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Abstract

The exact distribution is typically unavailable for a two-sample t-statistic in a

single test for equal population means if we have nonGaussian samples, unequal pop-

ulation variances, or unequal sample sizes n1 and n2. In this case, a calibration

method using a reference distribution offers a practically feasible substitute. This

study simultaneously calibrates a diverging number m of two-sample t-statistics for

inferences of significance in high-dimensional data from a small sample. For the

Gaussian calibration method, we demonstrate the following. First, the simultane-

ous “general” two-sample t-statistics achieve the overall significance level, as long as

log(m) increases at a strictly slower rate than (n1+n2)
1/3 as n1+n2 diverges. Second,

directly applying the same calibration method to simultaneous “pooled” two-sample t-

1

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0467



statistics may substantially lose the overall level accuracy. The proposed “adaptively

pooled” two-sample t-statistics overcome such incoherence, while operating as simply

and performing as well as the “general” two-sample t-statistics. Third, we propose a

“two-stage” t-test procedure to effectively alleviate the skewness commonly encoun-

tered in various two-sample t-statistics in practice, thus increasing the calibration

accuracy. Lastly, we discuss the implications of these results using simulation studies

and real-data applications.

Key words and phrases: familywise error rate; multiple hypothesis testing; overall

significance level; simultaneous inference; skewness.

Short title: On simultaneous calibration of two-sample t-tests

1 Introduction

With the advancement of high-throughput technology, large-scale simultaneous inference

procedures [5, 12, 22, 20, 28, 29] arise naturally from high-dimensional data from small sam-

ples, with wide applications in biology, genetics, astronomy, economics, and neuroscience

research among others. This problem is characterized by simultaneously carrying out a

large number of hypothesis tests, where each test involves a relatively short data vector.

For example, in microarray gene expression studies, the number of genes could be in the or-

der of thousands or higher, but sample sizes could be in the order of tens or hundreds. Such

procedures implicitly assume that some marginal quantities, such as the significance levels

(or type-I error rates) and p-values, can be calculated exactly for each of the simultaneous

tests. In practice, such an assumption may not be realistic when the exact distributions of

the test statistics in finite-sample cases are not directly available. This motivates the need

to estimate the distributions from which the marginal quantities are computed. However,

it is unclear how good the approximation must be for the simultaneous inference to be
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feasible.

This study investigates the performance of simultaneously conducting a diverging num-

ber m of two-sample t-tests for the equality of the mean effects of two groups, where m

frequently exceeds the sample sizes n1 and n2 in the two groups, although the combined

sample size n = n1 + n2 is still moderately large. Three issues arise naturally from an-

alyzing such matrix-type data. First, it is well known that the exact distribution of an

individual two-sample t-statistic for comparing population means is typically unavailable

if we have nonGaussian samples, unequal population variances, or unequal sample sizes.

Indeed, this issue remains one of the unsolved problems in the statistical literature, the so-

called Behrens–Fisher problem [26, 27]. In practice, a calibration method using a reference

distribution, such as the standard Gaussian distribution N(0, 1), serves as a feasible substi-

tute, provided that the approximation accuracy suffices for finite sample sizes. Second, the

two-sample problem is more important, in a certain sense, but more complex and challeng-

ing than the one-sample problem. Moreover, unlike the one-sample t-statistic, there is no

unique method for choosing a two-sample t-statistic. The two most common choices are the

“general” two-sample t-statistic and the “pooled” two-sample t-statistic. Nonetheless, no

studies have examined whether the calibration methods for the two choices are equally ap-

plicable. Third, in practice, asymmetric populations are common, but reduce the accuracy

of a single two-sample t-statistic. Here, no studies have examined simultaneous inferences

based on a diverging number of two-sample t-statistics.

Owing to the popularity of two-sample t-tests, it is highly desirable to investigate how

many and which two-sample t-statistics can be calibrated simultaneously before the overall

level accuracy becomes poor. This study addresses three new issues for two-sample t-

statistics involving independent and dependent data.

Issue 1: We demonstrate that for the Gaussian calibration method, the overall significance
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level of the simultaneous “general” two-sample t-statistics can be achieved, provided

that log(m) increases at a strictly slower rate than (n1 + n2)
1/3 as n1 + n2 diverges.

Furthermore, we show that the choice of (m,n1, n2) controls the false discovery rates

(FDRs) of some multiple testing procedures based on calibrated p-values.

Issue 2: In contrast, the “pooled” two-sample t-statistics may behave substantially differ-

ently to the “general” two-sample t-statistics, particularly when a “composite variance

quantity” (CVQ; defined in (2.7)) exceeds one. The proposed “adaptively pooled”

two-sample t-statistics in Section 3.2 operate as simply, but perform as well as the

“general” two-sample t-statistics.

Issue 3: Moreover, we propose a “two-stage” t-test procedure in Section 3.3 to effectively

alleviate the skewness effects commonly encountered from various types of two-sample

t-statistics in practice, thus increasing the calibration accuracy.

In the case of simultaneous one-sample t-statistics under independence and positive re-

gression dependence on subsets [2], calibration using a Gaussian or Student’s t distribution

and the bootstrap method was studied in [13], assuming that the number m0 of true null

hypotheses is identical to m; that is, m0 = m, which is restrictive in applications. Here,

we examine the validity of the Gaussian calibration method applied to different choices

of two-sample t-statistics under independence and general dependency, where m0 ≤ m is

allowed and m0 is a nonrandom quantity. To control the FDR asymptotically, we apply

the factor model to deal with several practically motivated dependence models, including

the jointly Gaussian distributed test statistics.

The rest of the paper is organized as follows. Section 2 formulates the overall significance

level of simultaneous two-sample t-statistics that compare the means of two populations.

Section 3 addresses Issues 1–3 in detail. Section 4 discusses the effect on the calibration

method of dependence between observations. Sections 5 and 6 present our simulation
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studies and real-data examples, respectively. Section 7 concludes the paper. All technical

details, figures and tables are relegated to the online Supplementary Material.

2 Model structure and significance testing

Many applications test data from two groups, such as a normal control group and a cancer

patient group. More formally, we consider observations {Xi,j} of the X-group and {Yi,j}

of the Y -group described by the signal plus noise model

Xi,j = µ
X;i

+ εi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(2.1)

where the index i refers to the ith test (for example, gene or brain voxel), j indicates the

jth sample (for example, array or subject), constants µ
X;i

and µ
Y ;i

stand for the mean

effects from the X-group and Y -group, respectively, in the ith test, and εi,j and ei,j are the

respective random errors. Some basic assumptions are collected in conditions A1–A3 for

our statistical analysis. We test the following hypotheses:

H0,i : µ
X;i

= µ
Y ;i

against H1,i : µ
X;i
6= µ

Y ;i
, (2.2)

simultaneously for 1 ≤ i ≤ m. One-sided alternatives can be formulated similarly.

2.1 Single two-sample t-statistic

For testing a single null hypothesis H0,i in (2.2), two-sample t-statistics denoted by Ti;n1,n2 ,

along with their variants, are widely used. One version is formed by the “general” two-

sample t-statistic ([26], equation (2)),

T general
i;n1,n2

=
X i − Y i√

s2X;i/n1 + s2Y ;i/n2

, (2.3)
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where X i =
∑n1

j=1Xi,j/n1 and Y i =
∑n2

j=1 Yi,j/n2 are the sample means within the ith test,

and s2X;i =
∑n1

j=1(Xi,j −X i)
2/(n1 − 1) and s2Y ;i =

∑n2

j=1(Yi,j −Y i)
2/(n2 − 1) are the sample

variances within the ith test. Under conditions A1–A3, the distribution of T general
i;n1,n2

is given

as follows.

