previously unseen data. Let

EL(f) =
∣∣∣ EL(f)− ÊL(f)

∣∣∣.
The performance of a DNN relies on the balance between the empirical risk and the

generalization error. On the one hand, complex structures usually overfit the data, while

achieving a low empirical risk. On the other hand, simple models generalize well, but

might underfit the data. In practice, it is common to use a neural net with billions of

parameters (e.g., Simonyan and Zisserman (2015)), with the training error even reducing
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to zero in many cases. Thus, we focus on the generalization error only.

Our goal is to control the generalization error EL(f), making it less sensitive to the

network architecture when adopting a DNN model. This generalization error bound can

be studied using the Rademacher complexity and the techniques in Mohri et al. (2012).

Under some mild conditions, it is sufficient to bound the Rademacher complexity in order

to control the generalization error. Here, we establish non-asymptotic uniform error

bounds for EL(f) when f is a sparse DNN. These bounds have minimal dependence on

the network structure.

2.3 Sparse DNNs

We begin with some notation for fully connected neural networks. A neural network on

Rd0 → Rdk+1 with k hidden layers is defined by a set of k + 1 affine transformations

T1 : Rd0 → Rd1 , T2 : Rd1 → Rd2 , · · · , Tk+1 : Rdk → Rdk+1 and an activation function

σ. In this paper, we consider activation functions satisfying σ(0) = 0. Note that this

condition holds for widely used activation functions, including ReLU and tanh. The

affine transformations are parameterized by T`(u) = W T
` u + B`, where W ` ∈ Rd`−1×d`

and B` ∈ Rd` , for ` = 1, · · · , k + 1. The function represented by this neural network is

f(x) = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x.

Before introducing sparse DNNs, we build an augmented layer for each hidden layer

by appending the bias neuron 1 to the original layer, and then combining the weight
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matrix and the bias vector to form a new matrix. We define the first hidden layer as

f1(x) = T1 ◦ x , 〈Ṽ1, (1,x
T )T 〉,

where Ṽ1 = (B1,W
T
1 )T ∈ R(d0+1)×d1 .

Sequentially, for ` = 2, · · · , k, define the `th hidden layer as

f`(x) = T` ◦ σ ◦ f`−1(x) , 〈Ṽ`, (1, σ ◦ fT`−1(x))T 〉,

where Ṽ` = (B`,W
T
` )T ∈ R(d`−1+1)×d` . The output layer is

f(x) = Tk+1 ◦ σ ◦ fk(x) , 〈Ṽk+1, (1, σ ◦ fTk (x))T 〉,

where Ṽk+1 = (Bk+1,W
T
k+1)

T ∈ R(dk+1)×dk+1 .

The sparsity of the DNN is controlled by setting proper constraints for the L1,∞ norm

of each hidden layer, where the L1,∞ norm of a s1 × s2 matrix A is defined as

‖A‖1,∞ = max
j

(
s1∑
i=1

|aij|

)
.

Specifically, define SN k,d,σ
c,o as the collection of all sparse DNNs f(x) = Tk+1 ◦ σ ◦ Tk ◦

· · · ◦ σ ◦ T1 ◦ x satisfying the following:

(a) It has k hidden layers.

(b) The number of neurons in the `th hidden layer is d`, for ` = 1, 2, · · · , k. The

dimension of the input is d0, and that of the output is dk+1.
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(c) ‖T`‖1,∞ ,
∥∥∥Ṽ`

∥∥∥
1,∞
≤ c, for ` = 1, · · · , k.

(d) The L1 norm of the jth column of Ṽk+1 is bounded by the jth element of o:∥∥∥Ṽk+1[·, j]
∥∥∥
1
≤ oj for j = 1, · · · , dk+1.

We call c the normalization constant in the rest of the paper. Furthermore, define

the collection of sparse DNNs without any constraint on the output layer as

Sk,d,σc = ∪o≥0SN k,d,σ
c,o .

In order to obtain a sparse neural network, we need to transform our understanding

of a problem into a loss function L(·, ·). Then, it is equivalent to solving the optimization

problem

min
f

{
n∑
i=1

L(f(xi), yi)
∣∣∣f ∈ Sk,d,σc

}
, (2.2)

where (x1, y1), · · · , (xn, yn) ∈ Rm1×1 are samples, k and d define the depth and width,

respectively, of the DNN, and the normalization constant c controls the sparsity. We

focus on the influence of c on the generalization behavior and sparsity of the DNN, and

provide generalization bounds for sparse DNNs with unconstrained output layers.

