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Abstract: Multivariate responses are commonly encountered in many applications

with high-dimensional input variables. Feature screening has been shown to be a

very useful data analysis tool for high-dimensional data. Since the introduction

of the sure independence screening approach, many variable screening methods

have been proposed and studied in the literature. However, the majority of these

methods focus on the classical univariate response data case, and do not apply

naturally to data sets with multiple responses. We systematically study vari-

able screening methods for multi-response data. First, we consider extensions

of several popular screening methods to deal with multiple responses. Each of

these methods has its own clear drawbacks. We then propose a new model-

free screening method, which we call multi-response rank canonical correlation

screening (mRCC), which not only takes into account the dependence structure

among the multivariate responses, but also preserves nice properties of the rank

correlation, such as robustness and invariance under monotonic transformation.

The sure screening property of mRCC is established under weak regularity con-
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ditions. Extensive numerical experiments demonstrate the superior performance

of mRCC over other available alternatives.

Key words and phrases: Multi-response data; Rank correlation; Canonical corre-

lation; Sure screening property.

1. Introduction

Multivariate responses are commonly encountered in many statistical

applications. For example, microarray expression experiments and array

comparative genomic hybridization (CGH) experiments have been con-

ducted by biologists in breast cancer cohort studies (Sorlie et al., 2001;

Zhao et al., 2004; Chin et al., 2006; Bergamaschi et al., 2008). The re-

sulting data from these experiments are RNA transcript levels and DNA

copy numbers. Although analyses of expression arrays alone or CGH arrays

alone have provided useful information, an integrative analysis of DNA copy

numbers and gene expression files is necessary, because these two types of

data offer complementary information. Hence, integrating DNA and RNA

data benefits the recognition of more subtle genetic regulatory relationships

in cancer cells (Pollack et al., 2002).

A straightforward way to model and analyze such data sets is to use a

multi-response regression, though our method is not limited to the regres-

sion model. Let n denote the sample size, p the number of predictors, and

Statistica Sinica: Preprint 
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q the number of responses. A multi-response regression model is

Y = B0 + XB + E, (1.1)

where Y = (Y1, · · · , Yq) is an n × q response matrix, X = (X1, · · · , Xp)

is an n × p design matrix, B = (βkj) is a p × q matrix of parameters,

B0 = (β011, · · · , β0q1) is an n× q matrix of intercepts, with 1 an n-vector

with all entries equal to one, and E is an unobserved n×q matrix, with row

vectors ε1, · · · , εn that are independent copies with mean zero and covari-

ance matrix ΣE. In general, we should not treat a multi-response problem

as multiple univariate response problems, although the solutions may some-

times be the same. For example, we can obtain the ordinary least squares

estimator of (1.1) by performing a separate linear regression on each re-

sponse. If the errors are correlated, a weighted criterion of the residual sum

of squares arises naturally, and the solution still amounts to the ordinary

least squares estimates. However, this is not the case for a regression with

a Lasso penalty on the entries of B. When a Lasso regression involves a

known ΣE, the optimal solution for B obtained from the weighted criterion

accounts for the inverse of ΣE (Rothman et al., 2010), which is different

from the separate Lasso regression estimates with each response. When p is

very large, there are challenges related to computational efficiency, statis-

tical consistency, and algorithmic stability (Fan et al., 2009). To this end,
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many shrinkage estimators of the parameters have been proposed for the

multi-response regression in (1.1) that penalize the optimization with the

residual sum of squares. Some simultaneously estimate the parameters and

discard irrelevant predictors using proper regularization (Obozinski et al.,

2010; Peng et al., 2010; Lee and Liu, 2012). Others encourage an estima-

tor of reduced rank (Anderson, 1951; Yuan et al., 2007; Chen and Huang,

2012), in which dimension reduction is achieved by constraining the coeffi-

cient matrix to have low rank.

Fan and Lv (2008) argue that it is beneficial for both computations and

theoretical considerations to first reduce the ambient dimension to a mod-

erately high dimension, and then to fit a regularized model. The dimension-

reduction step should preserve all important features–a property known as

the sure screening property. To demonstrate their philosophy, Fan and Lv

(2008) introduced a sure independence screening (SIS) procedure, using a

Pearson correlation to filter out a large number of noise variables. SIS

is shown to have the sure screening property. Inspired by this influential

paper, many researchers have studied the variable screening problem and

proposed more sophisticated screening methods to deal with more compli-

cated models. These include maximum marginal likelihood screening for

generalized linear models (Fan et al., 2010), nonparametric independence
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screening (NIS) for additive models (Fan et al., 2011), robust rank cor-

relation screening (RRCS) for semiparametric single-index models with a

monotonic link function (Li et al., 2012a), quantile-adaptive screening for

a quantile regression (He et al., 2013), empirical likelihood screening for

parametric models that can be formulated using general estimating equa-

tions (Chang et al., 2013), and so on. Fan et al. (2014) extended NIS for

varying-coefficient models, and Liu et al. (2014) considered these types of

models based on a conditional correlation coefficient. Chang et al. (2016)

proposed a unified approach for nonparametric and semiparametric models

based on the marginal empirical likelihood. When the response is binary,

Fan and Fan (2008) proposed a t-statistic to screen predictors, and Mai and

Zou (2013) developed the Kolmogorov filter using the Kolmogorov–Smirnov

statistic. Huang et al. (2014) proposed a Pearson chi-square-based feature

screening method for categorical responses and predictors. Cui et al. (2015)

considered a discriminant analysis with a multi-categorical response vari-

able. Another popular screening genre is that of the model-free methods,

which overcome the model misspecification problem. For instance, these

methods include the sure independent ranking and screening (SIRS) (Zhu

et al., 2011), distance correlation screening (DCS) (Li et al., 2012b), and

fused Kolmogorov filter (Mai and Zou, 2015).