(a1) In the special case of Gaussian errors εi,j ∼ N(0, σ2
ε;i) and ei,j ∼ N(0, σ2

e;i), with equal

variances σ2
ε;i = σ2

e;i and equal sample sizes n1 = n2, T
general
i;n1,n2

under H0,i of (2.2) follows

the t2n1−2-distribution.

(a2) In other cases, the exact distribution of T general
i;n1,n2

under H0,i is typically unavailable,

but the central limit theorem (CLT) and Slutsky’s theorem [10] give

T general
i;n1,n2

D→ N(0, 1), under H0,i, (2.4)

as n1 →∞ and n2 →∞, where
D→ denotes convergence in distribution.

Another commonly used form is the “pooled” two-sample t-statistic ([26], equation (1);

[4], Section 4.9.3; [12], Section 2.1; [5]),

T pool
i;n1,n2

=
X i − Y i

spoolX;Y ;i

√
1/n1 + 1/n2

, (2.5)

where s2poolX;Y ;i = {(n1−1)s2X;i+(n2−1)s2Y ;i}/(n1 + n2 − 2) acts as a pooled sample variance

within the ith test. Under conditions A1–A3, the distribution of T pool
i;n1,n2

is given as follows.

(b1) In the special case of Gaussian errors εi,j ∼ N(0, σ2
ε;i) and ei,j ∼ N(0, σ2

e;i), with equal

variances σ2
ε;i = σ2

e;i, T
pool
i;n1,n2

under H0,i of (2.2) follows the tn1+n2−2-distribution.

(b2) In other cases, the exact distribution of T pool
i;n1,n2

under H0,i is typically unavailable. In

a large sample analysis, if n1 →∞ and n2 →∞ such that n1/(n1 + n2)→ ρ ∈ (0, 1),

then it can be shown that

T pool
i;n1,n2

D→ N(0, σ2
ρ;θ(ε,e);i

), under H0,i, (2.6)
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where

σ2
ρ;θ(ε,e);i

=
(1− ρ) + ρ θ(ε,e);i
ρ+ (1− ρ) θ(ε,e);i

, with θ(ε,e);i = σ2
e;i/σ

2
ε;i. (2.7)

The derivation of (2.6) is relegated to Appendix A. We call σ2
ρ;θ(ε,e);i

the CVQ, which

aggregates the ratio of sample sizes and the ratio of population variances. Clearly, σ2
ρ;θ(ε,e);i

=

1 holds only in Case I or Case II below:

Case I : ρ = 1/2, that is, equal sample sizes with n1 = n2; (2.8)

Case II : θ(ε,e);i = 1, that is, equal population variances with σ2
ε;i = σ2

e;i. (2.9)

Note too that σ2
ρ;θ(ε,e);i

> 1 holds only if n1 < n2 and σ2
ε;i > σ2

e;i, or if n1 > n2 and σ2
ε;i < σ2

e;i.

In general, the limiting distribution in (2.6) cannot be used directly, because the population

variances σ2
ε;i and σ2

e;i in θ(ε,e);i are typically unknown in practical settings.

2.2 Simultaneous two-sample t-statistics

When calibrating multiple two-sample t-tests {Ti;n1,n2}mi=1 simultaneously, the accuracy of

the overall significance level is used to control some aspects of the overall error rate. We

first use the “general” two-sample t-statistics {T general
i;n1,n2

}mi=1 to introduce some necessary

notation. We discuss extensions to alternative choices {T pool
i;n1,n2

}mi=1 in Section 3.2. For a

critical value t, the significance level of the ith test is

αi;n1,n2(t) = PH0,i
(|T general

i;n1,n2
| > t), (2.10)

where PH0,i
denotes the probability calculated when H0,i is true. When testing m null

hypotheses simultaneously, the indices of the true null hypotheses are collected in the set

I0 = {i : H0,i is true}, with cardinality m0 = |I0|. The overall significance level is captured

by the family-wise-error-rate (abbreviated as FWER or FWER1), FWER(t) = P(Vm(t) ≥

1), where Vm(t) =
∑m

i=1 I(H0,i is true, |T general
i;n1,n2

| > t) =
∑

i∈I0 I(|T general
i;n1,n2

| > t) denotes the
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number of false rejections, with an indicator operator I(·). More generally, for integers

k ≥ 1, FWERk(t) = P(Vm(t) ≥ k) denotes the k-fold family-wise-error-rate (abbreviated

as FWERk, see [21]).

Recall from Section 2.1 that exact values of αi;n1,n2(t) based on the exact null distri-

bution of T general
i;n1,n2

are unavailable in many practical settings. However, when n1 → ∞ and

n2 →∞, the null distribution of T general
i;n1,n2

can be approximated by N(0, 1), as seen in (2.4).

This result motivates the approximation using N(0, 1) random variables {T a
i }mi=1. It is thus

natural to use the quantities,

αa
i (t) = P(|T a

i | > t), V a
m(t) =

∑
i∈I0 I(|T a

i | > t),

FWERa(t) = P(V a
m(t) ≥ 1), FWERa

k(t) = P(V a
m(t) ≥ k),

which are computationally feasible, as substitutes for αi;n1,n2(t), Vm(t), FWER(t), and

FWERk(t), respectively, when n1 and n2 are large.

In this study, we examine the relation between the number of tests m and the sample

sizes n1 and n2 within each test. Here, applying appropriate choices of the critical values

taα;m and taα;m;k (obtained from the calibrated distributions (through {T a
i }mi=1)) to the two-

sample t-statistics {T general
i;n1,n2

}mi=1 and {T pool
i;n1,n2

}mi=1 guarantees that

FWER1(t
a
α;m) ≤ α + o(1), (2.11)

FWERk(t
a
α;m;k) ≤ α + o(1), (2.12)

as m → ∞, n1 → ∞, and n2 → ∞, where α is the control level. Similarly, it is ideal

to control the FDR based on a certain threshold τα;m;n for the true p-values {Pi}; that is,

FDR(τα;m;n) ≤ α+o(1), where FDR(τ) = E[
∑

i∈I0
I(Pi≤τ)

{
∑m

i=1 I(Pi≤τ)}∨1 ], with a∨b = max{a, b}. When

the exact {Pi} are unavailable, it is more realistic to control the corresponding FDR based

on some threshold τ aα;m;n for the calibrated p-values {P a
i }mi=1, such that

FDR(τ aα;m;n) ≤ α + o(1). (2.13)
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3 Error controls with independent data

3.1 “General” two-sample t-tests for (2.2)

We first discuss error controls using the “general” two-sample t-statistics {T general
i;n1,n2

}mi=1,

for which we require additional assumptions A4–A7. We further assume that the rates of

growth of m, n1, and n2 are connected via

log(m) = o(n1/3), (3.1)

with the combined sample size n = n1 + n2.

3.1.1 Controlling FWER1(t
a
α;m) in (2.11) and FWERk(t

a
α;m;k) in (2.12)

The validity of the calibration method is supported by (3.3) of Proposition 1, which states

that the overall significance level converges to a limit that does not exceed the nominal

level, the desirable property in (2.11).

Proposition 1 (control FWER1(t
a
α;m) under independence between tests) Assume

model (2.1) and that conditions A1–A7 hold. For α ∈ (0, 1), m0/m→ π0 ∈ (0, 1], m→∞,

and n → ∞, if the general two-sample t-statistics {T general
i;n1,n2

}mi=1 are used, (m,n) satisfies

(3.1), and

taα;m = Φ−1({1 + (1− α)1/m}/2), (3.2)

where Φ denotes the cumulative distribution function (C.D.F.) of an N(0, 1) variable, then

FWER1(t
a
α;m) = FWERa

1(t
a
α;m) + o(1),

FWERa
1(t

a
α;m) = 1− (1− α)m0/m ≤ α.

