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Abstract: We consider the estimation of a causal effect when the confounders

are subject to missingness. We allow the missingness of the confounders to be

nonignorable; that is, the missingness may depend on the missing confounders,

conditional on the observed data. The identification has been discussed in the

literature; however, few studies have focused on semiparametric causal inference

with nonignorably missing confounders. To address this, we propose three semi-

parametric estimators: the inverse probability weighting (IPW), regression, and

doubly robust (DR) estimators. The IPW and regression estimators require a

correct specification of the propensity scores and the regression models for the

confounders and outcome, respectively. Assuming the selection bias odds ratio

function is always correctly specified, the DR estimator uses both sets of models

and is consistent if either set of models, but not necessarily both, is correctly

specified. We investigate the finite-sample performance of our proposed semi-

parametric estimators using simulation studies and apply our estimators to SO2

emissions data.
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1. Introduction

The missing data problem is frequently encountered in biomedical re-

search, the social sciences, and environmental studies. There are two types

of missing-data mechanisms (Rubin, 1976): ignorable missingness and non-

ignorable missingness. The mechanism is ignorable if the missingness of

each variable does not depend on missing values conditional on the observed

data (Little, 1992; Little and Rubin, 2002). This is sometimes referred to

as missing at random. When data are subject to ignorable missingness, the

maximum likelihood approach (Dempster et al., 1977; Ibrahim, 1990), im-

putation methods (Rubin and Schenker, 1986; Rubin, 2004), fully Bayesian

inference such as Gibbs sampling (Rubin, 1976), and semiparametric meth-

ods (Zhao et al., 1996; Robins et al., 1994) have all been proposed to esti-

mate the parameters of interest.

The ignorable missingness assumption is unlikely to hold in some sce-

narios. For example, in environmental studies, records of operation times

in a power plant may be missing as time exceeds the standard amount.

The missing data are said to be nonignorable if the absence of the data

depends on the missing values. A fundamental challenge of nonignorable
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missingness is that the full data distribution is not fully identifiable without

making assumptions.

Various identification and estimation methods have been proposed for

regression problems in which the covariates or the responses are subject to

nonignorable missingness. Heckman (1979) proposed the Heckman selection

model, which requires models for the outcome regression and the selection

process. Rubin and Schenker (1986) and Glynn et al. (1993) considered

imputation-based methods for nonignorable missing data. Baker and Laird

(1988) used the expectation-maximization (EM) algorithm to obtain max-

imum likelihood estimates from contingency tables. Lipsitz and Ibrahim

(1996) discussed nonignorable missing responses for general binomial re-

gression models. Ibrahim et al. (1999) developed a method for generalized

linear models (GLMs) with nonignorable missing covariates. Chen and Lit-

tle (1999) and Herring and Ibrahim (2001) estimated regression parameters

in proportional hazards regression models with nonignorable missingness.

Roy and Lin (2002) developed methods for nonignorable dropouts in a linear

mixed model. Zhao and Shao (2016) developed a pseudo-likelihood method

that uses an instrumental variable to facilitate the identification when both

the response and the covariates are subject to nonignorable missingness.

Ma et al. (2003), D’Haultfoeuille (2010), Wang et al. (2014), Kott (2014),
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Miao et al. (2016), and Miao and Tchetgen Tchetgen (2016) discuss the

identification and estimation of a nonignorably missing outcome using a

shadow variable.

In causal inference problems, there is growing interest in recovering

the causal effect in the presence of nonignorable missing confounders or

outcomes when the missingness is nonignorable. Yang et al. (2014) used the

EM algorithm and an instrumental variable to estimate the effect of high-

level (neonatal intensive care units)NICU on the mortality of premature

babies. They regarded the compliance type as a proxy for the unmeasured

risk of complications, and allowed the missingness of the confounders to

depend on the fully observed outcome and the partially observed compliance

class. Ding and Geng (2014) discussed the identifiability of the causal effect

under the assumption that the missingness indicator of the confounders is

independent of the outcome, conditional on the treatment and the possibly

missing confounder values. Additional discussions on this assumption can

be found in D’Haultfoeuille (2010), Kott (2014), Zhao and Shao (2016),

Miao et al. (2016), and Miao and Tchetgen Tchetgen (2016). Shao and

Wang (2016) constructed a kernel-type semiparametric inverse probability

weighting estimator when the outcome is nonignorably missing. Lu and

Ashmead (2017) proposed a sensitivity analysis method that uses matching
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estimator to assess the effect of the nonignorable missing confounder on the

estimation of the treatment effect. Under a cluster-specific nonignorable

treatment assignment assumption, Kim et al. (2017) proposed a calibrated

propensity score estimator for the average causal effect.

In this study, we focus on a semiparametric estimation of the causal

effect when the confounders are nonignorably missing. Under the outcome-

independent missingness assumption, we develop three semiparametric es-

timators, namely the inverse probability weighting (IPW), regression, and

doubly robust (DR) estimators. The IPW estimator requires a correct spec-

ification of the propensity scores for the treatment selection and missing-

data mechanism. The regression estimator requires a correct specification

of the joint model of the confounders and the outcome, conditional on the

treatment in the fully observed sample. Assuming the selection bias odds

ratio function is always correctly specified, the DR estimator uses both sets

of models and is consistent when either set of models, but not necessarily

both, is correctly specified. We apply these three estimators to estimate the

causal effect of a scrubber installation on the reduction of SO2 emissions.