Statistica Sinica: Preprint 
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The focus of this study is multi-response data. The aforementioned

screening methods are primarily developed for the univariate data case. To

the best of our knowledge, the only method that can naturally handle multi-

variate and univariate responses is the distance correlation screening (DCS)

method because a distance correlation can be defined between two random

vectors. However, it has been observed that in the presence of heavy-tailed

data, the performance of DCS can be very poor (Mai and Zou, 2015). This

is because the sure screening property of DCS relies on a moment condi-

tion that the response and the predictors should be sub-Gaussian. When

the assumption is violated, the sure screening property of DCS becomes

questionable, limiting its application to the multivariate responses. Fur-

thermore, the DCS is not invariant against monotonic transformation.

The main goal of this study is to develop new variable screening meth-

ods for multi-response data. First, we extend several existing screening

methods (SIS, NIS, RRCS) to the multi-response case by simply summing

up the squares of the marginal utility with every component of the mul-

tivariate response, which is equivalent to treating the problem as multiple

univariate response data problems. We believe a better variable screening

method is possible if we consider potential dependence between multiple re-

sponses. We propose a new approach called multi-response rank canonical

Statistica Sinica: Preprint 
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correlation screening (mRCC) without imposing a model assumption. This

new model-free method integrates two commonly used rank correlations,

Spearman’s correlation and/or Kendall’s τ correlation, with a canonical cor-

relation. This inherits the multivariate merits of the canonical correlation

that takes advantage of the dependence structure among the multivariate

responses. In addition, it preserves nice properties of the rank correlation

that can handle heavy-tailed predictors and responses, as well as invariance

against monotonic transformations. Moreover, mRCC is easy to implement

and cheap to compute. The sure screening property can be shown under

very weak conditions, without assuming any moment conditions on the pre-

dictors and responses. Hence, we recommend using the mRCC method for

variable screening with multi-response data.

The rest of the paper is organized as follows. Extensions of several

existing screening methods are given in Section 2. In Section 3, we first

introduce a screening method based on a canonical correlation, and then

propose mRCC. The theoretical discussion in Section 4 shows that the

sure screening property of mRCC holds under weak regularity conditions.

Section 5 presents our simulation experiments and a genomic data example,

which we use to compare the methods. The technical proofs are presented

in the Appendix.
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Notation. Throughout this paper, we assume X is centered to have

mean zero columnwise. We denoteXk, Yj as the kth, jth column of X,Y, for

k = 1, · · · , p and j = 1, · · · , q. To avoid introducing additional notation,

we sometimes refer to Xk, Yj or X, Y as the vectors of the samples, and

sometimes refer to them as the random variables, when necessary. We also

abuse Y to denote the random vector of the response. Let ‖ · ‖ be the

Euclidean norm for a vector, and let ‖ · ‖F be the Frobenius norm for a

matrix. Denote RSS as the residual sum of squares from a regression.

2. Extensions of Existing Screening Methods

2.1 Sure independence screening

Fan and Lv (2008) proposed the SIS method, using the marginal cor-

relation ranking XT
k Y /‖Xk‖‖Y ‖ to filter out features that are weakly cor-

related with the response. SIS can be viewed from a marginal regression

perspective:

min
β0,βk

∥∥Y − β01−Xkβk
∥∥2. (2.1)

Under the condition that the Xk are further standardized to have norm

one, it is easy to show that this is equivalent to ranking by the absolute

value of the regression coefficient, by the magnitude of the Pearson corre-

lation coefficient, or by the descending order of the RSS of the marginal

regression. To carry out a similar screening procedure when the response

Statistica Sinica: Preprint 
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is multivariate, a straightforward idea is to generalize (2.1) to

min
B0,βk

∥∥Y −B0 −Xkβk
∥∥2
F
, (2.2)

where βk = (βk1, · · · , βkq) is a row vector of parameters. The RSS has the

following form:

RSSk =

q∑
j=1

‖Yjc‖2 ·
(
1− ρ̂2kj

)
,

where Yjc = Yj − Ȳj1, and ρ̂kj = ρ̂(Xk, Yj) is the sample Pearson corre-

lation coefficient between Xk and Yj. We scale Y and X to have mean

zero and norm one columnwise in order to remove the scale influence. In

this case, the rankings according to the following three quantities are still

equivalent: the `2-norm of the coefficient vector, the sum of the squares of

the Pearson correlation coefficients, and the descending order of the RSS.

Hence, by aggregating the squares of the Pearson correlation coefficients of

the predictor with each response, we obtain

ω̂mSIS
k = ‖ρ̂k‖2, (2.3)

where ρ̂k = (ρ̂k1, · · · , ρ̂kq)T, and refer to (2.3) as the multi-response sure

independence screening (mSIS) statistic. Note that this approach actu-

ally treats the multi-response problem as multiple univariate response data

problems. It has been observed that SIS can fail when the linear regression

Statistica Sinica: Preprint 
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model assumption does not hold for the data. It is expected that mSIS

inherits this serious drawback of SIS.

2.2 Nonparametric independence screening

Fan et al. (2011) developed nonparametric independence screening (NIS)

for additive models, which allows the true regression function to be non-

linear in the predictors. They considered a marginal nonparametric regres-

sion using a basis function expansion such as B-splines. Similarly to the

generalization of SIS, we aggregate RSS from the marginal nonparametric

regressions with each response

min
fk∈Sqn

∥∥Y − fk(Xk)
∥∥2
F

= min
bk∈Rdn×q

∥∥Y −Ψkbk
∥∥2
F
, (2.4)

where fk = (fk1, · · · , fkq), with fkj(Xk) =
∑dn

l=1 γkjlΨl(Xk) an n-vector

sample version intending to approximate E(Yj|Xk), Sn is the space of poly-

nomial splines, Ψk , (Ψ1(Xk), · · · ,Ψdn(Xk)) denotes an n× dn normalized

B-spline basis matrix, bk = (γk1, · · · ,γkq), and γkj = (γkj1, · · · , γkjdn)T,

for j = 1, · · · , q. The corresponding solution is

f̂k(Xk) = Ψk(Ψ
T
kΨk)

−1ΨT
kY.