3. The Learning Theory

In this section, assume that X = [−1, 1]m1 and the activation function σ is ρσ -Lipschitz

continuous. Note that ReLU and tanh are both 1-Lipschitz continuous.

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0468



3. THE LEARNING THEORY9

3.1 Rademacher Complexities

The empirical Rademacher complexity of the hypothesis class F with respect to a data

set S = {z1 . . . zn} is defined as

R̂S(F) = Eε

[
sup
f∈F

(
1

n

n∑
i=1

εif(zi)

)]
,

where ε = {ε1 . . . εn} are n independent Rademacher random variables. The Rademacher

complexity of the hypothesis class F with respect to n samples is defined as

Rn(F) = E
S∼Dn

[
R̂S(F)

]
.

In the following theorem, we bound the Rademacher complexity of SN k,d,σ
c,o when the

output dimension is one. This is used later to obtain the generalization bounds for both

regression and classification.

Theorem 1. Fix the depth k ≥ 0, the normalization constant c > 0, the output layer

constraint o > 0, the widths d` ∈ N+, for ` = 1, · · · , k, and dk+1 = 1. Then for any set

S = {x1, · · · ,xn} ⊆ X , we have

R̂S(SN k,d,σ
c,o ) ≤ o

√
(k + 1) log 16

n

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ o(cρσ )k

√
2 log(2m1)

n
.

Furthermore, if cρσ ≥ 1,

R̂S(SN k,d,σ
c,o ) ≤ 1√

n
o(cρσ )k(

√
(k + 3) log 4 +

√
2 log(2m1)).

Remark 1. When log(m1) is small, we briefly summarize the dependence of the above

bound on k under different choices of c:
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• cρσ < 1: O(
√
k
1−(cρσ )k+1

1−cρσ
)

• cρσ ≥ 1: O(
√
k(cρσ )k).

The complexity bound does not depend on the width of the network. In addition to the

product of the L1,∞ norms of each layer, the complexity bound depends on the depth k

by O(
√
k) when cρσ < 1, and

√
k(cρσ )k otherwise.

3.2 Generalization Bounds for Regression

In this section, consider a specific case of equation (2.1), where t is an identity transfor-

mation, and m2 = 1. Assume the following conditions in this section:

(A1). (x, y) is a random variable of support X×Y and distributionD, and S = {(xi, yi)}ni=1

is a data set of n independent and identically distributed (i.i.d.) samples drawn from

D.

(A2). The normalization constant c > 0, the number of hidden layers k ∈ [0,∞), and the

widths d ∈ Nk+2
+ , with d0 = m1 and dk+1 = 1.

(A3). The loss function L(f(x), y) is 1-Lipschitz continuous on its first argument. In

addition, |L(f(x), y)| ≤ 1.

The following theorem shows the generalization bound that holds uniformly for any

sparse DNN in Sk,d,σc . Note that the sample S = {(xi, yi)}ni=1 is a data set randomly
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drawn from D, and that the following statement holds with high probability over the

choice of the sample S.

Theorem 2. Assume Conditions (A1)–(A3) hold and cρσ ≥ 1. Fix δ ∈ (0, 1). Then,

with probability at least 1− δ over the choice of the sample S, for every sparse DNN

fT ∈ Sk,d,σc , we have

EL(fT ) ≤

√
log(2

δ
) + 2 log(‖Tk+1‖1 + 2)

2n
+

2√
n

(‖Tk+1‖1 + 1)(cρσ )k(
√

(k + 3) log 4 +
√

2 log(2m1)).

(3.1)

Remark 2. The upper bound is a summation of

√
log( 2

δ
)+2 log(‖Tk+1‖1+2)

2n
and 2√

n
(‖Tk+1‖1+

1)(cρσ )k(
√

(k + 3) log 4 +
√

2 log(2m1)). Both terms depend on the sample size n by

n−1/2. Note that the L1 norm of the output layer ‖Tk+1‖1 is data-dependent. In addition,

the first term depends on the probability 1− δ by
√

log(1/δ). The second term depends

on the depth by
√
k(cρσ )k, and the input dimension by

√
logm1. The case when cρσ < 1

is discussed in the Supplementary Material.