The remainder of the paper is organized as follows. In Section 2, we

introduce the notation and assumptions. We propose three semiparametric

estimators in Section 3. We further illustrate our methods using simulation
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studies in Section 4, and analyze real data in Section 5. The paper concludes

with a discussion in Section 6.

2. Notation and Assumptions

Let X denote the random vector of all confounders. The values of the

confounders X are subject to missingness. Let R = 1 if all components

of X are completely observed, and R = 0 if some components of X are

missing. Note that we consider only binary missing patterns, for simplic-

ity. We extend our results to the multiple missing patterns setting in the

Supplementary Material. Let A = 1 if the treatment is received and A = 0

otherwise. Let Y denote the outcome of interest. We consider the case

where the confounders X are subject to missingness, while the treatment

A and the outcome Y are fully observed. Let O = (A,R,RX, Y ) denote

the observed data. Let a, r, x, and y denote the possible values that A, R,

X, and Y , respectively, can take. Let Y1 and Y0 denote the potential out-

comes, that is, the outcome under treatment, and the control, respectively.

The parameter of interest is the treatment effect on the outcome, that is,

∆ = E(Y1 − Y0) = µ1 − µ0, where µa = E(Ya) is the average potential

outcome if A = a. An extension of the proposed methods to estimate the

treatment effect on the treated is given in the Supplementary Material.
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By the causal consistency assumption, we have Y = AY1 + (1 − A)Y0.

Additionally, we make an ignorability assumption that the treatment A is

conditionally independent of the potential outcomes, given the confounders

X; that is, A ⊥⊥ (Y0, Y1)|X. That is, we assume there are no unmeasured

confounders, but confounders can have missing values for some units.

With the confounders X having missing values, Ding and Geng (2014)

showed that without any assumptions, the joint distribution of (A, Y,X) is

not identifiable. For the purpose of identification, we make the following

outcome-independent missingness assumption.

Assumption 1 (Outcome-independent missingness). Assume that, given

the treatment A and the confounders X, the missingness indicator R is

independent of the outcome Y ; that is, R⊥⊥ Y |A,X.

This assumption is also termed the instrumental missingness assump-

tion (Zhao and Shao, 2016) or the shadow variable assumption in Ma et al.

(2003), D’Haultfoeuille (2010), Miao et al. (2018), and Miao and Tchet-

gen Tchetgen (2016). This outcome-independent missingness assumption

is reasonable for the missingness of confounders, given that the confounders

X are collected at the baseline and the outcome Y is observed at a later time

or when the missingness of the confounders is by design (Ding and Geng,

2014). Under this assumption, identifying the joint distribution of (A, Y,X)
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has been well studied in Ding and Geng (2014), Yang et al. (2019), Miao

and Tchetgen Tchetgen (2017), and Miao et al. (2018). In this paper, we

assume the underlying data distribution always satisfies the identification

conditions, and focus on performing a semiparametric inference, assuming

the confounders satisfy the outcome-independent missingness assumption.

3. Semiparametric Inference

3.1 IPW Estimator

The classic IPW estimator was first proposed by Horvitz and Thompson

(1952) in the survey sampling literature. The idea is to create a pseudo

population by weighting each subject by the inverse of the conditional prob-

ability of receiving the treatment, given confounders, that is, 1/Pr(A|X).

In this pseudo population, the treatment A can be viewed as completely

randomized and its association with the confounders X is removed. The

propensity score Pr(a|x) is, in general, unknown; thus, it is typically re-

placed with an estimate in the weights.

However, the propensity score Pr(a|x) is not directly estimable when

the confounders are subject to missingness. To address this, we propose an

IPW estimator, that extends the classic IPW estimator to the setting with

nonignorable missing confounders. We assume that the joint propensity
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score of the treatment and the missingness indicator is positive, that is,

Pr(a, r|x) > 0 for all a, r, and x. The construction of the IPW estimator

relies on the following representation of the average potential outcome, the

derivation of which is presented in the Supplementary Material.

Lemma 1. µa = E

{
1(A = a)RY/Pr(A,R|X)

}
.

In order to construct the IPW estimator using the above representation,

we need to obtain an estimate for Pr(a, r|x). Because the confounders X are

not fully observed, the estimation of the propensity score Pr(a, r|x) requires

special parameterization. Specifically, we use a semiparametric odds ratio

representation for this joint distribution (Chen, 2007),

Pr(a, r|x) =
ψ(a, a0 = 1, r, r0 = 1|x) Pr(r|a0 = 1, x) Pr(a|r0 = 1, x)∑1

r=0

∑1
a=0 ψ(a, a0 = 1, r, r0 = 1|x) Pr(r|a0 = 1, x) Pr(a|r0 = 1, x)

,

(3.1)

and

ψ(a, a0 = 1, r, r0 = 1|x) =
Pr(r|a, x) Pr(r0 = 1|a0 = 1, x)

Pr(r|a = 1, x) Pr(r0 = 1|a, x)
.

According to (3.1), to model Pr(a, r|x), we need only model Pr(a|r0 = 1, x)

and Pr(r|a, x).