We can treat

ω̂mNIS
k = ‖f̂k(Xk)‖2F (2.5)

as the marginal utility of the multi-response nonparametric independence

Statistica Sinica: Preprint 
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screening (mNIS) for Xk. Equivalently, we can rank the predictors in de-

scending order of the RSS of the marginal nonparametric regressions (2.4).

NIS can fail if the underlying additive regression model assumption fails.

It is expected that mNIS inherits this drawback of NIS.

2.3 Robust rank correlation screening

Li et al. (2012a) proposed using Kendall’s τ correlation coefficient as a

ranking statistic. Their method is named RRCS. The marginal utility they

propose is equal to a quarter of Kendall’s τ correlation coefficient; that is,

1

4
τ̂(Xk, Y ) =

1

n(n− 1)

n∑
i6=l

I(Xik < Xlk)I(Yi < Yl)−
1

4
.

Similarly to (2.3), we try to extend this to the multiple-response case

by simply summing up the squares of the Kendall’s τ correlations between

the predictor and each response,

ω̂mRRCS
k = ‖τ̂ k‖2, (2.6)

where τ̂ k =
(
τ̂(Xk, Y1), · · · , τ̂(Xk, Yq)

)T
. We refer to (2.6) as the multi-

response robust rank correlation screening (mRRCS) statistic. The pop-

ulation version of Kendall’s τ correlation is zero if two random variables

are independent; as a result, ωmRRCS
k is zero if Xk is independent of the

multivariate responses.

2.4 Distance correlation screening

Statistica Sinica: Preprint 
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The distance correlation (DC) (Székely et al., 2007) measures the de-

pendence between two random vectors. Unlike the Pearson correlation and

Kendall’s τ correlation, the DC is equal to zero if and only if the two random

vectors are independent. This unique property motivated Li et al. (2012b)

to consider distance correlation screening (DCS), which has become one of

the most popular model-free variable screening methods. DC and DCS can

be applied naturally to multi-response data. For the sake of completeness,

we briefly review DCS here. The DC can be computed using the distance

covariance. For a given sample {Ui,Vi}ni=1 from two random vectors U,V,

the squared distance covariance can be estimated as

d̂cov
2
(U,V) = Ŝ1(U,V) + Ŝ2(U,V)− 2Ŝ3(U,V),

where

Ŝ1(U,V) =
1

n2

n∑
i=1

n∑
j=1

‖Ui −Uj‖ ‖Vi −Vj‖,

Ŝ2(U,V) =
1

n2

n∑
i=1

n∑
j=1

‖Ui −Uj‖
1

n2

n∑
i=1

n∑
j=1

‖Vi −Vj‖,

Ŝ3(U,V) =
1

n3

n∑
i=1

n∑
j=1

n∑
l=1

‖Ui −Ul‖ ‖Vj −Vl‖.

Therefore, the DCS can be implemented by computing

ω̂DCS
k = d̂cor(Xk,Y) = d̂cov(Xk,Y)/

√
d̂cov(Xk, Xk)d̂cov(Y,Y)

for each predictor Xk.

Statistica Sinica: Preprint 
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Numerical studies (Li et al., 2012b) have shown DCS exhibits good

performances for very complex models. In general, DCS outperforms SIS,

unless the true model is a linear regression model. Li et al. (2012b) proved

that the sure screening property of DCS holds if the responses and predic-

tors are sub-Gaussian. On the other hand, DCS performs poorly in the

presence of heavy-tailed data (Mai and Zou, 2015). Hence, sub-Gaussian

tail assumptions seem to be necessary and sufficient for the sure screening

property of DCS. Another important drawback of DCS is that it is not

invariant against monotonic transformation, unlike, for example, rank cor-

relation screening (Li et al., 2012a) and the fused Kolmogorov filter (Mai

and Zou, 2015).

3. A New Approach: Rank Canonical Correlation Screening

In this section, we first review a useful tool in multivariate analysis

called the canonical correlation analysis (CCA), and then introduce a novel

way to combine a rank correlation and a canonical correlation.

3.1 Canonical correlation

A canonical correlation analysis is a way of inferring information from

cross-covariance matrices by finding two projections for two random vectors,

such that the projected random vectors have maximum correlation with

each other. For the kth predictor Xk, the canonical correlation between Xk

Statistica Sinica: Preprint 
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and (Y1, · · · , Yq) is defined as

ρck = max
b

Σ∗XkYb√
Σ∗Xk

√
bTΣ∗Yb

,

where Σ∗Xk ,Σ
∗
XkY

, and Σ∗Y are submatrices of Σ∗ =

 Σ∗Xk Σ∗XkY

Σ∗YXk Σ∗Y

 ,

which is the covariance matrix of
(
Xk, (Y1, · · · , Yq)

)
. By the Cauchy–

Schwartz inequality, it can be shown that

ρck =

(
Σ∗XkYΣ∗

−1

Y Σ∗YXk
) 1

2√
Σ∗Xk

. (3.1)

The canonical correlation can also be related to Pearson correlations.

Note that the square of (3.1) is equivalent to

(ρck)
2 = ρT

k (ΣY)−1ρk, (3.2)

recalling that ρk = (ρk1, · · · , ρkq)T are the Pearson correlations between Xk

and Yj, and ΣY = (ρjl)q×q is the correlation matrix of (Y1, · · · , Yq). We can

use

ω̂mCC
k = (ρ̂ck)

2 = ρ̂T
k (Σ̂Y)−1ρ̂k (3.3)

as a variable screening statistic, which we refer to as the multi-response

canonical correlation screening (mCC) statistic.