(3.3)

Similarly, (3.6) of Proposition 2 implies that FWERk(t
a
α;m;k) ≤ α + o(1), which is

desirable in (2.12). A common feature of Propositions 1–2 is that as the proportion π0 of

true nulls approaches one, FWER(taα;m) and FWERk(t
a
α;m;k) approach the control level α,

and hence the inequalities in (2.11)–(2.12) become equalities.
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Proposition 2 (control FWERk(t
a
α;m;k) under independence between tests) Assume

model (2.1) and that conditions A1–A7 hold. For k ≥ 2, α ∈ (0, 1), m0/m → π0 ∈ (0, 1],

m → ∞, and n → ∞, if the general two-sample t-statistics {T general
i;n1,n2

}mi=1 are used, (m,n)

satisfies (3.1), and

taα;m;k = Φ−1(1− (βk;α/2)/m), (3.4)

where βk;α denotes the solution of equation

Gk(βk;α) = α, (3.5)

with Gk(β) = 1−
∑k−1

j=0 β
j/j!e−β for β ∈ (0,∞), then

FWERk(t
a
α;m;k) = FWERa

k(t
a
α;m;k) + o(1),

FWERa
k(t

a
α;m;k) = Gk(π0βk;α) + o(1) ≤ α + o(1).

(3.6)

3.1.2 Controlling the FDR in (2.13) for multiple testing procedures

Similarly to the marginal significance levels, the true marginal p-values {Pi} are unknown

in advance or are not directly available when the exact distributions of the two-sample t-

statistics are unknown, and thus need to be approximated from the calibrated distribution.

The practical implication is that using the approximate p-values {P a
i } means the resulting

multiple testing procedure, such as the Bonferroni correction, is still valid. This because

the FDR under the conditions of Proposition 1 is asymptotically bounded by the level α if

the approximation errors of the p-values are o(1/m).

Analogously, consider the Benjamini–Hochberg (BH) multiple testing procedure [1],

which rejects the null hypotheses H0,i when Pi ≤ P(k̂), where k̂ = max{j : P(j) ≤ αj/m},

and P(1) ≤ · · · ≤ P(m) denote the ordered p-values {Pi}. Then, FDRBH = E( VBH

RBH∨1
) gives

the FDR of the BH procedure, where VBH =
∑

i∈I0 I(Pi ≤ P(k̂)) and RBH = k̂. For the

calibration method, applying the approximate p-values {P a
i } instead of {Pi} to the BH

procedure yields the number V a
BH of false rejections and the number Ra

BH of total rejections,
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and the corresponding FDR defined by FDRa
BH = E(

V a
BH

Ra
BH∨1

). More generally, for the p-values

{Pi} used in the BH procedure, FDRBH = FDR(τα;m;n) ([24], Lemma 1), where FDR(t) =

E{ VP ;m(t)

RP ;m(t)∨1}, for t ∈ [0, 1], and τα;m;n = sup{t : F̂DR(t) ≤ α}, with F̂DR(t) = mt/RP ;m(t),

VP ;m(t) =
∑

i∈I0 I(Pi ≤ t), and RP ;m(t) =
∑m

i=1 I(Pi ≤ t). Similarly, for the approximate

p-values {P a
i }, define FDRa(t) = E{ V a

P ;m(t)

Ra
P ;m(t)∨1} and τ aα;m;n = sup{t : F̂DR

a
(t) ≤ α}, where

F̂DR
a
(t) = mt/Ra

P ;m(t), V a
P ;m(t) =

∑
i∈I0 I(P a

i ≤ t), and Ra
P ;m(t) =

∑m
i=1 I(P a

i ≤ t).

Proposition 3 shows that the resulting FDR(τ aα;m;n) can be controlled under mild condi-

tions; Figure 13 presents simulation evaluations. Additional assumptions A5′, A7′, A8–A10

are needed.

Proposition 3 (control FDR(τ aα;m;n) of the BH procedure under independence between tests)

Assume model (2.1) and that conditions A1–A5, A5′, A6, A7′, and A8–A10 hold. Define

by F a
P (·;n) and f a

P (·;n) the C.D.F. and p.d.f., respectively, of the approximate p-values

{P a
i }mi=1. For α ∈ (0, 1), let

ςα;n = sup{t : H(t;n) ≤ α}, ςaα;n = sup{t : Ha(t;n) ≤ α},

where H(t;n) = t/FP (t;n) and Ha(t;n) = t/F a
P (t;n). Suppose H ′(t;n) is bounded below

for t in an open interval with endpoints ςα;n and ςaα;n, and f a
P (ςaα;n;n) < α−1 < f a

P (0;n). If

the general two-sample t-statistics {T general
i;n1,n2

}mi=1 are used and

Φ−1(1− ςaα;n) ∈ ( 0, o(n1/6) ), (3.7)

then as m→∞ and n→∞,

FDR(τ aα;m;n) ≤ α + o(1). (3.8)

Remark 1 Similarly to Lemma A.1 of [15], we obtain τ aα;m;n = ςaα;n + OP(m−1/2), where

τ aα;m;n gives the threshold for the approximate p-values. Therefore, condition (3.7) becomes

Φ−1(1− τ aα;m;n +OP(m−1/2)) ∈ ( 0, o(n1/6) ), (3.9)
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which implicitly describes the relationship between m and n. For example, if τ aα;m;n is of

order m−b with probability tending to one, where 0 < b ≤ 1/2, then a sufficient condition

for (3.9) is log(m) = o(n1/3), as characterized by (3.1).

Remark 2

(i) Using similar arguments for Corollary 2.1 in [23], we can show that log(m) = o(n1/3)

is also a necessary condition for controlling FDR asymptotically. More precisely, if

log(m) ≥ c0 n
1/3 for some constant c0 > 0, we obtain lim inf

(n,m)→∞
FDR(τ aα;m;n) ≥ β, with

a constant β > α. In particular, if log(m)/n1/3 → ∞, we obtain FDR(τ aα;m;n) → 1,

implying that the FDR is not controlled as m→∞ and n→∞.

(ii) On the other hand, the condition log(m) = o(n1/3) can be relaxed to a better rate

log(m) = o(n1/2) with additional conditions, such as that of symmetric errors and a

stronger large deviation result for the two-sample t-tests T general
i;n1,n2

: PH0,i
(T general

i;n1,n2
≥ x)/{1− Φ(x)} =

exp(−3−1κ3,ix
3n−1/2){1+θ(1 + x)2/n1/2}, where κ3,i = [E{(Xi,1−µX;i

)3}/ρ2−E{(Yi,1−

µ
Y ;i

)3}/(1− ρ)2]/{σ2
X;i/ρ+ σ2

Y ;i/(1− ρ)}3/2, and θ = θ(x, n) satisfies |θ(x, n)| ≤ C

uniformly in x ∈ (0, o(n1/4)). The justification for this large deviation result is be-

yond the scope of this study. See Section 3.3 for a related discussion.

(iii) The condition A5′, “two-sample t-statistics corresponding to true non-nulls are iden-

tically distributed,” simplifies the technical proof for Proposition 3. In the simulation

studies in Section 5, where the differences (µ
X;i
− µ

Y ;i
) under the true non-nulls vary

with i, Figure 13 indicates that Proposition 3 continues to hold in cases where condi-

tion A5′ is relaxed.