Let α and γ denote the parameters in the models Pr(a|r = 1, x;α) and

Pr(r|a, x; γ), respectively. The maximal likelihood estimates (MLE) for α,
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denoted by α̂, can be obtained by fitting a regression of the treatment A

on the confounders X for those individuals with fully observed confounders

(R = 1). However, owing to the missingness of the confounders X, one

cannot calculate an estimate of γ by fitting a regression model directly.

Instead, we obtain an estimator for γ by solving the following estimation

equation:

Pn
[{

R

Pr(R|A,X; γ)
− 1

}
l(A, Y )

]
= 0, (3.2)

where l(A, Y ) is any differentiable vectorized function of A and Y that

satisfies the regularity condition 1 given in the Supplementary Material.

The function l can be chosen based on the model posited on the propensity

score Pr(r|a, x). For example, assuming logit Pr(r|a, x; γ) = γ1 + γ2a+ γ3x,

where x is a scalar, the function l can be chosen as l(A, Y ) = (1, A, Y )T .

Thus, the number of estimating equations is the same as the dimension of

γ. We could also allow the dimension of l to exceed that of γ, and apply

the generalized method of moments (GMM) to estimate γ (Hall, 2005).

An important feature of the estimating equation (3.2) is that the miss-

ing confounders X are only involved in the propensity score Pr(r|a, x; γ),

the inverse of which is multiplied by the missing indicator R. Thus, the

confounders are only needed for individuals with R = 1, that is, those who
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have fully observed confounders. Therefore, equation (3.2) is estimable. Let

γ̂ipw denote an estimator of γ by solving (3.2). As shown in the Supplemen-

tary Material, the consistency of γ̂ipw relies on the outcome-independent

missingness assumption 1.

Thus, we construct an IPW estimator with estimated parameters α̂ and

γ̂ipw as follows:

µ̂ipwa = Pn
{

1(A = a)RY

Pr(A,R|X; α̂, γ̂ipw)

}
,

where Pn denotes the empirical average; that is, Pnν(O) =
∑n

i=1 ν(Oi)/n,

for any functions ν(O).

As mentioned, when there are no missing values for the confounders X,

we can remove the confounding of the treatment selection by assigning each

individual a weight, the weight is an estimate of 1/Pr(A|X), the inverse

of the propensity score of the treatment selection. However, because the

confounders are only fully observed for individuals with R = 1, we restrict

our estimator to a summation over those individuals with fully observed

confounders. To account for this selection, we further weight these indi-

viduals using an estimate of 1/Pr(R = 1|A,X), the inverse probability of

observing all confounders. Hence, the weight for our IPW estimator is an

estimate of 1/Pr(A,R|X), the inverse of the joint propensity score of the

treatment and the missing indicator.
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The following proposition provides the consistency of the IPW estima-

tor.

Proposition 1. Under Assumption 1, suppose Pr(r|a, x; γ) and Pr(a|r =

1, x;α) are correctly specified. Then the IPW estimator µ̂ipwa is consistent

for µa, where α̂ is the MLE of α, and γ̂ipw is obtained from the estimation

equation (3.2).

The choice of l will generally affect the efficiency, but does not affect the

consistency, as long as the identification conditions hold and the required

models are correctly specified. The choice of l that leads to the most efficient

IPW estimator can be derived using the results in Newey and McFadden

(1994). We relegate the asymptotic normality and the variance of the IPW

estimator to the Supplementary Material.

3.2 Regression

If the confounders X are fully observed, then by the ignorability assump-

tion, we can estimate the causal effect by regressing Y on X and A and then

marginalizing overX, because µa =
∫
x
E(Ya|x)f(x)dx =

∫
x
E(Y |a, x)f(x)dx.

Here f(x) is either the probability density function of X if X is continu-

ous or the probability mass function if X is discrete, and the integral is

the Riemann–Stieltjes integral. When the confounders X are subject to
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outcome-independent missingness, we have E(Y |a, x) = E(Y |a, x, r = 1).

However, even though we are able to evaluate the regression coefficients in

the model E(Y |a, x), we are still unable to evaluate E(Y |a, x) among those

with missing confounders, with the confounders distributed in the popu-

lation according to f(x). Thus, we cannot directly estimate the average

potential outcome µa in the study population.

Therefore, let ga(x) = E(Y |a, x, r = 1). Then we have the following

representation of the average potential outcome

Lemma 2. µa = E{ga(X)} = E[Rga(X) + (1−R)E{ga(X)|A,R = 0}].

The proof of Lemma 2 is given in the Supplementary Material. Thus, to

construct a regression estimator, we need to obtain estimates for ga(x) and

E{ga(X)|a, r = 0}.

Let β denote the parameter in the model f(x, y|a, r = 1; β). When

R = 1, the confounders X are fully observed, in which case the MLE β̂ for

the parameter β can be estimated directly. Then, we can estimate ga(x)

using ga(x; β̂) = E(Y |a, x, r = 1; β̂).