To compare mCC and mSIS, we see that ωmSIS
k simply sums up ρ2kj,

whereas (3.2) is a weighted summation of ρ2kj and ρkjρkl, (j 6= l), recruiting

Statistica Sinica: Preprint 
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the information on the cross-correlation among Yj. In other words, mCC is

able to use the joint information of the multiple responses and the covariate.

The mCC statistic is still a linear correlation measure. We would like to

consider a generalization that can capture the nonlinear correlation between

the response vector and the predictor. We introduce such a method in the

next subsection.

3.2 Rank canonical correlation screening

Inspired by the robust advantage of rank correlation, we consider a

better version of mCC that integrates rank correlation with canonical cor-

relation. Two commonly used rank correlations, Kendall’s τ correlation

and Spearman’s rank correlation, are employed.

We first replace the Pearson correlations between Xk and Yj in (3.3)

with the corresponding Spearman rank correlations,

(r̂ck)
2 , r̂Tk Σ̂

−1
R(Y)r̂k, (3.4)

where r̂k = (r̂s(Xk, Y1), · · · , r̂s(Xk, Yq))
T are the Spearman correlation co-

efficients between Xk and Yj, and Σ̂R(Y) = (r̂s(Yj, Yl))q×q is a matrix of

Spearman correlations between all pairs of Yj and Yl. The Spearman rank

correlation (Spearman, 1904; Durbin and Stuart, 1951) that measures an

ordinal association is analogous to the Pearson correlation between the rank

values of two variables. Thus, Σ̂R(Y) is exactly the sample correlation ma-

Statistica Sinica: Preprint 
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trix of
(
R(Y1), · · · , R(Yq)

)
, where R(·) stands for the rank of a random

variable among n observations.

Next, we adopt Kendall’s τ correlation in (3.4), and define

(τ̂ ck)2 , τ̂T
k Σ̂
−1
R̃(Y)τ̂ k, (3.5)

recalling that τ̂ k = (τ̂(Xk, Y1), · · · , τ̂(Xk, Yq))
T are the Kendall τ correla-

tions between Xk and Yj, and Σ̂R̃(Y) = (τ̂(Yj, Yl))q×q is a matrix of Kendall

τ correlations between all pairs of Yj and Yl.

Therefore, we propose a screening approach based on (3.4) or (3.5) as

the multi-response rank canonical correlation screening (mRCC) statistic,

and denote the ranking measures as ω̂mRCC1
k or ω̂mRCC2

k , respectively. With

a prespecified threshold tn or t′n, we select the set

Âtn = {1 ≤ k ≤ p : ω̂mRCC1
k ≥ tn} or Â′t′n = {1 ≤ k ≤ p : ω̂mRCC2

k ≥ t′n}

as the important variables, respectively. In Section 4, we establish the sure

screening properties of mRCC1 and mRCC2. In practice, we can also pick

the top dn variables with the top dn mRCC1 or mRCC2 values, where

dn = c[n/ log n], for c = 1 or 2.

Remark 1. The proposed mRCC not only inherits the multivariate

merits of the canonical correlation, taking advantage of the joint informa-

tion of the multiple responses and the covariate, but also preserves nice

Statistica Sinica: Preprint 
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properties of the rank correlation that can handle heavy-tailed predictors

and responses, as well as invariance against monotonic transformations of

them. Because of these nice properties and its excellent numerical per-

formance in Section 5, mRCC is the main method we advocate using in

practice.

4. The Sure Screening Property

We establish the sure screening property of mRCC1 and mRCC2 in this

section. Following (Li et al., 2012b), we define the true predictor subset as

A = {k : F (Y | Xk) functionally depends on Xk for some Y},

with size s = |A|. For variable Xk, the population versions of mRCC1 and

mRCC2 are

ωmRCC1
k = (rck)

2 = rTkΣ−1R(Y)rk (4.1)

and

ωmRCC2
k = (τ ck)2 = τT

kΣ−1
R̃(Y)

τ k, (4.2)

respectively, where rk = (rs(Xk, Y1), · · · , rs(Xk, Yq))
T, ΣR(Y) = (rs(Yj, Yl))q×q,

and τ k = (τ(Xk, Y1), · · · , τ(Xk, Yq))
T, ΣR̃(Y) = (τ(Yj, Yl))q×q. For two ran-

dom variables U and V from a joint distribution, let (U1, V1), (U2, V2), and

(U3, V3) be three independent realizations. Then, rs(U, V ) = cov
(

sgn(U1−

U2), sgn(V1 − V3)
)

and τ(U, V ) = cov
(

sgn(U1 − U2), sgn(V1 − V2)
)
.

Statistica Sinica: Preprint 
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We consider the following conditions:

(C1) There exists a positive c0 such that λmin

(
ΣR(Y)

)
≥ c0q

−1;

(C2) There exists Ã, a subset of {1, · · · , p}, and a constant 0 < κ < 1
2
,

such that |Ã| ≤ |Âtn|, A ⊂ Ã, and δÃ = q−4nκ{mink∈Ã ωmRCC1
k −

maxk∈Ãc ω
mRCC1
k } > 0;

(C1′) There exists a positive c′0 such that λmin

(
ΣR̃(Y)

)
≥ c′0q

−1;

(C2′) There exists Ã′, a subset of {1, · · · , p}, and a constant 0 < κ < 1
2
,

such that |Ã′| ≤ |Â′t′n|, A ⊂ Ã′ and δÃ′ = q−4nκ{min
k∈Ã′ ω

mRCC2
k −

max
k∈Ã′

c ωmRCC2
k } > 0.

Conditions (C1) and (C1′) rule out the cases in which one component of

the multivariate responses is a perfect monotonic function of another with

a perfect Spearman correlation of +1 or −1, and that, the agreement or

the disagreement between the rankings of two components of the response

is perfect with a perfect Kendall’s τ correlation of +1 or −1, respectively.