Remark 3 In Propositions 1–3, the Gaussian distribution is used to approximate the dis-

tribution of the test statistics T general
i;n1,n2

. These results can be easily generalized to the t-

distribution approximation by replacing Φ(·) with the C.D.F. of the tn1+n2−2 distribution.
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3.2 Proposed “adaptively pooled” two-sample t-tests for (2.2)

We now discuss error controls using the “pooled” two-sample t-statistics {T pool
i;n1,n2

}mi=1. Re-

call from (A.11) and (A.26) in the Appendix A that the conclusions of Propositions 1–3

rely on the tail distribution of T general
i;n1,n2

under the null H0,i, approximated by that of the

N(0, 1) distribution, fulfilling

|PH0,i
(T general

i;n1,n2
≥ x)/{1− Φ(x)} − 1| → 0

uniformly in x up to a point of order o(n1/6). Applying similar derivations to the “pooled”

version of the test statistics T pool
i;n1,n2

, we observe that if the condition

|PH0,i
(T pool

i;n1,n2
≥ x)/{1− Φ(x)} − 1| → 0 (3.10)

holds uniformly up to the point x of order o(n1/6), then (2.11) and (2.12) are also applicable

to {T pool
i;n1,n2

}mi=1. Indeed, condition (3.10) holds when the CVQ is equal to one, that is,

σρ;θ(ε,e);i = 1, in either Case I with n1 = n2, as discussed in (2.8), or Case II with σ2
ε;i = σ2

e;i,

as discussed in (2.9). Numerical evidence is provided in Figure 3 with σ2
ε;i = σ2

e;i, where

the performance of the calibration method applied to the “pooled” choices (in the second

column panels) is nearly identical to that applied to the “general” choices (in the first

column panels).

Next, we examine the effect on (3.10) if the CVQ is allowed to differ from one. If the

original form (2.5) of T pool
i;n1,n2

is used, then the result in (2.6) indicates

PH0,i
(T pool

i;n1,n2
≥ x)/{1− Φ(x)} = {1− Φ(x/σρ;θ(ε,e);i)}/{1− Φ(x)}{1 + o(1)}. (3.11)

To analyze the ratio on the right-hand side of (3.11), the panels of Figure 1 plot the function

{1− Φ(x/σ)}/{1− Φ(x)}, which behaves very differently in the cases of σ > 1 and σ < 1.

The maximum value of {1−Φ(x/σ)}/{1−Φ(x)} is unbounded when σ > 1, but is at most

one when σ < 1. This difference ultimately affects (3.10) in the following ways.
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(i) If σρ;θ(ε,e);i > 1, then the maximum value of |PH0,i
(T pool

i;n1,n2
≥ x)/{1− Φ(x)} − 1| will

always be much larger than zero.

(ii) If σρ;θ(ε,e);i < 1, then the maximum value of |PH0,i
(T pool

i;n1,n2
≥ x)/{1− Φ(x)} − 1| will

potentially approach zero, particularly when σρ;θ(ε,e);i approaches one.

Hence, condition (3.10) may fail if σρ;θ(ε,e);i > 1, and the overall level accuracy may be

lost by directly applying the calibration method to the simultaneous “pooled” two-sample

t-statistics T pool
i;n1,n2

. See the numerical illustrations in Figure 5 associated with σρ;θ(ε,e);i > 1.

To circumvent the incoherence of T pool
i;n1,n2

with T general
i;n1,n2

, particularly in the case of CVQ >

1, we propose an “adaptively pooled” version, which follows an approximately N(0, 1)

distribution under the null. Following (2.6), a natural choice is given by

T pool;A
i;n1,n2

=
T pool
i;n1,n2

σρ;θ̂(ε,e);i
, (3.12)

where θ̂(ε,e);i = s2Y ;i/s
2
X;i serves as an estimate of θ(ε,e);i = σ2

e;i/σ
2
ε;i. The simulation re-

sults in Section 5 support that the performance of the calibration method applied to the

“adaptively pooled” choice {T pool;A
i;n1,n2

}mi=1 is comparable to that applied to the “general”

choice {T general
i;n1,n2

}mi=1.

3.3 Proposed “two-stage” t-test procedure for (2.2)

In practice, T general
i;n1,n2

and T pool;A
i;n1,n2

could be skewly distributed under H0,i, yielding a slower

convergence rate to N(0, 1) and a lower calibration accuracy by N(0, 1). See also Remark

2(ii). For T general
i;n1,n2

, its theoretical form of the skewness-“adjusted” two-sample t-statistic,

T adjust;T
i;n1,n2

=

(
X i − Y i

)
+

µ3,X;i/n
2
1−µ3,Y ;i/n

2
2

6(s2X;i/n1+s2Y ;i/n2)
+

µ3,X;i/n
2
1−µ3,Y ;i/n

2
2

3(s2X;i/n1+s2Y ;i/n2)2

(
X i − Y i

)2√
s2X;i/n1 + s2Y ;i/n2

, (3.13)

can be derived from [16], used for the “adjusted” one-sample t-statistic, where

µ3,X;i = E{(Xi,1 − µX;i
)3}, µ3,Y ;i = E{(Yi,1 − µY ;i

)3}. (3.14)
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A form similar to (3.13) can be found in equation (2.16) of [9]. As expected, T adjust;T
i;n1,n2

alleviates the skewness effects from T general
i;n1,n2

and, thus, is more symmetric underH0,i. Clearly,

if µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = 0, then T adjust;T

i;n1,n2
reduces to T general

i;n1,n2
. Hence, the quantity

µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = E[{(X i − Y i)− E(X i − Y i)}3], (3.15)

serves as a valid measure of skewness of T general
i;n1,n2

, assuming conditions A1–A3. In practice,

T adjust;T
i;n1,n2

is infeasible for the skewness adjustment, because the quantity µ3,X;i/n
2
1−µ3,Y ;i/n

2
2

is unknown. However, it can be estimated using the sample’s third moments, leading to

the empirical form of the skewness-“adjusted” two-sample t-statistic,

T adjust;E
i;n1,n2

=

(
X i − Y i

)
+

µ̂3,X;i/n
2
1−µ̂3,Y ;i/n

2
2

6(s2X;i/n1+s2Y ;i/n2)
+

µ̂3,X;i/n
2
1−µ̂3,Y ;i/n

2
2

3(s2X;i/n1+s2Y ;i/n2)2

(
X i − Y i

)2√
s2X;i/n1 + s2Y ;i/n2

, (3.16)

where µ̂3,X;i =
∑n1

j=1(Xi,j −X i)
3/n1 and µ̂3,Y ;i =

∑n2

j=1(Yi,j − Y i)
3/n2.

With regard to the choice between T general
i;n1,n2

and T adjust;E
i;n1,n2

, we discuss two cases. If

µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = 0 exactly or approximately, then T general

i;n1,n2
is expected to be more

symmetrically distributed under H0,i than is T adjust;E
i;n1,n2

, and will outperform T adjust;E
i;n1,n2

(owing

to the variability of sample third moments). On the other hand, if µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2

is far from zero, then T adjust;E
i;n1,n2

will be effective in correcting the skewness, whereas T general
i;n1,n2

may not be.

Hence, before selecting T general
i;n1,n2

or T adjust;E
i;n1,n2

, we first need to assess the adequacy of

H
(1)
0,i : µ3,X;i/n

2
1 − µ3,Y ;i/n

2
2 = 0. (3.17)

Note that (3.14) and (3.17) motivate us to consider the t-statistic

µ̂3,X;i/n
2
1 − µ̂3,Y ;i/n

2
2√

σ̂2
3,X;i/n

5
1 + σ̂2

3,Y ;i/n
5
2

, (3.18)

where σ̂2
3,X;i and σ̂2

3,Y ;i denote the sample variances of {(Xi,j−X i)
3}n1
j=1 and {(Yi,j−Y i)

3}n2
j=1,

respectively. Under the null hypothesis (3.17), (3.18)
D→ N(0, 1), by the CLT and Slutsky’s

theorem, assuming finite sixth moments of Xi,1 and Yi,1.
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To improve the efficiency of testing (2.2), we propose a “two-stage” t-test procedure:

1st-stage: For each i = 1, . . . ,m, apply the first-stage two-sample t-statistic (3.18) to test,

individually, for the null hypothesis H
(1)
0,i in (3.17).