To obtain an estimate for E{ga(X)|a, r = 0}, we first estimate f(x, y|a, r =

0). Again, this is not straightforward, because the confounders X are sub-

ject to missingness when R = 0. We use the following representation for

f(x, y|a, r = 0).
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Lemma 3.

f(x, y|a, r = 0) =
η(r = 0, r0 = 1, x, x0 = 0|a)f(x, y|a, r = 1)

E{η(r = 0, r0 = 1, X, x0|a)|a, r = 1}
,

where

η(r, r0, x, x0|a) =
Pr(r|a, x) Pr(r0|a, x0)
Pr(r0|a, x) Pr(r|a, x0)

.

The derivation of Lemma 3 is given in the Supplementary Material. If the

missingness of the confounders X is ignorable, then the missingness mech-

anism Pr(r|a, x) does not depend on x. In that case, η(r, r0, x, x0|a) = 1.

Thus, the function η(r, r0, x, x0|a) can be viewed as a selection bias func-

tion, because its deviation from one indicates that the missing mechanism

of the confounders X is nonignorable.

We can parameterize the above representation of f(x, y|a, r = 0) into

two parts: η(r, r0, x, x0|a) and f(x, y|a, r = 1). Let ξ denote the parameter

in the model η(r, r0, x, x0|a; ξ). The estimation of ξ cannot be obtained

directly, owing to the missingness of X. Therefore, for any function l(A, Y ),

we have the following representation for E{l(a, Y )|a, r = 0}.

Lemma 4.

E{l(a, Y )|a, r = 0} =
E{η(r = 0, r0, X, x0|a)l(a, Y )|a, r = 1}

E{η(r = 0, r0, X, x0|a)|a, r = 1}
.

The derivation of Lemma 4 is given in the Supplementary Material. Note

that on the right-hand side, the possibly missing confounders X are only
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involved in the subpopulation where R = 1. Thus, E{l(a, Y )|a, r = 0} can

be evaluated using the observed data. Furthermore, the expectation can

be evaluated numerically if it does not have a closed form. Under such a

representation, we have the following estimation equation for ξ:

Pn
[
(1−R)

{
l(A, Y )− E{l(A, Y )|A,R = 0; β̂, ξ}

}]
= 0, (3.3)

where β̂ is the MLE of β, and l(A, Y ) is a vectorized arbitrary differentiable

function of A and Y that satisfies regularity condition 2 in the Supple-

mentary Material. Once we obtain an estimate ξ̂reg for ξ, we can estimate

E{ga(X)|a, r = 0} using E{ga(X; β̂)|a, r = 0; β̂, ξ̂reg} =
∫
ga(x; β̂)f(x|a, r =

0; β̂, ξ̂reg)dx, where ga(x; β̂) = E(Y |a, x, r = 1; β̂).

Thus, we construct the regression estimator as

µ̂rega = Pn
[
(1−R)E{ga(X; β̂)|a, r = 0; β̂, ξ̂reg}+Rga(X; β̂)

]
. (3.4)

The regression estimator µ̂rega circumvents the problem of evaluating the

distribution of the confounders by evaluating ga(x) and E{ga(X)|a, r = 0}

instead. The expected values of ga(X) among individuals with and without

missing confounders together form the population average of ga(X), which is

the same as the mean potential outcome µa. The consistency of a regression

estimator for µa is given in the following proposition.
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Proposition 2. Under Assumption 1, assume η(r = 0, r0, x, x0|a; ξ) and

f(x, y|a, r = 1; β) are correctly specified. Then the regression estimator

µ̂rega given in (3.4) is consistent for µa, where β̂ is the MLE of β and ξ̂reg is

obtained by (3.3).

The asymptotic normality and variance of the regression estimator can

be derived similarly to those of the IPW estimator. We omit the derivation

here, for simplicity.

3.3 DR

The DR estimator was first proposed by Robins et al. (1994) in the form

of an augmented IPW estimator for regression coefficients with covariates

missing at random. Further discussion on the existing DR estimator can

be found in Lunceford and Davidian (2004), Carpenter et al. (2006), Leon

et al. (2003), Davidian et al. (2005), Bang and Robins (2005), and Kang

and Schafer (2007). Typically, a DR estimator involves a propensity score

model and an outcome and a confounders regression model and is consistent

when either model is correctly specified. It is also known to achieve the

semiparametric efficiency bound when both models are correctly specified.

This class of estimators also appears in the survey sampling literature,

where they are referred to as model-assisted survey estimators (Särndal
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et al., 2003).

If the confounders are missing at random, the specifications of the

propensity scores and the regression models for the confounders and the

outcome are independent. However, owing to the presence of nonignor-

able missing confounders X, the parameters in the propensity score of the

missingness and the joint distribution model of X and Y , conditional on

A,R = 1, are not variationally independent. To see this, we have the fol-

lowing representation of the propensity score for the missingness, the proof

of which follows directly from the definition.

Lemma 5.

Pr(r = 1|a, x) =
Pr(r = 1|a, x = 0)

Pr(r = 1|a, x = 0) + η(r = 0, r0, x, x0|a) Pr(r = 0|a, x = 0)
.

Let δ denote the parameter in the model for Pr(r = 1|a, x = 0; δ). Hence,

we can parameterize Pr(r = 1|a, x; γ) into Pr(r = 1|a, x = 0; δ) and

η(r = 0, r0, x, x0|a; ξ), where γ = (δ, ξ). Recall that the parameterization

of f(x, y|a, r = 0; β, ξ) in Section 3.2 also involves η(r = 0, r0, x, x0|a; ξ).