Conditions (C2) and (C2′) are very common in the screening literature (Mai

and Zou, 2013, 2015), and are the theoretical basis of the sure screening

property. They assume there is a gap between the marginal signals inside

and outside a subset containing the true predictor subset.

The following theorem gives the sure screening property of mRCC.

Statistica Sinica: Preprint 
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Theorem 1. 1. Under Condition (C1), for any c2 > 0 and 0 < κ < 1/2,

there exist some positive constants c3, c4, c5, c6, and C, such that when n >

max{Cq2, 61/(1−κ)},

Pr
(

max
1≤k≤p

|ω̂mRCC1
k − ωmRCC1

k | ≥ c2q
4n−κ

)
≤p ·

{
6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

Under Condition (C1′), for any c′2 > 0 and 0 < κ < 1/2, there exist

some positive constants c′3, c
′
4, such that

Pr
(

max
1≤k≤p

|ω̂mRCC2
k − ωmRCC2

k | ≥ c′2q
4n−κ

)
≤p ·

{
6q2 exp(−c′3nq−4) + (2q2 + 4q) exp(−c′4n1−2κ)

}
.

2. If Conditions (C1) and (C2) hold and we set tn = c1q
4n−κ, with

c1 ≤ δÃ/2, we have

Pr
(
A ⊂ Âtn

)
≥1− p ·

{
6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

If Conditions (C1′) and (C2′) hold and we set t′n = c′1q
4n−κ with c′1 ≤

δÃ′/2, we have

Pr
(
A ⊂ Â′t′n

)
≥1− p ·

{
6q2 exp(−c′3nq−4) + (2q2 + 4q) exp(−c′4n1−2κ)

}
.
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Theorem 1 gives an upper bound on the dimension of the response, q =

o(n1/4), to have the sure screening property. It also follows from Theorem

1 that the limit of the data dimensionality we can handle should satisfy

log(pq2) = o(nq−4 + n1−2κ) using both methods, with 0 < κ < 1/2. Under

these settings we have the sure screening properties Pr
(
A ⊂ Âtn

)
→ 1 and

Pr
(
A ⊂ Â′t′n

)
→ 1, respectively.

In contrast to the sub-Gaussian distribution assumption required for

the sure screening property of DCS (Li et al., 2012b), we do not require any

assumption on the moments of the predictors or the responses for the sure

screening property of mRCC.

Theorem 2. Under Condition (C1), for any tn = c1q
4n−κ, there ex-

ist some positive constants c3, c4, c5, c6, and C, such that when n >

max{Cq2, 61/(1−κ)},

Pr
(
|Âtn| ≤ O(sq−2nκ)

)
≥1− p ·

{
6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

Under Condition (C1′), for any t′n = c′1q
4n−κ, there exist some positive
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constants c′3, c
′
4, such that

Pr
(
|Â′t′n| ≤ O(sq−2nκ)

)
≥1− p ·

{
6q2 exp(−c′3nq−4) + (2q2 + 4q) exp(−c′4n1−2κ)

}
.

This result controls the model size of the selected model, which is of

order O(sq−2nκ). The false selection rate converges to zero exponentially

fast.

5. Numerical Studies

In this section, we evaluate the performance of all screening proce-

dures discussed in this paper using simulation experiments and a real-data

analysis. As suggested by a referee, we include a newly published variable

screening method called composite coefficient of determination (CCD), pro-

posed by Kong et al. (2019), and extend it to the multiple responses case in

a similar way to mSIS by aggregating the ranking statistics of the predictor

with each response. We denote this method as mCCD. For the derivation

and explanations of CCD, refer to Kong et al. (2019).

5.1 Simulations

We repeat each simulation 200 times, and use the following three crite-

ria, adopted by Li et al. (2012b):

1. S: the minimum model size that includes all true predictors. We

report the 5%, 25%, 50%, 75%, and 95% quantiles of S out of 200 replica-
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tions.

2. Ps: the proportion that an individual true predictor is selected for a

given model size d in the 200 replications.

3. Pa: the proportion that all true predictors are selected for a given

model size d in the 200 replications.

Here, S measures the accuracy of a screening procedure. The smaller

S is, the less complex the resulting model is, and the better the screening

procedure is. Then, Ps and Pa allow us to examine the chance that a

screening procedure misses an individual predictor and all true predictors,

respectively, for a given model size d. We present the simulation results of

Ps,Pa with d = 2[n/ log n] for all the examples and the real data. We also

tried d = [n/ log n], with similar outcomes; hence, we omit such results here

for brevity.

Example 1. We adopt the simple linear model from Fan and Lv (2008):

Yj = 5X1 + 5X2 + 5X3 + εj, j = 1, 2, · · · , 10. (5.1)

The predictor vector (X1, · · · , Xp) is drawn from a multivariate normal

distribution N(0,Σ), where Σ = CS(ρ) is a compound symmetric matrix,

with all entries being ρ, except for the diagonal elements being one, and the

noise εj follows a standard normal distribution. The sample size is n = 50,
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the numbers of the predictors and responses are p = 1000, and q = 10,

respectively, and we consider ρ = 0, 0.1, 0.5, 0.9.

Table 1 summarizes the simulation results for S, Ps, and Pa. We can

see that the mSIS works best in this example because this model is actually

a univariate response data linear model with a strong signal-to-noise ratio in

every component.For the mCC and mRCC1, the performance is acceptable,

albeit a little worse than that of the other methods. One reason is that

each response has the same strong signal, which dominates the error term.

Hence, the Pearson correlations between the pairs of responses are almost

one(about 0.98 and 0.99). In such a case, the Condition (C1) for mRCC1

may be violated. This may also be true for the mCC because there is an

inverse correlation matrix of the responses in (3.2). Another reason is that

the sample size is not big enough; therefore, the rank-based mRCC1 may

lose some efficiency.