2nd-stage: For each i = 1, . . . ,m, define the second-stage two-sample t-statistic T 2 stage
i;n1,n2

by

T 2 stage
i;n1,n2

=


T adjust;E
i;n1,n2

in (3.16), if (3.18) rejects (3.17),

T general
i;n1,n2

in (2.3), if (3.18) retains (3.17).

(3.19)

Use {T 2 stage
i;n1,n2

}mi=1 to perform the multiple testing procedure for (2.2).

As illustrated in the simulation studies in Section 5, T adjust;T always performs best, but is

practically infeasible. The proposed T 2 stage is as good as the better of T general and T adjust;E.

Remark 4 For the “adaptively pooled” two-sample t-statistic T pool;A
i;n1,n2

, the skewness ad-

justment is similar to (3.16) for T general
i;n1,n2

, except that the denominator is σρ;θ̂(ε,e);ispoolX;Y ;i

√
1/n1 + 1/n2.

4 Error controls allowing dependent data

In practice, dependence in data sets may arise from different tests, between theX-group and

Y -group, or within the same X-group or within the same Y -group. Section 4.1 considers

the types of dependence between tests, Sections 4.2–4.3 explore models (4.10) and (4.12),

respectively, incorporating the dependence structure between two groups and within the

same group, respectively. Appendix B discusses extensions of (4.10) and (4.12).

4.1 Dependence between tests

Recall that Propositions 1–2 rely on condition A7, which assumes independence between

the test statistics corresponding to the true nulls. Section 4.1.1 evaluates the effect of
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general dependency between the test statistics on the control of the overall significance

level; Propositions 4–5 remove condition A7. Section 4.1.2 considers test statistics that are

asymptotically jointly Gaussian.

4.1.1 General dependence between tests

Proposition 4 (control FWER1(t
a
α;m) under general dependence between tests) Assume

model (2.1) and that conditions A1–A6 hold. For α ∈ (0, 1), m0/m→ π0 ∈ (0, 1], m→∞,

and n→∞, if the general two-sample t-statistics {T general
i;n1,n2

}mi=1 are used, with taα;m given in

(3.2) and (m,n) satisfying (3.1), then

FWER1(t
a
α;m) ≤ π0β1;α + o(1), (4.1)

where β1;α = − log(1− α).

In view of (4.1), the limiting overall significance level continues to be bounded by

the nominal level α, for any π0 ≤ α/β1;α, when m tests are allowed to be dependent.

See the left panel of Figure 2 for the plot of α/β1;α with respect to α. For example, a

level α = 0.05 allows any choice of π0 in the range (0, 0.9748], which is wide enough for

realistic applications. Interestingly, even in the special case of π0 = 1 (which is rare, in

practice), that π0β1;α = β1;α and α ≤ β1;α (with a negligible difference between α and β1;α,

particularly when α is small, as illustrated in the right panel of Figure 2) indicates that

the critical value taα;m in (3.2) offers an asymptotically slightly conservative β1;α for the

resulting FWER(taα;m).

Proposition 5 states that, when k = 1, the upper bound achievable for FWERk(t
a
α;m;k)

reduces to that for FWER(taα;m).

Proposition 5 (control FWERk(t
a
α;m;k) under general dependence between tests)

Assume model (2.1) and that conditions A1–A6 hold. For k ≥ 2, α ∈ (0, 1), m0/m→ π0 ∈
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(0, 1], m → ∞, and n → ∞, if the general two-sample t-statistics {T general
i;n1,n2

}mi=1 are used,

with taα;m;k given in (3.4) and (m,n) satisfying (3.1), then

FWERk(t
a
α;m;k) ≤ π0βk;α/k + o(1), (4.2)

where βk;α solves (3.5).

Compared with Proposition 2, the upper bound π0βk;α/k in (4.2), with k ≥ 2, is con-

trolled by the nominal level α only when the proportion π0 does not exceed α/(βk;α/k),

which is equal to 0.2821 for α = 0.05 and k = 2. In the extreme case of π0 = 1, we can

show that π0βk;α/k = βk;α/k is invariably at least as large as α. This reflects the cost of

generalizing Proposition 2 from mutually independent tests to cases allowing for general

dependency.

4.1.2 Jointly Gaussian distributed test statistics

Consider a specific factor model for observations {Xi,j} and {Yi,j}:

Xi,j = µ
X;i

+ βTX;iuj + εi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ βTY ;ivj + ei,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(4.3)

where uj are unobserved du-dimensional random vectors, with {u1, . . . ,un1}
i.i.d.∼ N(0,Σu);

vj are unobserved dv-dimensional random vectors, with {v1, . . . ,vn2}
i.i.d.∼ N(0,Σv); and

(u1, . . . ,un1) and (v1, . . . ,vn2) are independent. For example, the gene expressions {Xi,j :

1 ≤ i ≤ m} of the jth subject may be influenced by common factors uj, for example, the

age or other variables of the jth subject. In addition, assume {εi,j} and {ei,j} are identical

to those in model (4.10); {εi,j}, {ei,j}, {uj}, and {vj} are independent.

For model (4.3), the dependence between the two-sample t-statistics,

T general
i;n1,n2

=
(µ

X;i
− µ

Y ;i
) + (εi − ei) + (βTX;iu− βTY ;iv)√
s2X;i/n1 + s2Y ;i/n2

, i = 1, . . . ,m, (4.4)
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is caused by factors u =
∑n1

j=1 uj/n1 and v =
∑n2

j=1 vj/n2, which are common to all tests.

It follows that the two-sample t-statistics can be rewritten as

(T general
1;n1,n2

, . . . , T general
m;n1,n2

)T = D •U , (4.5)

where D = (X1 − Y 1, . . . , Xm − Y m)T ; the operator • in (4.5) indicates component-wise

multiplication; and U = (U1, . . . , Um)T , with Ui = (s2X;i/n1 + s2Y ;i/n2)
−1/2. For fixed m, the

CLT gives

√
n1 + n2 D

D→ (W1, . . . ,Wm)T , (4.6)

as n1 → ∞ and n2 → ∞, where (W1, . . . ,Wm)T ∼ N(ν,Ω), for some ν ∈ Rm and

positive-definite matrix Ω = (ωij)1≤i,j≤m. Similarly, the law of large numbers gives s2X;i
P→

βTX;iΣuβX;i + σ2
ε;i and s2Y ;i

P→ βTY ;iΣvβY ;i + σ2
e;i, implying

(n1 + n2)
−1/2 Ui

P→ ci, 1 ≤ i ≤ m, (4.7)

where ci = {(βTX;iΣuβX;i + σ2
ε;i)/ρ+ (βTY ;iΣvβY ;i + σ2

e;i)/(1− ρ)}−1/2; thus,

(n1 + n2)
−1/2 U

P→ c, (4.8)

with c = (c1, . . . , cm)T . By Slutsky’s theorem [10], (4.5), (4.6), and (4.8) imply that

(T general
1;n1,n2

, . . . , T general
m;n1,n2

)T
D→ (Z1, . . . , Zm)T ∼ N(ν̃, Ω̃), (4.9)

where Zi = ciWi, ν̃ = c • ν, and Ω̃ = (ci cj ωij)1≤i,j≤m.

The joint Gaussianity of the test statistics in (4.9) makes it feasible to apply the factor

model method in [14] to decompose Ω̃, and then to control the false discovery proportion

(FDP; defined as the number of false rejections divided by the number of rejections) and

FDR asymptotically. On the other hand, this method relies on knowing Ω̃ in advance.