Thus, η(r = 0, r0, x, x0|a; ξ) lies in the intersection of the propensity score

model Pr(r = 1|a, x; γ) and the regression model f(x, y|a, r = 0; β, ξ).

To construct a DR estimator, we assume that the functional form of

η(r = 0, r0, x, x0|a; ξ) is always correctly specified, with an unknown pa-

rameter ξ. We propose a DR estimator for µa in the sense that if either
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set of baseline models (i) Pr(r = 1|a, x = 0; δ) and Pr(a|r = 1, x;α) or (ii)

f(x, y|a, r = 1; β) is correctly specified, the DR estimator is consistent for

µa.

The key to constructing a DR estimator for µa is to first do so for the

parameter ξ in the selection bias function η(r = 0, r0, x, x0|a; ξ) when either

Pr(r = 1|a, x = 0; δ) or f(x, y|a, r = 1; β) is correctly specified. We can

obtain an estimator δ̂ for δ and a DR estimator ξ̂dr for ξ by solving the

following estimating equation:

Pn
[{

R

Pr(R|A,X; δ, ξ)
− 1

}{
l(A, Y )− E{l(A, Y )|A,R = 0; β̂, ξ}

}]
= 0,

(3.5)

where l(A, Y ) is an arbitrary vectorized differentiable function that satis-

fies regularity condition 3 in the Supplementary Material. We can evaluate

E{l(a, Y )|a, r = 0} using Lemma 4. The estimating equation (3.5) resem-

bles (3.2) for the parameters in the propensity score of the IPW estimator,

and resembles (3.3) for the parameters in the regression of the regression

estimator. Equation (3.5) differs from (3.2) in that (3.5) replaces l(A, Y ) in

(3.2) with a centered function l(A, Y )−E{l(A, Y )|A,R = 0; β̂, ξ̂dr}. Equa-

tion (3.5) differs from (3.3) in that (3.5) involves the propensity score of

the missingness in the weight. This centering and weighting achieve the
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DR estimation of the selection bias parameter ξ. Similarly to estimating

equations (3.2) and (3.3), the confounders X are only involved in the in-

dividuals when R = 1. Thus, equation (3.5) can be evaluated using the

observed data. A detailed proof of the DR property of the estimator ξ̂dr is

given in the Supplementary Material.

Hence, the DR estimator for µ can be constructed as

µ̂dra = Pn
[

R

Pr(R|A,X; δ̂, ξ̂dr)

{
ĥa(A,X, Y )− E{ĥa(A,X, Y )|A,R = 0; β̂, ξ̂dr}

}
+ E{ĥa(A,X, Y )|A,R = 0; β̂, ξ̂dr}

]
,

(3.6)

where ĥa(A,X, Y ) = 1(A = a){Y −ga(X; β̂)}/Pr(A|X; α̂, δ̂, ξ̂dr)+ga(X; β̂),

and

E{ĥa(A,X, Y )|A,R = 0; β̂, ξ̂dr} =
E
{
Rη(r = 0, r0, X, x0|A)ĥa(A,X, Y )|A; β̂, ξ̂dr

}
E
{
Rη(r = 0, r0, X, x0|A)|A; β̂, ξ̂dr

} .

Here, we give an intuitive illustration of the DR property of µ̂dra . A

more rigorous proof can be found in the Supplementary Material. Note

that

µ̂dra = µ̂ipwa + Pn
[

Ri

Pr(Ri|Ai, Xi; δ̂, ξ̂dr)

{
1− 1(Ai = a)

Pr(Ai|Xi; α̂, δ̂, ξ̂dr)

}
ga(Xi; β̂)

]
+Pn

[{
1− Ri

Pr(Ri|Ai, Xi; δ̂, ξ̂dr)

}
E{ĥa(Xi, Yi)|Ai, Ri = 0; δ̂, ξ̂dr}

]
.
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If the baseline propensity scores are correctly specified, but f(X, Y |A,R =

1) may be misspecified (i.e., (i) holds), then the estimator

converges in probability to

E

[
µ̂ipwa +

Ri

Pr(Ri|Ai, Xi)

{
1− 1(Ai = a)

Pr(Ai|Xi)

}
ga(Xi; β

†)

]

+E

[{
1− Ri

Pr(Ri|Ai, Xi)

}
E{h†a(Ai, Xi, Yi)|Ai, Ri = 0}

]]
,

where h†a(A,X, Y ) = 1(A = a){Y − ga(X; β†)}/Pr(A|X) + ga(X; β†), and

β† is the limit of β̂ under the possibly misspecified model. The expectation

of the first term in the above equation is equal to µa, and that of the second

and third terms both equal zero. Thus, the DR estimator is consistent. If

the baseline outcome model f(X, Y |A,R = 1) is correctly specified, but the

baseline propensity scores may be misspecified(i.e., (ii) holds), then it can

be shown that µ̂dra converges to

E[Rh∗a(A,X, Y ) + (1−R)E{h∗a(A,X, Y )|A,R = 0}],

where h∗a(A,X, Y ) = 1(A = a){Y −ga(X)}/Pr(A|X;α∗, δ∗)+ga(X), α∗ and

δ∗ denote the limits of α̂ and δ̂, respectively, in the misspecified propensity

score models, and the correctly estimated parameter β and ξ are omitted.