Remark 3. Define the truncated mean squared error and the truncated mean absolute

error by

LS(f(x), y) = min

((
y − f(x)

2

)2

, 1

)
and

LA(f(x), y) = min (|y − f(x)| , 1) ,
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respectively. It is easy to verify that both loss functions satisfy Condition (A3). Thus,

we can apply Theorem 2 to both cases.

Remark 4. Condition (A3) is not always met in practice. It can be relaxed by assuming

that the loss function L(f(x), y) is B0-Lipschitz continuous on its first argument and

|L(f(x), y)| ≤ B0, where B0 is a constant. The generalization error can still be bounded

by applying Theorem 2 to the loss function L/B0.

3.3 Generalization Bounds for Classification

In this section, we consider the case of equation (2.1) when t = argmax and Y =

{1, 2, · · · ,m2}. In the rest of the paper, we define the jth element of a vector z by

z[j]. In this subsection, assume the following conditions:

(B1). (x, y) is a random variable of support X×Y and distributionD, and S = {(xi, yi)}ni=1

is a data set of n i.i.d. samples drawn from D.

(B2). The normalization constant c > 0, the number of hidden layers k ∈ [0,∞), and the

widths d ∈ Nk+2
+ , with d0 = m1 and dk+1 = m2.

The cross-entropy loss function is defined as

LC(f(x), y) = − log
exp(f(x)[y])∑
j exp f(x)[j]

.

We extend this to sparse DNNs with unconstrained output layers. For any transformation

T (u) = V T (1,uT )T , define T [j] as V [, j]: the jth column of V .
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Theorem 3. Assume Conditions (B1)–(B2) hold and cρσ ≥ 1. Fix δ ∈ (0, 1). Then,

with probability at least 1− δ over the choice of S, every fT ∈ Sk,d,σc satisfies that

ELC (fT ) ≤ O

(
(cρσ )k
√
n
‖Tk+1‖1,∞

[√
log

1

δ
+
‖Tk+1‖1,1
‖Tk+1‖1,∞

√
m2(
√
k +

√
logm1)

])
, (3.2)

where ‖T‖1,1 =
∑
i

∑
j

|vij|, if T (x) = 〈V, (1,x)〉.

Remark 5. The upper bound is the product of (cρσ )k ‖Tk+1‖1,∞ /
√
n and√

log
1

δ
+
‖Tk+1‖1,1
‖Tk+1‖1,∞

√
m2(
√
k +

√
logm1).

The first term includes (cρσ )k ‖Tk+1‖1,∞, which reflects the range of the neural network

fT . The second term is the summation of
√

log 1
δ

and
‖Tk+1‖1,1
‖Tk+1‖1,∞

√
m2(
√
k+
√

logm1), where

1− δ, k, m1, and m2 are the probability, depth, input dimension, and number of classes,

respectively. The case when cρσ < 1 is discussed in the Supplementary Material. Under

this assumption, the generalization bound relies on cρσ by O(
1−(cρσ )k+1

1−cρσ
).

Our theoretical results can be easily extended to convolutional neural networks (CNNs),

because a CNN can be viewed as a neural net with a sparse structure. Note that our

generalization bound is independent of the widths of the neural network. When applying

our results to CNNs, the bound does not depend on the number of kernels, which could

number in the thousands in practice. In addition, it would be interesting to extend our

theoretical results to residual neural networks.
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Algorithm 1 Gradient Projection Descent Algorithm

In each iteration:

Input: Ṽ
(t)

= (Ṽ
(t)

1 , · · · , Ṽ
(t)

k )

for all ` = 1, . . . , k do

Ṽ
(t+1)

` := Ṽ
(t)

` − γt∇L(Ṽ
(t)

` ),

where γt is the stepsize at iteration t

for all columns v in V
(t+1)
` do

if ‖v‖1 > c then

v = proj‖·‖1≤cv by Algorithm 2

end if

end for

end for

Output: Ṽ
(t+1)

= (Ṽ
(t+1)

1 , · · · , Ṽ(t+1)

k )

4. The Algorithm

In this section, we propose a gradient projection descent algorithm to solve the opti-

mization problem given in equation (2.2).