Thus, we need the techniques used to estimate high-dimensional covariance matrices to

estimate Ω̃. Our Gaussian calibration helps to simplify its diagonal entries to ones.
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4.2 Dependence between groups and within a group: Model I

Consider observations {Xi,j} and {Yi,j} following Model I,

Xi,j = µ
X;i

+ εi,j + wi/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j + wi/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(4.10)

where the errors {w1, . . . , wm}
i.i.d.∼ N(0, σ2

w), with σ2
w ∈ (0,∞). For each i, the errors

{εi,1, . . . , εi,n1}
i.i.d.∼ N(0, σ2

ε;i), the errors {ei,1, . . . , ei,n2}
i.i.d.∼ N(0, σ2

e;i), and {(εi,1, . . . , εi,n1), (ei,1, . . . , ei,n2), wi}

are mutually independent. Furthermore, {(εi,1, . . . , εi,n1 ; ei,1, . . . , ei,n2 ;wi) : i ∈ I0} are in-

dependent. It follows that the two-sample t-statistics reduce to the following forms:

T general
i;n1,n2

=
εi − ei√

s2ε;i/n1 + s2e;i/n2

, T pool
i;n1,n2

=
εi − ei

spoolε;e;i
√

1
n1

+ 1
n2

, T pool;A
i;n1,n2

=
T pool
i;n1,n2

σρ;θ̂(ε,e);i
. (4.11)

Note that this data set involves dependence between different groups, and within the same

group; however, the test statistics (using {T general
i;n1,n2

}, {T pool
i;n1,n2

} or T pool;A
i;n1,n2

) associated with

the true nulls are independent. Moreover, Model I in the case of σ2
w = 0 reduces to the

counterpart of model (2.1).

With regard to Model I, we can show two distributional results for the “general” two-

sample t-statistic T general
i;n1,n2

under H0,i:

(c1) if σ2
ε;i = σ2

e;i and n1 = n2, then T general
i;n1,n2

∼ t2n1−2;

(c2) if n1 →∞ and n2 →∞, then T general
i;n1,n2

D→ N(0, 1).

Hence, the conclusions of Propositions 1–2 carry through to the “general” two-sample

t-statistics {T general
i;n1,n2

}mi=1.

As a comparison, for the “pooled” two-sample t-statistic T pool
i;n1,n2

under H0,i, we draw

the following two conclusions:

(d1) If σ2
ε;i = σ2

e;i, then T pool
i;n1,n2

∼ tn1+n2−2. In this case, the results in Propositions 1–2

continue to apply for the “pooled” choice {T pool
i;n1,n2

}mi=1.
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(d2) If n1 → ∞ and n2 → ∞, such that n1/(n1 + n2) → ρ ∈ (0, 1), then (2.6) gives

T pool
i;n1,n2

D→ N(0, σ2
ρ;θ(ε,e);i

). Similarly to the discussion in Section 3.2, there is no guar-

antee in the case of σρ;θ(ε,e);i > 1 that we can achieve level bounds α in (2.11) and

(2.12) using {T pool
i;n1,n2

}mi=1.

However, according to (4.11), the “adaptively pooled” version satisfies T pool;A
i;n1,n2

D→ N(0, 1)

and, thus, the N(0, 1) calibration remains valid for {T pool;A
i;n1,n2

}mi=1.

4.3 Dependence between groups and within a group: Model II

Consider an alternative model similar to Model I, except that the signs of the error terms

wi/2 in Xi,j are negative, yielding Model II:

Xi,j = µ
X;i

+ εi,j − wi/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j + wi/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n2.

(4.12)

Model (4.12) is motivated from a two-sample microarray testing example in Section 4 of

[11] and Section 6.4 of [12] with n1 = n2, where wi are small disturbances caused by unequal

effects of unobserved covariates on the X-group and Y -group. The explicit forms of the

two-sample t-statistics are derived as follows:

T general
i;n1,n2

=
εi − ei − wi√
s2ε;i/n1 + s2e;i/n2

, T pool
i;n1,n2

=
εi − ei − wi

spoolε;e;i
√

1
n1

+ 1
n2

, T pool;A
i;n1,n2

=
T pool
i;n1,n2

σρ;θ̂(ε,e);i
, (4.13)

which differ from those in (4.11). Again, dependence between and within groups exist in

the data set, where the extent of the dependence is captured by the magnitude of σ2
w, but

the two-sample t-statistics associated with the true nulls remain independent.

In the context of Model II, we can show two results for the null distribution of the

“general” two-sample t-statistic T general
i;n1,n2

:

(e1) if σ2
ε;i = σ2

e;i = σ2
i and n1 = n2, then T general

i;n1,n2
∼ t2n1−2 × f1, where f1 =

√
1 + n1

2
σ2
w

σ2
i
;
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(e2) if n1 →∞ and n2 →∞, then

T general
i;n1,n2

= Z × f2{1 + oP(1)} P→∞, where f2 =

√
1 +

n1n2σ2
w

n2σ2
ε + n1σ2

e

, (4.14)

where Z ∼ N(0, 1) and
P→ denotes convergence in probability.

We can also show that T pool;A
i;n1,n2

has the same limit null distribution as T general
i;n1,n2

. For the null

distribution of the “pooled” two-sample t-statistic T pool
i;n1,n2

, we draw two conclusions:

(f1) If σ2
ε;i = σ2

e;i = σ2
i , then T pool

i;n1,n2
∼ tn1+n2−2 × f3, where f3 =

√
1 + n1n2

n1+n2

σ2
w

σ2
i
.

(f2) If n1 →∞ and n2 →∞, such that n1/(n1 + n2)→ ρ ∈ (0, 1), then

T pool
i;n1,n2

= Z × f4{1 + oP(1)} P→∞, where f4 =

√√√√(1− ρ) + ρσ2
e/σ

2
ε + n1n2

n1+n2

σ2
w

σ2
ε

ρ+ (1− ρ)σ2
e/σ

2
ε

. (4.15)

Thus, the conclusions of Propositions 1–2 fail for the two-sample t-statistics {T general
i;n1,n2

}mi=1,

because the factor f2 in (4.14) invariably exceeds one. As a comparison, Propositions 1–2

may fail for {T pool
i;n1,n2

}mi=1, particularly when the factor f4 in (4.15) substantially exceeds one.

In the case of f2 > f4, the “adaptively pooled” versions {T pool;A
i;n1,n2

}mi=1 do not ameliorate

{T pool
i;n1,n2

}mi=1.

5 Simulation study

We assess the finite-sample performance of the calibration method applied to the two-

sample t-test statistics {T general
i;n1,n2

}mi=1, {T
pool
i;n1,n2

}mi=1, {T
pool;A
i;n1,n2

}mi=1, {T
adjust;T
i;n1,n2

}mi=1, {T
adjust;E
i;n1,n2

}mi=1,

and {T 2 stage
i;n1,n2

}mi=1, as the total sample size n = n1+n2 varies. For each k ∈ {1, 2}, we conduct

the simulation 1000 times. In each simulation, we calculate the numbers of false rejections

Vm(taα;m) and Vm(taα;m;k). The empirical estimates of FWER(taα;m) and FWERk(t
a
α;m;k) are

the proportion of times that {Vm(taα;m) ≥ 1} and {Vm(taα;m;k) ≥ k}, respectively, occur in

the 1000 simulations. Set α = 0.05 as the control level. The “two-stage” t-tests use level

22

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0467



0.05 in the first-stage. A range of sample sizes are considered, with n1 = 10c and n2 = 20c,

for c ∈ {1, 2, . . . , 10}, yielding the combined sample size n = 30c. We set m = 10000, with

π0 = m0/m = 0.9.