Example 2. Consider the following generalized Box–Cox transformation

model adapted from Li et al. (2012a):

H(Yj) = X10j−9 +X10j−8 + εj, j = 1, 2, · · · , 10, (5.2)

where the transformation functions are unknown. In the simulation, we
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consider the Box–Cox transformation:

H(Y ) =
|Y |λsgn(Y )− 1

λ
,when λ = 0.25, 0.5, 0.75, 1; H(Y ) = log Y,when λ = 0.

The variables (X1, · · · , Xp) and the noise εj are generated in the same

way as in Example 1. The number of true variables is 20, and (n, p, q) =

(200, 2000, 10) and ρ = 0.1, 0.5.

The simulation results for S and Pa are reported in Tables 2 and 3,

respectively. We can see clearly that mRCC1 significantly outperforms

the other methods, especially when ρ = 0.5, and the results are almost

invariant under transformations (there are small differences owing to the

different random errors generated for models with different λ). Although

mRRCS is also rank-based and invariant under transformation, it performs

poorly when ρ = 0.5. The reason may be that it ignores the dependence

structure of the multivariate responses. When the model deviates from a

linear model (λ decrease from one), the performance of mSIS, mNIS, DCS,

and mCC quickly deteriorates, owing to the existence of the nonlinearity

and the heavy-tailed responses.

Example 3. In this example, we consider the following model:

Yj = 2 sin (αj1X1 + αj2X2 + αj3X3 + αj4X4 + αj5X5)+εj, j = 1, 2, · · · , 20,

(5.3)
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where αj1, · · · , αj5 ∼ Unif(0,1) independently, for j = 1, · · · , 20. Once the

parameter is drawn, the model is fixed. We generate (X1, · · · , Xp) and the

noise εj as in Example 1, and (n, p, q) = (200, 2000, 20) and ρ = 0.5, 0.8.

Table 4 gives the results for S. Table 5 shows the results for Ps and

Pa. For this nonlinear model, mRCC1 and mRCC2 are still robust and

encouraging, and perform best.

Example 4. We adopt the additive model from Mai and Zou (2015):

Yj = 4Xjk1 + 2 tan(πXjk2/2) + 5X2
jk3

+ εj, j = 1, 2, · · · , 20. (5.4)

The predictors follow Unif(0,1) independently, and εj follow N(0, 1), and

are independent of the predictors. For each j, the indices {k1, k2, k3} are

drawn randomly from {1, 2, · · · , 10}. Once the indices are drawn, the model

is fixed. In our simulation, we check that X1, X2, · · · , X10 are all included

in the model; hence, the number of true predictors is 10. The sample size

is n = 200, and the numbers of predictors and responses are p = 2000 and

q = 20, respectively.

From Table 6 and Table 7, we see that the mRCC1 and mRCC2 achieve

perfect selection with the oracle variables, even though this is a nonlinear

model and heavy-tailed data exists. The performance of DCS seems to fall

behind.
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Example 5. The following Poisson regression model is from Mai and

Zou (2015), and we simply extend it to the multi-response case:

Yj ∼ Poisson(µj), µj = exp(0.8X1 − 0.8X2), j = 1, · · · , 10,

where the predictors Xk ∼ t4 independently, for k = 1, 2, · · · , 2000. The

sample size is 200 and q = 10.

The results are shown in Table 8. Surprisingly, the mRCC1 is still

among the best, though the responses are discrete values with many ties

and some extreme values. This implies that the mRCC1 may be suitable

for regression problems with categorical data, while mRCC2 may not (the

implementation of Kendall’s τ correlation in mRRCS and mRCC2 uses for-

mula (2.4) in Li et al. (2012a), which may be inadequate for tied variables).

5.2 Genomic Data Example

The breast cancer data set is described by Chin et al. (2006) and ana-

lyzed by Witten et al. (2009), Chen et al. (2013) and Molstad and Rothman

(2016). The data set is publicly available in the R package PMA(Witten

et al., 2009). It consists of gene expression measurements and comparative

genomic hybridization measurements for n = 89 subjects. The goal is to

explore the relationship between DNA copy-number variations and gene

expression profiles, because certain types of cancer are characterized by un-

usual DNA copy-number changes, as shown in previous studies. Hence, we
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treat the DNA copy-number as the q-variate response, and the gene expres-

sion profile as the p-variate predictor. We conduct a multi-response regres-

sion analysis for chromosome 16, and its dimension is (p, q) = (815, 61).

Both the responses and predictors are standardized.

We include all of the aforementioned screening methods to carry out

the multivariate response regression for the comparison. First, we ran-

domly split 89 samples into training and test sets. Two proportions of

training samples γ = 0.5, 0.8 are considered. Then, we apply each screen-

ing method to the training samples to select the top d = 2[ntrain/ log ntrain]

genes, where ntrain is the training sample size. Moreover, we fit a multi-

response Gaussian model using a “group-Lasso” penalty on the coefficients

for each selected predictor after screening, and make predictions based on

the test samples. The model fitting process and tuning parameter selection

are implemented using the R package glmnet. Following Chen et al. (2013),

we calculate the mean squared prediction error ‖Ytest −XtestB̂‖2F/(qntest),

where (Ytest,Xtest) denotes the test set, B̂ denotes the estimated coefficient

matrix, and ntest is the sample size of the test set. The above procedure is

repeated 200 times.