The right-hand side resembles the expectation of the regression estimation

given in Lemma 2, to that with ga(X) replaced with h∗a(A,X, Y ). Follow-
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ing a similar derivation as the one for the regression estimator, we have

E[Rh∗a(A,X, Y ) + (1 − R)E{h∗a(A,X, Y )|A,R = 0}] = E{h∗a(A,X, Y )}.

When (ii) holds, we have E{h∗a(A,X, Y )} = E{ga(X)} = µa. Thus, the

estimator µ̂dra is doubly robust.

The DR properties of ξ̂dr and µ̂dra are given in the proposition below.

The asymptotic normality and variance of the DR estimator µ̂dra can be

derived similarly to those of the IPW estimator.

Proposition 3. Under Assumption 1 and assuming η(r = 0, r0, x, x0|a; ξ)

is correctly specified, if (i) Pr(r = 1|a, x = 0; δ) and Pr(a|r = 1, x;α) or (ii)

f(x, y|a, r = 1; β) is correctly specified, then ξ̂dr and µ̂dra are consistent for ξ

and µa, respectively, where α̂ and β̂ are the MLEs of α and β, respectively,

and ξ̂dr and δ̂ are obtained by (3.5) and µ̂dra is given in (3.6).

As we show in the Supplementary Material, a correct specification of

Pr(a|r = 1, x;α) is not necessarily needed for the DR property of ξ̂dr, but

it is indispensable for the DR property of µ̂dra .

Similarly to the IPW and the regression estimators, the user-specified

function l(A, Y ) in (3.5) affects the efficiency, but not the consistency of

the estimators ξ̂dr and µ̂dra . The choice of l(A, Y ) that leads to the most

efficient estimators ξ̂dr and µ̂dra can be derived following Newey and McFad-

den (1994). Under such a choice of l(A, Y ), the estimator µ̂dra achieves the
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semiparametric efficiency bound. Similarly to the argument in Miao et al.

(2018), the semiparametric efficient estimator for µa only has a closed-form

solution when all the variables are binary; thus, in practice, we do not

recommend using it over the DR estimator µ̂dra proposed here.

4. Simulations

In this section, we study the finite-sample performance of the three proposed

semiparametric methods using simulations. We consider four scenarios: (a)

the baseline propensity models Pr(r = 1|a, x = 0; δ) and Pr(a|r = 1, x;α)

and the baseline regression model f(x, y|a, r = 1; β) are all correctly spec-

ified; (b) the baseline propensity scores Pr(r = 1|a, x = 0; δ) and Pr(a|r =

1, x;α) are correctly specified, but the regression model f(x, y|a, r = 1; β)

is misspecified; (c) the baseline regression model f(x, y|a, r = 1; β) is cor-

rectly specified, but Pr(r = 1|a, x = 0; δ) and Pr(a|r = 1, x;α) are both

misspecified; (d) neither the baseline propensity scores nor the baseline re-

gression model are correctly specified. For scenario (a), we carried out the

simulations in the following steps.

First, we generated a population of size n = 4000. For each individual,

covariates X1 and X2 were generated independently from Bernoulli distri-

butions with probability 0.3 and 0.8, respectively. We assumed logistic
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models for the baseline propensity scores as logit Pr(a = 1|r = 1, x) = 0.8+

1.6x1−0.4x2 and logit Pr(r = 1|a, x) = 0.5+1.2a+1.2x1−0.4x2. The joint

propensity score Pr(a, r|x) was then calculated using (3.1). The missingness

indicator R and the treatment A were generated from Pr(a, r|x). Finally,

we generated the outcome Y from the normal distribution f(y|x1, x2, a) =

φ(0.5 + 2x1 − 3x2 + 0.5x1x2 + 3a, 0.01), where φ(µ, σ2) denotes the normal

density function with mean µ and variance σ2.

Second, the propensity score models were correctly specified as logit Pr(a =

1|r = 1, x;α) = α1 + α2x1 + α3x2 and logit Pr(r = 1|a, x; γ) = δ1 +

δ2a + ξ1x1 + ξ2x2. The parameter α = (α1, α2, α3) was estimated using

the MLE, and γ = (δ1, δ2, ξ1, ξ2) was estimated using equation (3.2) with

l(A, Y ) = {1, A,AY,A sin(AY )}. Then, the IPW estimator µ̂ipwa was calcu-

lated.

Third, the outcome regression model was correctly specified as f(y|x, a, r =

1; β) = φ(β1 + β2x1 + β3x2 + β4x1x2 + β5a, β
2
6). In addition, Pr(x|a, r =

1; β) was correctly specified using a saturated model Pr(x|a, r = 1; β) =

β7 + β8x1 + β9x2 + β10a + β11x1a + β12x2a, and, we correctly specified

η(r = 0, r0, x, x0; ξ) as η(r = 0, r0, x, x0; ξ) = exp(ξ1x1 + ξ2x2). The param-

eter β was estimated using the MLE, and ξ was estimated using equation

(3.3) with l(A;Y ) = (AY,AY 2). Then, the outcome regression estimator
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µ̂rega was calculated.