Recall that for a neural network f(x) = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x with T`(u) =

Ṽ
T

` (1,uT )T , we have f ∈ Sk,d,σc if and only if

∥∥∥Ṽ`

∥∥∥
1,∞
≤ c ∀` or

∥∥∥Ṽ`[·, j]
∥∥∥
1
≤ c ∀ `, j.
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Algorithm 2 Projection to L1 norm ball (Duchi et al., 2008)

Input: v ∈ Rs, c

Sort abs(v) into µ : µ1 > µ2 > · · · > µs

Find p∗ = max{p ∈ [s] : µp − 1
p
(
∑p

q=1 µq − c) > 0}

Define θ = 1
p∗

(
∑p∗

q=1 µq − c)

Output: w s.t. wp = sgn(vp) ·max{abs(vp)− θ, 0}

One idea is to solve the Lagrangian of equation (2.2) using a proximal minimization

algorithm. However there is no closed form for the proximal operator with the L1,∞

norm. Another idea is to directly solve the constrained optimization problem using a

gradient projection descent algorithm. In this case, the projection to an L1 norm ball can

be implemented efficiently, while inducing the sparsity of its output (Duchi et al., 2008).

Our gradient projection descent algorithm can be implemented as a variation of any

gradient descent method, as shown in Algorithm 1. In each iteration of the original

gradient descent method, we project its output to the sparse DNN function class using

Algorithm 2. Note that the uniform convergence of the empirical risk to the true risk

holds for any hypothesis defined in Theorems 2 and 3. Therefore, it also applies to the

gradient projection descent algorithm output.
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5. Numerical Results

In this section, we validate our theorem using both simulated and real-data experiments.

We first design two synthetic experiments to demonstrate the theoretical advantage of

sparse DNNs. In paritcular, we illustrate the power of L1,∞-weight normalization for

high-dimensional problems. Furthermore, we apply our algorithm to convolutional layers,

and validate our theoretical findings on CIFAR-10 data sets. For each setting, we measure

the training error, generalization error, test accuracy, and model sparsity in order to

demonstrate the influence of c on the generalization ability and the sparsity of the model.

Recall that the generalization error is the difference between the training error and the

test error. Note that we do not have access to the underlying distribution of the input x

and the output y. Thus, the generalization error refers to the empirical loss on the test

set in all experiments. Furthermore, the test accuracy is the classification accuracy for

the test data. The sparsity rate is the ratio of the number of zero parameter estimates to

the size of the weight matrices. In this section, we use the format d0 − d1 − · · · − dk+1 to

define the architecture of a neural network, where k is the number of hidden layers, d0 is

the input dimension, dk+1 is the output dimension, and di denotes the number of neurons

in the ith hidden layer.

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0468
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5.1 The Regression Experiment

We evaluate our algorithm on a high-dimensional linear regression problem y = xTβ+ ε,

where the coefficient β is a sparse vector. We sample 500 random samples (xi, yi) ∈

R1000 × R, i = 1, · · · , 500 for training, and 1500 samples for testing from the distribution

below.

1. Generate the coefficient β by βi ∼ Unif(0.15, 150), for i = 1, · · · , 100, setting the

rest of β to zero.

2. For ∀i, first independently sample an auxiliary variable zi ∈ R1000 from N(0, I).

Then, generate xi by xi1 = zi1, and xij = zij+0.2(zi,j+1+zi,j−1), for j = 2, · · · , 1000.

Finally, sample yi from N(xTi β, 1)

Note that we make the high-dimensional problem more challenging in the presence of

multicollinearity. We train the model with one fully connected layer and 300 output units

using ReLU, and the loss function is the mean square error. We summarize the results in

Table 1, which are estimated using the mean of 10 repeated trials.

As shown in Figure 1a and Figure 1b, as c increases, the weight matrices become

denser and the generalization error increases, which matches the conclusion of Theorem

2.