The means of the prediction errors with their standard errors are pre-

sented in Table 9. For each splitting ratio, mRCC2 enjoys outstanding
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predictive performance. To check whether the MSEs for the proposed ap-

proaches are significantly different from those for the other methods, we

perform two-sided paired-sample t-tests for the mCC, mRCC1, and mRCC2

against other methods; the corresponding p-values are presented in Table

10. We also conduct a one-sided paired-sample t-test for mRCC2 only,

and its p-values are still zero, which confirms that mRCC2 has significantly

lower prediction errors than those of other methods. Furthermore, we list

the genes with the top seven highest selection frequencies by mRCC2 in Ta-

ble 11. We can see the top three among these are COX4I1, FLJ13868, and

KIAA0174 for both splitting ratios. Therefore, in this example, mRCC2

may provide biological researchers with a more targeted list of gene expres-

sion profiles, which could be useful in subsequent studies.
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A. Appendix

Lemma 1 (Theorem A, Serfling (1980), p201). Let X1, X2, · · · , Xn be inde-

pendent observations on a distribution function F . Let h = h(x1, · · · , xm) be

a kernel for a “parametric function” θ = θ(F ), with a ≤ h(x1, · · · , xm) ≤ b.

Put θ = E{h(X1, · · · , Xm)}, then, for t > 0 and n ≥ m,

Pr(Un − θ ≥ t) ≤ exp

(
−

2[ n
m

]t2

(b− a)2

)
,

where Un is the U-statistic corresponding to the kernel h for the estimation

of θ, that is,

Un =
1(
n
m

)∑
c

h(Xi1 , · · · , Xim) (7.1)

with
∑

c denotes summation over the
(
n
m

)
combinations of m distinct ele-

ments {i1, · · · , im} from {1, · · · , n}.
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Table 1: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S and the proportions of Ps and Pa out of 200 replications in Example

1
S Ps Pa

ρ Method 5% 25% 50% 75% 95% X1 X2 X3 All

0 mSIS 3.0 3.0 3.0 5.0 16.1 0.98 0.98 0.94 0.90

mNIS 3.0 4.0 8.0 30.3 144.8 0.92 0.98 0.93 0.89

mRRCS 3.0 3.0 4.0 7.0 33.2 0.97 0.96 0.90 0.74

DCS 3.0 3.0 4.0 7.0 27.1 0.98 0.97 0.90 0.85

mCCD 3.0 3.0 4.0 7.0 24.2 0.98 0.97 0.87 0.57

mCC 4.0 11.0 25.0 100.8 283.2 0.83 0.85 0.88 0.84

mRCC1 4.0 15.8 39.5 130.5 427.0 0.75 0.81 0.77 0.60

mRCC2 3.0 3.0 4.0 9.0 40.1 0.97 0.96 0.91 0.72

0.1 mSIS 3.0 3.0 3.0 5.0 23.1 1.00 1.00 0.92 0.90

mNIS 3.0 3.0 6.0 12.0 41.4 0.86 0.96 0.87 0.87

mRRCS 3.0 3.0 4.0 8.0 41.2 0.97 0.98 0.84 0.71

DCS 3.0 3.0 4.0 7.0 35.1 0.98 0.99 0.89 0.81

mCCD 3.0 3.0 4.0 7.0 34.0 0.99 0.99 0.85 0.57

mCC 3.0 6.0 16.0 51.3 144.6 0.76 0.83 0.80 0.82

mRCC1 4.0 9.0 24.5 67.0 226.9 0.74 0.80 0.68 0.60

mRCC2 3.0 3.0 4.0 9.0 44.1 0.96 0.99 0.83 0.71

0.5 mSIS 3.0 4.0 6.5 18.3 100.4 0.99 0.98 0.93 0.89

mNIS 3.0 5.0 9.0 27.0 124.2 0.92 0.97 0.91 0.89

mRRCS 3.0 6.0 13.0 35.3 175.4 0.98 0.97 0.88 0.77

DCS 3.0 5.0 11.0 29.0 141.2 0.98 0.97 0.90 0.88

mCCD 3.0 7.0 14.5 40.5 192.7 0.99 0.97 0.87 0.60

mCC 3.0 6.0 14.0 41.0 208.5 0.78 0.86 0.88 0.88

mRCC1 4.0 11.8 38.0 83.0 371.1 0.68 0.83 0.74 0.65

mRCC2 3.0 6.0 14.0 35.3 186.6 0.98 0.97 0.87 0.76

0.9 mSIS 3.0 4.0 8.0 19.8 91.1 0.96 0.95 0.80 0.76

mNIS 3.0 5.0 11.0 28.0 105.1 0.71 0.91 0.74 0.72

mRRCS 4.0 13.0 36.0 77.5 231.0 0.91 0.91 0.67 0.40

DCS 3.0 6.0 16.0 39.3 142.5 0.94 0.93 0.71 0.62

mCCD 5.0 34.8 75.0 173.5 424.4 0.95 0.93 0.65 0.20

mCC 3.0 7.0 14.5 38.3 166.3 0.50 0.61 0.61 0.64

mRCC1 8.0 25.0 65.0 144.5 437.5 0.36 0.50 0.39 0.25

mRCC2 4.0 13.0 36.0 77.0 258.7 0.91 0.92 0.67 0.40
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Table 2: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S out of 200 replications in Example 2
CS(0.1) CS(0.5)

λ Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0 mSIS 202.7 421.0 653.0 940.3 1413.7 1237.9 1553.8 1723.5 1829.0 1945.3