Fourth, the models Pr(a = 1|r = 1, x;α), f(y|x, a, r; β), Pr(x|a, r =

1; β), Pr(r = 1|a, x = 0; δ), and η(r = 0, r0, x, x0; ξ) were correctly specified,

as before, and the estimate for the parameter γ = (δ, ξ) was obtained using

equation (3.5) with l(A, Y ) = (Y,AY, Y 2, AY 2). Then, the DR estimator

µ̂dra was calculated. We repeated the above procedures 1000 times.

The model for f(y|x, a, r = 1; β) was correctly specified owing to the

outcome-independent missingness assumption R⊥⊥Y |A,X. The simulations

in scenario (b) are similar to those in scenario (a), except the outcome model

f(y|x, a, r = 1) was misspecified as an exponential distribution f(y|x, a, r =

1; β) = |β0+β1x1|e−|β0+β1x1|y. Note that we still correctly specified the model

for Pr(x|a, r = 1) in this scenario. However, f(x, y|a, r) was misspecified

owing to the misspecification of f(y|x, a, r = 1). The simulations in scenario

(c) are similar to those in scenario (a), except that the propensity score

models Pr(r = 1|a, x = 0) and Pr(a = 1|r = 1, x) were misspecified as

logit Pr(r = 1|a, x = 0) = γ1 and logit Pr(a = 1|r = 1, x) = α1, respectively.

For scenario (d), both the propensity score and the outcome models in

scenario (a) were replaced by the misspecified models above.

The biases and empirical coverages of the Wald-type 95% confidence

intervals (CIs) for the IPW, regression and DR estimators for µa are pre-
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Figure 1: Bias, coverage of the 95% Wald type confidence intervals of the

IPW, regression, and DR estimators for µa when (a) both the baseline

propensity and the outcome models are correctly specified, (b) only the

baseline outcome model is correctly specified, (c) only the baseline propen-

sity score models are correctly specified, and (d) none of the baseline models

are correctly specified.

sented in Figure 1. The CIs were constructed using the estimated variance

proposed in Section 3. We kept the ranges of the biases shown in Figure 1

the same for all scenarios; thus, seriously biased estimators are not shown

in this figure. In scenario (a), because all the baseline models are correctly

specified, the IPW, regression, and DR estimators all perform well in terms
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of having small biases (the biases are <0.001, 0.002, and 0.001 for the three

estimators, respectively, for µ0), as well as having the CIs achieve close to

the nominal levels (between 92% to 95%). In scenarios (b) and (c), neither

the IPW nor the regression estimator performs well when the corresponding

models are misspecified. For example, when the propensity score models

are misspecified, the bias of the IPW estimator µ̂ipw0 is 0.18, and when the

outcome model is misspecified, the bias for the regression estimator µ̂reg0

is 0.59. The DR estimator µ̂dr0 still showed relative small biases (< 2e−3)

in both cases. The coverage of the DR estimator remained at the nominal

levels, while that of the IPW and the regression estimators dropped signifi-

cantly when the corresponding models were misspecified (e.g., the coverage

is 49.5% for the IPW estimator µ̂ipw1 , zero for the regression estimator µ̂reg1 ,

and 94.8% and 98.2% for the DR estimators µ̂dr1 in scenarios (b) and (c),

respectively). In scenario (d), when the baseline models are all misspeci-

fied, the IPW and regression estimators showed relatively large biases, as

mentioned before, as in scenarios (b) and (c). The DR estimator exhibited

a bigger bias in scenario (d) than that in scenarios (a)–(c), but its bias was

much smaller than, or at least comparable with, the other two estimators

in scenario (d) (e.g., the bias for µ̂dr1 is 0.03).

The biases and empirical coverages of the Wald-type 95% CIs for the
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IPW, regression and DR estimators for the parameters ξ in the selection

bias function η(r = 0, r0, x, x0; ξ) are presented in Figure 2 in the Supple-

mentary Material. Again, when an estimator is severely biased, the results

are beyond the ranges shown in Figure 2. The results were similar to those

for the estimators of µa, demonstrating the DR property of ξ̂dr.

5. Application

In this section, we further illustrate the proposed semiparametric estimators

by means of an application to the sulfur dioxide (SO2) emissions data. SO2

is a toxic gas, and even short-term exposure harms the human respiratory

system. In 1990, the Acid Rain Program was launched to reduce ambi-

ent PM2.5 (atmospheric particulate matter (PM) with a diameter of less

than 2.5 µm) by limiting the emissions of multiple pollutants (SO2, NOx,

and CO2). The reduction was achieved mostly by cutting emissions from

coal-fired electricity-generating units(EGUs), that is, by installing flue-gas

desulfurization equipment (“scrubbers”). Thus, it is of interest to evaluate

the causal effect of scrubber technologies on the reduction of SO2 emissions.

Monthly emissions data for 2004 were collected from the emissions mon-

itors on 258 coal-fired power plants (Zigler et al., 2016). A power-generating

facility may consist of multiple EGUs and scrubbers are installed on the
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EGUs. The data set contains 223 EGUs with scrubbers installed, and 812

EGUs without scrubbers installed. Three important baseline characteristics

of the EGUs are included in the data set: operation time, heat input rate

of every unit, and coal sulfur content. Because these factors affect both

the installation of the scrubbers and the emissions of SO2, they serve as

the confounders of the causal relationship between the treatment and the

outcome.