When c =∞, or equivalently with no regularization, the model fits the training data

perfectly, suffering from serious overfitting. This problem can be solved by applying L1,∞
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train err test err gen err sparsity %

c =∞ 0.000 69.520 69.520 3.02%

c = 10.00 0.000 35.571 35.571 41.58%

c = 2.00 0.052 8.129 8.077 61.42%

c = 1.00 0.131 2.424 2.426 84.69%

c = 0.90 0.173 2.424 2.251 87.62%

c = 0.80 0.197 2.384 2.186 89.80%

c = 0.70 0.235 2.334 2.099 91.09%

c = 0.60 0.252 2.247 1.994 91.78%

c = 0.50 0.286 2.140 1.854 93.33%

c = 0.40 0.387 2.209 1.822 93.88%

c = 0.30 0.850 2.526 1.675 94.18%

Table 1: Training error, test error, generalization error, and model sparsity for the regres-

sion experiment.
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(a) Generalization error vs. c. (b) Sparsity rate vs. c.

Figure 1: Box plots of the generalization error and sparsity rate for different c in the

regression experiment.

weight normalization with a proper c, because the test error decreases by more than 95%

if set c = 0.20.

5.2 The Classification Experiment

We first consider a high-dimensional nonlinear binary classification problem. We sample

500 random samples (xi, yi) ∈ R500×{0, 1}, i = 1, · · · , 500, for training, and 1000 samples

for testing from the distribution below:

1. Generate α ∼ N(0, 1).

2. For ∀i, independently sample xij, the jth element of xi, from N(α
2
, 1
4
), for j =
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train err gen err test acc(%) sparsity(%)

c =∞ 0.005 0.543 71.60 2.39

c = 1.00 0.016 0.624 83.50 66.71

c = 0.50 0.087 0.337 87.30 68.43

c = 0.30 0.053 0.297 88.40 90.78

c = 0.22 0.034 0.280 88.93 93.29

c = 0.19 0.046 0.273 89.10 94.53

c = 0.16 0.030 0.250 89.23 95.40

c = 0.13 0.077 0.177 89.93 96.60

c = 0.10 0.121 0.155 90.01 97.53

c = 0.07 0.207 0.102 90.12 98.98

c = 0.04 0.239 0.112 89.57 99.04

c = 0.01 0.265 0.068 88.48 99.49

Table 2: Training error, generalization error, test accuracy, and model sparsity for the

classification experiment.
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(a) Generalization error vs. c. (b) Sparsity rate vs. c.

Figure 2: Box plots of the generalization error and sparsity rate for different c in the

classification experiment.

1, · · · , 500, and

yi =


1, exi1 + x2i2 + 5 sin(xi3xi4)− 3 > 0

0, otherwise

.

We use a 500-100-50-20-2 fully connected neural network with ReLU, and the loss function

is cross entropy. We report the results in Table 2, which are estimated using the mean of

10 repeated trials.

As illustrated in Figure 2a, the generalization error decreases as c decreases, which

matches the conclusion of Theorem 3. Furthermore, the network becomes sparser with a

smaller c, which is evident in Figure 2b. However, there is a trade-off between approxi-

mation and generalization ability. A smaller c leads to a smaller generalization error. On

the other hand, a small c limits the expressive power of the neural network. For example,

decreasing c from 0.10 to 0.07 nearly doubles the training error. With no regularization,
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(a) L1,∞-weight normalization with c = 0.07. (b) With no regularization.

Figure 3: Visualization of the first 20 columns of the resulting weight matrix representing

the first hidden layer with/without L1,∞-weight normalization.

the model fits the training data perfectly, but performs poorly on the test data set. We

can improve the test accuracy by 19.4% using L1,∞ weight normalization with c = 0.07,

while the resulting weight matrix is much sparser, as shown in Figure 3. We also observe

that the first four columns of the resulting weight matrix are dense, while the others are

sparse. This is because only the first four elements of the input are included in the true

model.

5.3 CIFAR-10

We extend our method to CNNs in the second experiment. CIFAR-10 (Krizhevsky, 2009)

consists of 60000 32 × 32 color images in 10 classes. A small kernel size assumes local

sparsity; thus, it is not necessary to apply L1,∞ weight normalization to convolutional

layers with small kernel sizes. We use a modified VGG-16 to train the model, where

the first two 3× 3 convolutional layers are replaced by two 21× 21 convolutional layers.
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(a) Generalization error vs. c. (b) Sparsity rate vs. c.

Figure 4: Box plots of generalization error and sparsity rate for different c in the CIFAR-10

experiment.