To generate data under either independence or dependence, we consider the model

Xi,j = µ
X;i

+ εi,j + signX;iwi/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n1,

Yi,j = µ
Y ;i

+ ei,j + signY ;iwi/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n2,

(5.1)

where µ
X;i

= µ
Y ;i

= 1, for i = 1, . . . ,m0 . The values of µ
X;i

and µ
Y ;i

are simulated from

Uniform(0.75, 1.25) and Uniform(1.75, 2.25), respectively, for i = m0 + 1, . . . ,m, and {εi,j}

are independent of {ei,j}. In addition, the errors {w1, . . . , wm}
i.i.d.∼ N(0, σ2

w), as described

below (4.10). Note that (5.1) includes models (2.1), (4.10), and (4.12):

if signX;i ≡ 0 and signY ;i ≡ 0, then model (5.1) reduces to model (2.1);

if signX;i ≡ +1 and signY ;i ≡ +1, then model (5.1) is Model I in (4.10);

if signX;i ≡ −1 and signY ;i ≡ +1, then model (5.1) is Model II in (4.12).

In model (5.1), the schemes for the errors {εi,j} and {ei,j} are considered in Examples

1–5, as follows: Example 1: {εi,j}
i.i.d.∼ N(0, σ2), {ei,j}

i.i.d.∼ N(0, σ2), with σ = 1.0; Example

2: {εi,j}
i.i.d.∼ N(0, 1), {ei,j}

i.i.d.∼ t4; Example 3: {εi,j}
i.i.d.∼ t4, {ei,j}

i.i.d.∼ N(0, 1); Example 4:

{εi,j}
i.i.d.∼ χ2

2−2, {ei,j}
i.i.d.∼ −(χ2

2−2); and Example 5: {εi,j}
i.i.d.∼ χ2

4−4, ei,j = (2bi−1)ui,j,

where {ui,j}
i.i.d.∼ {Exp(1/λ) − λ}, with λ = 4, and the coefficients bi are nonrandom and

equal to the sampled values of b∗i , with {b∗1, . . . , b∗m}
i.i.d.∼ Ber(1/2). Here, Examples 4 and

5 assess the skewness effects of the two-sample t-tests on the calibration methods.

Moreover, in model (5.1), the variances σ2
w of the errors {wi} are considered for

model (2.1) with σw = 0; Model I with σw = 0.5; Model II with σw = 0.1.

Thus, the combination of errors {εi,j, ei,j} and errors {wi} in model (5.1) yields 15 examples,
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denoted as follows:

‘Example 1’, . . . , ‘Example 5’: for independent data;

‘Example 1(I)’, . . . , ‘Example 5(I)’: for dependent data;

‘Example 1(II)’, . . . , ‘Example 5(II)’: for dependent data.

Graphical illustrations are displayed in Figures 3–7 for the empirical estimates of FWER(taα;m),

in Figures 8–12 for the empirical estimates of FWERk(t
a
α;m;k) with k = 2, and in Figure 13

for the calculated FDP of the BH procedure.

5.1 Independent data

Recall that Examples 1–5 correspond to independent data. Table 1 summarizes the in-

formation on the CVQ and skewness of the error terms.

In Example 1 with Gaussian errors, the top row of Figure 3 indicates that the estimated

FWER(taα;m) of {T general
i;n1,n2

} gets closer to 0.05 as the sample size n increases. The N(0, 1)

calibration applied to {T pool
i;n1,n2

} performs similarly to that of {T general
i;n1,n2

}, owing to the equal

population variances, such that σ2
ρ;θ(ε,e);i

= 1 in Example 1. In this case, there is also

no adverse effect of using the “adaptively pooled” version {T pool;A
i;n1,n2

}. The calibration

methods applied to {T adjust;T
i;n1,n2

}, {T adjust;E
i;n1,n2

}, and {T 2 stage
i;n1,n2

} perform similarly to that applied

to {T general
i;n1,n2

}, owing to the symmetric distributions of {εi,j} and {ei,j}.

In addition, recall from part (b1) in Section 2.1 that T pool
i;n1,n2

in Example 1 exactly

follows the tn1+n2−2-distribution under the null. The second columns of Figures 3 and 8

overlay the true values (using red lines) of FWER(taα;m) and FWERk(t
a
α;m;k), respectively,

which match well with their empirical counterparts. This supports the validity of the

simulations. Similarly, the left column of Figure 13 compares the FDP of the BH multiple

testing procedure [1], implemented as follows: the approximate p-values calculated from

the approximate N(0, 1)-distributions for T general
i;n1,n2

, T pool
i;n1,n2

, T pool;A
i;n1,n2

, T adjust;T
i;n1,n2

, T adjust;E
i;n1,n2

, and
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T 2 stage
i;n1,n2

, and the exact p-values calculated from the exact tn1+n2−2-distribution for T pool
i;n1,n2

.

As shown, when n approaches 100 (or more), the FDPs using the N(0, 1) calibration mimic

that using the exact distribution.

In Examples 2–3, with nonGaussian errors, the population variances are σ2
ε;i < σ2

e;i

in Example 2, and σ2
ε;i > σ2

e;i in Example 3. Figures 4 and 5 indicate that within each

example, there is little difference in the performance of the calibration methods applied

to the test statistics {T general
i;n1,n2

}, {T pool;A
i;n1,n2

}, {T adjust;T
i;n1,n2

}, and {T 2 stage
i;n1,n2

}. However, {T pool
i;n1,n2

}

behaves substantially differently in Example 2 and Example 3, where the FWERs are

conservatively controlled in Example 2 (as seen in the top row, second column panel of

Figure 4), but are not controlled in Example 3 (as seen in the top row, second column

panel of Figure 5, even if n increases). Again, the difference is caused by the quantity

σ2
ρ;θ(ε,e);i

< 1 in Example 2, with n1 < n2 and σ2
ε;i < σ2

e;i, whereas σ2
ρ;θ(ε,e);i

> 1 in Example

3, with n1 < n2 and σ2
ε;i > σ2

e;i. The comparison thus supports that the “adaptively

pooled” version T pool;A
i;n1,n2

is a valid substitute for the originally “pooled” version T pool
i;n1,n2

, and

that its performance compares with that of the “general” version T general
i;n1,n2

.

Moreover, in Example 3, because the sixth moment does not exist for the t4-distribution,

µ̂3,X/n
2
1 − µ̂3,Y /n

2
2 performs poorly in estimating µ3,X;i/n

2
1 − µ3,Y ;i/n

2
2. Thus, T adjust;E

i;n1,n2
de-

viates significantly from T adjust;T
i;n1,n2

, as seen in Figure 5. Nonetheless, T 2 stage
i;n1,n2

is as good as

T general
i;n1,n2

.

Recall that for Examples 1–3, µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 = 0 (as shown in Table 1). Thus

T adjust;T
i;n1,n2

and T general
i;n1,n2

are identical and the best, and T 2 stage
i;n1,n2

compares well with T general
i;n1,n2

.

As a comparison, Examples 4–5 assess the utility of the proposed “two-stage” t-test

procedure in the presence of skewness. In Example 4, µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 is relatively

large. Figure 6 reveals that T adjust;E
i;n1,n2

is better than T general
i;n1,n2

, and T 2 stage
i;n1,n2

is close to the better

of T general
i;n1,n2

and T adjust;E
i;n1,n2

. The theoretical T adjust;T
i;n1,n2

still controls the FWER in the best way.
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In Example 5, µ3,X;i/n
2
1 − µ3,Y ;i/n

2
2 depends on whether bi = 0 or 1, as given in Table 1.