Let X1 denote the operation time, X2 denote the sulfur content of

each ton of coal, and X3 denote the heat input rate (mmBtu/hr) at the

baseline. A valid causal inference of the effect of the scrubbers on SO2

emissions hinges on the missingness of the confounders. Here 3.35% of the

data are missing for operation time, 0.78% are missing for the heat input

rate of every unit, and 8.02% are missing for the coal sulfur content, with

a total of about 9% missingness for at least one of the confounders. We

delete observations with extreme weights because they make the estimators

very unstable. These observations account for less than 3% of the data.

A naive analysis, where we calculate the difference between the average

SO2 emissions among the EGUs with and without the scrubber installation,

indicates that the scrubbers reduce SO2 emissions by 472.35 tons, (standard

error (SE) =14.66 and p-value < 0.001). Because the scrubbers were not
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randomly assigned, this naive estimate cannot be interpreted as the causal

effect of the scrubber installation on reducing the pollutant. To account

for repeated measurements from the same EGUs, we assume a linear mixed

effects model for the outcome Y as f(y|x, a, r = 1; β) = φ(β1 + β2x1 +

β3x2 + β4x3 + β5a, β
2
6). We assume the confounders X1, X2, and X3 are

independent with each other, and conditional on A and R = 1, Xj follows

a normal distribution N(β7,j + β8,ja, β
2
9,j), for j = 1, 2, 3. We also assume

that the missingness mechanism and the propensity scores of the scrubber

installation Pr(r = 1|a, x) follow logistic regression models logit Pr(r =

1|a, x; γ) = δ1 + δ2a + ξ1x1 + ξ2x2 + ξ3x3 and logit Pr(a = 1|r = 1, x;α) =

α1 +α2x1 +α3x2 +α4x3, respectively. The parameters ares estimated as in

Section 3.

From the models specified above, the selection bias function η(r =

0, r0, X, x0; ξ) has the form η(r = 0, r0, X, x0; ξ) = exp(ξ1x1 + ξ2x2 + ξ3x3).

The IPW, regression and DR estimators for the parameters ξ in the selection

bias function η(r = 0, r0, X, x0; ξ) are ξ̂ipw = (1.42, 1.00, 0.69) (SE=(0.26,3.17,1.46),

p-value=(4.72×10−8,0.57,0.64)), ξ̂reg = (1.85,−4.49, 8.45) (SE=(0.39,0.44,1.27),

p-value= (2.09×10−6, 1.9×10−24, 2.86×10−11)), and ξ̂DR = (4.40,−1.00, 1.76)

(SE=(5.43,0.41,7.20), p-value = (0.42, 0.01, 0.81)). Hence, at least one

component of ξ is estimated to be significantly away from zero for all three
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estimators, indicating that it is less likely that the missingness of the con-

founders is ignorable. For the causal effect of interest, the IPW, regression

and DR estimators suggest 594.60 (SE=26.34, p-value < 0.001), 648.99

(SE=4.85, p-value < 0.001), and 511.28 (SE=32.45, p-value < 0.001) tons

of reduction, respectively, of SO2 emissions after the installation of the

scrubbers. Detailed parameter estimates and SEs are given in Table 2 in

the Supplementary Material. All three estimators suggest that scrubbers

are effective in reducing SO2 emissions, and that this reduction is estimated

to have a larger magnitude for all three estimates than that of the naive

estimator.

6. Conclusion

We have proposed three semiparametric estimators for estimating the a

causal effect in the presence of nonignorably missing confounders.

The proposed semiparameteric estimators are closely related to the es-

timators proposed in Sun et al. (2018) and Miao et al. (2018). The main

difference is that our estimators are proposed under a causal inference set-

ting with nonignorably missing confounders, which makes the construction

and calculation of the estimators more complicated.

As pointed out by one reviewer, the stable unit treatment value assump-
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tion may be violated when a monitor is affected by the emission of several

EGUs, that is, interference may be present. Under interference, the esti-

mands and estimators need to be redefined to reflect the cohort effect and

the individual effect. For example, Tchetgen Tchetgen and VanderWeele

(2012) and Liu et al. (2019) evaluate the causal effects under a hypothetical

randomization and proposed estimators for direct, indirect, total, and over-

all effects. Furthermore, additional detailed geographical information, such

as population densities, GPS locations, and land use, and weather informa-

tion, need to be collected to carry out further adjustments. Here, we use

SO2 emission data to illustrate our proposed method. We leave extensions

of our method to interference to future research.

We have assumes that the treatment and outcomes are fully observed.

Thus, constructing an efficient semiparametric estimator with missing treat-

ment and outcome values and missing confounder values is also left to future

studies.

Supplementary Material

Section S1 contains the proof of Lemma 1. Section S2 provides the

proof of Proposition 1. Section S3 presents the asymptotic normality and

variance for the IPW estimator. Section S4 presents the proof of Lemma 2.

Section S5 shows the derivation of the equations for the regression estimator.
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Section S6 shows the proof of Proposition 2. Section S7 presents the proof

of Proposition 3. Sections S8 and S9 extend the Lemmas, Propositions,

and semiparametric estimators to the multiple missing patterns setting and

to the average treatment effect on the treated as the parameter of interest

setting. Section S10 includes additional tables and figures.
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