Note that VGG-16 is the CNN model proposed by Simonyan and Zisserman (2015). We

perform 20-fold cross-validation to test the models’ ability to predict new data.

As shown in Figure 4b, when c increases, the network becomes denser. For example,

when c = 15, the connection is very sparse, because more than 95% of its elements are

learned to be zero. However, if we increase c from 15 to 45, the sparsity rate reduces

by almost 25%. Furthermore, Figure 4a indicates that picking a larger c might result in

poorer generalization. For instance, the generalization error doubles when c is increased

from 15 to 45. These observations match the conclusion of Theorem 3.

5.4 Selection of the Normalization Constant

The optimal normalization constant is chosen using k-fold cross-validation (Kohavi et al.,

1995; Tou and Gonzalez, 1974).
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Regularizer Cla. Exp MNIST CIFAR10

No 71.6 97.85 93.34

L1, λ = 0.1 50.0 13.87 48.32

L1, λ = 0.01 50.0 11.35 92.53

L1, λ = 0.001 81.6 97.33 93.43

L1, λ = 0.0001 73.2 97.99 93.64

L2, λ = 0.1 70.8 80.30 80.41

L2, λ = 0.01 73.4 92.30 90.38

L2, λ = 0.001 73.2 94.43 91.41

L2, λ = 0.0001 71.8 97.90 93.72

Dropout, rd = 0.5 73.5 98.11 93.42

Our Approach 91.0 98.03 93.75

Table 3: Comparison of different regularizations on the previous classification experiment,

MNIST, and CIFAR10. The bold results are the best two methods in each experiment.
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(a) Accuracy on test data set vs. c in the

classification experiment.

(b) Test error vs. c in the regression experi-

ment.

Figure 5: Examples of the selection of c

We give examples of selecting c for the regression and classification problems in Sec-

tions 5.1 and 5.2, respectively. As shown in Figure 5, we plot the average cross-validation

score against the normalization constant c in both experiments. Then, we choose the

optimal c that corresponds to the largest average cross-validation score.

5.5 Comparison with Other Regularizers

While establishing strong theoretical foundations for L1,∞ weight normalization, we show

that our method performs well in practice by comparing its performance with that of

popular regularization techniques, including L1, L2 (weight decay), and dropout regu-

larizations, on the previous classification example, MNIST, and CIFAR-10 in terms of

their classification accuracy. These additional experiments are not intended to show the
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supremacy of well-tuned neural network architectures, but rather to illustrate the compar-

ative performance of the L1,∞ weight normalization against that of other regularization

methods via a fair comparison. Therefore, we use simple architectures for demonstration.

In the MNIST experiment, the input image is resized to 784 × 1, and then passed to a

900-10 fully connected neural network with ReLU. The loss function is cross entropy.

By using L1 regularization with the hyperparameter λ, a penalty term λ
∑
‖W‖1,1 is

added to the original loss function, where W is the weight matrix. By implementing L2

regularization with the hyperparameter λ, a penalty term 1
2
λ
∑
‖W‖22,2 is added to the

original loss function. For each experiment, we compare different regularizers with various

hyperparameters using the same baseline model to ensure a fair comparison. We show in

Table 3 that our method is competitive with other methods with common regularizers.

6. Conclusion

We have developed a systematic framework for sparse DNNs using L1,∞ weight normaliza-

tion. We have established the Rademacher complexity of the related sparse DNN space.

Based on this result, we have derived generalization error bounds for both regression and

classification. The easily implemented gradient projection descent algorithm allows us

to obtain a sparse DNN in practice. In experiments, we have shown that the proposed

L1,∞ minimization process leads to neural network sparsification that is competitive with

current approaches, while empirically validating our theoretical findings.
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We have so far used a single c to control the sparsity of the network. It would be

interesting to extend the current framework to a network in which c varies by layer. This

poses additional challenges for the computation in terms of tuning the hyperparameters.

In other research, we are trying to use Bayesian optimization (Shahriari et al., 2016) to

automatically select these hyperparameters.

Supplementary Material

The online Supplementary Material provides proofs of the three main theorems and the

technical lemmas used to prove these theorems. In addition, we extend the classification

experiment in Section 5.2 to examine the effects of sample size and depth on generalization.

Finally, we show using an experiment that the projection gradient descent algorithm is

not sensitive to the initial step size.
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