In this case, we observe from Figure 7 that T 2 stage
i;n1,n2

outperforms both T general
i;n1,n2

and T adjust;E
i;n1,n2

.

5.2 Dependent data

For Model I associated with the dependence mechanism in Examples `(I), for ` = 1, . . . , 5,

it is apparent that the top and middle rows of Figures 3–12 are nearly indistinguishable,

regardless of the magnitude of σw > 0. This agrees with the analysis in Section 4.2. By

the same argument, the calculated FDPs of the BH procedure in the left column of Figure

13 resemble those in the middle column of Figure 13.

In striking contrast, for Examples `(II), for ` = 1, . . . , 5, with a dependence mechanism

described by Model II, the loss of control over FWER1 and FWER2 is noticeable in the

bottom rows of Figures 3–7 and Figures 8–12, even if σw is as low as 0.1, lending support

to the discussion in Section 4.3. The right column of Figure 13 shows that the FDPs

based on the N(0, 1) calibration for approximating the p-values no longer mimic the actuals

proportions. Again, this is because when the data are generated from Model II, the variances

in the asymptotic distributions of T general
i;n1,n2

(as well as T pool;A
i;n1,n2

) and T pool
i;n1,n2

escalate by factors

f2 in (4.14) and f4 in (4.15), respectively. As anticipated, the exact tn1+n2−2 calibration,

available for T pool
i;n1,n2

in Example 1(II), continues to perform well.

6 Real-data examples

We apply the Gaussian calibration for two-sample t-tests to analyze three real-data sets.

As expected, Table 2 reveals a discrepancy between the results delivered by the “pooled”

and “general” versions. Nonetheless, the results based on the “adaptively pooled”

version always agree well with those of the “general” version. This lends further support
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to the superiority of the “adaptively pooled” version to the “pooled” version in statistical

practice. The proposed “two-stage” procedure resembles the “general” version.

First, we analyze the prostate cancer data set of [12], which contains genetic expression

levels for 6033 genes, obtained for 102 men, comprising 50 normal control subjects and 52

prostate cancer patients. The primary goal of this study was to discover a small number of

“interesting” genes that have expression levels that differ between the prostate and normal

subjects. Using the BH multiple-testing procedure, Table 2 compares the number of genes

detected as significant, where the p-values are calculated from the N(0, 1)-distribution for

T general
i;n1,n2

, tn1+n2−2-distribution for T pool
i;n1,n2

, and N(0, 1)-distributions for T pool
i;n1,n2

, T pool;A
i;n1,n2

, and

T 2 stage
i;n1,n2

. Recall that the simulation studies in Figure 13 support the Gaussian calibration

used in the BH procedure with independent data, with the combined sample size n around

100 and m as large as 10000. The difference between the detected numbers 21 (using the

t-distribution) and 51 and 50 (using the N(0, 1) calibration methods) could be caused by

the nonGaussian samples or the unequal population variances; as a result, T pool
i;n1,n2

may not

follow the tn1+n2−2-distribution.

Second, we apply the calibration method to the gene expression data produced by [17]

in a study on prostate cancer progression. The study aims to identify genes that show

evidence of differential expression in cancerous tumors. The data set includes gene expres-

sions for m = 8648 genes using prostate cell populations from low-grade (n1 = 27) and

high-grade (n2 = 17) samples of cancerous tissue. Using the BH multiple-testing procedure,

where p-values are calculated from the N(0, 1)-distribution for T general
i;n1,n2

, tn1+n2−2-distribution

for T pool
i;n1,n2

, and N(0, 1)-distributions for T pool
i;n1,n2

, T pool;A
i;n1,n2

, and T 2 stage
i;n1,n2

, the numbers of genes

declared to be significant are 565, 196, 436, 563, and 565, respectively; see Table 2. In

this example, the detection difference between using the t-distribution and using the ap-

proximate N(0, 1)-distribution could be caused by the nonGaussian samples or the unequal
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population variances; as a result, the tn1+n2−2-distribution may not be valid for T pool
i;n1,n2

. The

difference may also be because the sample size n = 44 is not large enough for the Gaus-

sian calibration. Interestingly, the “adaptively pooled” two-sample t-statistics {T pool;A
i;n1,n2

}

continue to detect a comparable number of significant genes to those of its “general”

counterparts {T general
i;n1,n2

}.

As a third illustration, we analyze the Acute Lymphoblastic Leukemia (ALL) data set.

Refer to [5] for details of the ALL data set, containing data on 12625 genes measured for

two groups of samples sizes, 37 and 42. Table 2 presents the number of genes differentially

expressed in the BCR/ABL versus NEG comparison for the four methods. The “pooled”

two-sample t-statistics T pool
i;n1,n2

using the tn1+n2−2-distribution identify 169 genes (identical

to that given in Table S2 of [5]), which differs from the results of the other four calibration

methods. Again, we observe that the numbers of genes identified by the “two-stage,”

“adaptively pooled,” and “general” two-sample t-statistics are comparable.

7 Discussion

We have examined the validity of a calibration method used simultaneously in two-sample

t-tests, the exact distributions of which are typically unknown in many practical appli-

cations. In that instance, the inaccuracy of the distributional approximation, associated

with realistic samples sizes n1 and n2 will degrade the overall significance level, ultimately

limiting the effective number of tests m. The relationship between m and (n1, n2) is stud-

ied to ensure control of the overall level accuracy, as well as to control the FDR for some

multiple-testing procedures. A distinction is made between the choice of “general” and

“pooled” two-sample t-statistics in cases where the typical form of the independence as-

sumption between tests either holds or is violated. The proposed “adaptively pooled”

two-sample t-statistics, when used simultaneously in the calibration method, perform as
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well as the simultaneous “general” version, whereas the original “pooled” version may

behave abnormally. The proposed “two-stage” procedure compares well with the above

methods when the errors are symmetric, but outperforms the others when the errors are

skewed and is less sensitive to error asymmetry.

Simulation studies demonstrate that under appropriate independence assumptions, the

calculated FDPs of some conventional multiple-testing procedures, such as the BH proce-

dure, can be controlled when the p-values are approximated using the calibrated distribution

for the “general,” “two-stage,” and “adaptively pooled” two-sample t-statistics.

The dependence structure poses challenges related to controlling the overall significance

level and FDR. In Section 4, we demonstrated that the FWER and FWERk can be

controlled under arbitrary dependence between tests, but that the FDR would not be

controlled if we simply followed the same procedure in Section 3 without any modification.

To deal with the jointly Gaussian distributed test statistics, we introduce the factor model

to decompose these dependent test statistics into nearly independent test statistics, such

that the FDP and FDR can both be controlled asymptotically. In addition, we addressed

explicitly the performance of the “general,” “pooled,” and “adaptively pooled” two-

sample t-statistics in the more interesting and practically motivated models (4.10), (4.12),

and (B.1), allowing dependence between and within groups.

Several issues are left to future research. First, the bootstrap method provides an

alternative method for the calibrated distribution of the two-sample t-tests, potentially

relaxing log(m) = o(n1/3) to log(m) = o(n1/2), at the expense of requiring more technical

restrictions and a much heavier computational cost. Second, the power of a given multiple-

testing procedure can be improved when the p-values need to be approximated, and should

be studied on a case-by-case basis. Third, in Propositions 1, 2, 4, and 5, the condition

π0 ∈ (0, 1] excludes π0 = 0, which is the case of “dense true non-nulls.” In practice,
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information on m0 or π0 can be learned from prior knowledge or estimated using empirical

procedures [3, 18, 24]. If the resulting π0 is close to zero, it is more reasonable to use other

approaches that suit the dense case well.

Supplementary Material: All technical details, figures, and tables are relegated to the

online Supplementary Material.
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