mNIS 600.6 880.5 1118.5 1310.5 1655.4 1296.9 1563.3 1729.0 1876.3 1955.2

mRRCS 20.0 23.0 28.5 43.0 76.3 745.4 1054.5 1336.5 1547.5 1816.5

DCS 423.4 712.8 924.5 1194.0 1665.2 1143.0 1485.3 1685.0 1825.0 1957.3

mCCD 25.0 39.0 63.0 102.0 263.9 905.0 1251.5 1440.5 1653.5 1861.4

mCC 137.0 294.3 549.0 869.3 1440.7 1057.0 1346.5 1563.0 1748.8 1924.2

mRCC1 20.0 20.0 20.0 20.0 21.1 40.0 96.0 155.5 313.0 731.2

mRCC2 20.0 20.0 20.0 20.0 24.0 95.9 179.0 288.5 513.8 1012.1

0.25 mSIS 30.0 46.0 71.5 138.3 397.1 1128.0 1363.0 1598.0 1767.3 1923.7

mNIS 141.0 254.0 346.0 485.0 827.5 1078.9 1432.3 1606.0 1774.3 1919.3

mRRCS 20.0 23.0 28.0 43.3 101.2 733.9 1027.0 1277.0 1542.8 1786.0

DCS 56.0 103.8 168.0 268.8 601.3 981.8 1305.5 1490.5 1696.3 1925.5

mCCD 21.0 27.0 36.0 59.3 158.0 966.5 1183.5 1400.0 1631.8 1890.0

mCC 20.0 21.0 24.0 34.3 84.1 360.9 591.8 827.0 1108.3 1621.0

mRCC1 20.0 20.0 20.0 20.0 22.0 45.8 90.5 151.0 292.0 693.3

mRCC2 20.0 20.0 20.0 20.0 24.0 92.0 192.5 304.5 485.0 1034.1

0.5 mSIS 22.0 27.8 41.0 65.8 173.0 942.0 1214.5 1453.5 1654.0 1888.2

mNIS 59.0 96.5 151.0 237.0 503.3 1056.0 1310.0 1498.0 1686.8 1885.1

mRRCS 20.0 22.0 29.0 43.0 105.1 720.6 1044.8 1332.5 1509.5 1826.1

DCS 25.0 36.8 54.0 99.0 235.2 884.2 1191.3 1409.0 1606.3 1886.6

mCCD 22.0 25.0 36.0 58.0 129.4 901.6 1172.3 1415.0 1622.5 1889.5

mCC 20.0 20.0 20.0 21.0 28.0 90.6 170.5 317.0 504.0 995.3

mRCC1 20.0 20.0 20.0 20.0 22.0 45.0 87.8 175.0 310.5 832.1

mRCC2 20.0 20.0 20.0 20.0 23.1 84.8 197.3 330.0 502.5 1097.3

0.75 mSIS 21.0 25.0 33.0 51.0 106.6 795.0 1122.0 1390.0 1625.5 1879.0

mNIS 27.0 43.0 66.5 118.3 301.5 845.6 1132.0 1420.0 1613.5 1859.7

mRRCS 21.0 23.8 29.0 43.0 100.5 740.8 996.5 1273.0 1547.3 1822.3

DCS 21.0 25.0 32.5 50.3 117.1 766.7 1079.5 1325.0 1593.8 1821.3

mCCD 21.0 27.0 36.0 57.0 130.1 900.2 1162.0 1380.5 1649.3 1872.4

mCC 20.0 20.0 20.0 20.0 21.0 32.0 55.8 109.5 216.0 495.2

mRCC1 20.0 20.0 20.0 20.0 23.0 41.0 98.5 163.0 303.5 613.6

mRCC2 20.0 20.0 20.0 20.3 27.0 87.0 200.8 317.0 529.3 1008.1

1 mSIS 21.0 24.0 29.5 43.0 89.7 661.9 1126.0 1358.0 1616.8 1841.0

mNIS 24.0 38.0 59.0 109.3 228.2 686.7 1170.0 1391.0 1596.5 1862.1

mRRCS 20.0 22.8 28.0 42.0 99.1 649.1 1064.5 1322.0 1542.8 1812.1

DCS 21.0 24.0 30.5 44.0 95.1 702.6 1099.5 1351.5 1576.0 1809.6

mCCD 22.0 26.0 34.0 56.5 120.4 776.7 1174.0 1427.5 1651.8 1845.1

mCC 20.0 20.0 20.0 20.0 21.0 27.0 50.5 84.5 152.8 473.8

mRCC1 20.0 20.0 20.0 20.0 22.1 47.9 86.5 157.5 308.5 754.3

mRCC2 20.0 20.0 20.0 20.0 25.0 92.4 189.0 319.0 533.3 1144.2
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Table 3: The proportions of Pa in Example 2

CS(0.1) CS(0.5)

Method λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

mSIS 0.00 0.52 0.80 0.90 0.92 0.00 0.00 0.00 0.00 0.00

mNIS 0.00 0.00 0.14 0.57 0.59 0.00 0.00 0.00 0.00 0.00

mRRCS 0.95 0.94 0.90 0.91 0.89 0.00 0.00 0.00 0.00 0.00

DCS 0.00 0.14 0.63 0.87 0.91 0.00 0.00 0.00 0.00 0.00

mCCD 0.58 0.83 0.84 0.84 0.85 0.00 0.00 0.00 0.00 0.00

mCC 0.02 0.94 1.00 1.00 1.00 0.00 0.00 0.03 0.36 0.41

mRCC1 1.00 1.00 1.00 1.00 1.00 0.18 0.17 0.18 0.15 0.18

mRCC2 1.00 1.00 1.00 1.00 1.00 0.03 0.03 0.03 0.02 0.04

Table 4: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S out of 200 replications in Example 3

CS(0.5) CS(0.8)

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

mSIS 5.0 5.0 9.5 33.2 211.0 22.9 104.8 303.5 573.0 1392.2

mNIS 5.0 5.0 6.0 10.0 83.4 5.0 11.0 32.0 123.2 497.7

mRRCS 5.0 5.0 6.0 10.2 71.1 7.0 18.0 59.5 179.5 592.2

DCS 5.0 5.0 6.0 9.0 71.0 6.0 15.8 62.5 172.2 677.9

mCCD 5.0 5.0 7.0 17.0 96.7 11.0 41.0 125.5 301.2 928.8

mCC 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 16.1

mRCC1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

mRCC2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0
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Table 5: The proportions of Ps and Pa in Example 3

CS(0.5) CS(0.8)

Ps Pa Ps Pa

Method X1 X2 X3 X4 X5 All X1 X2 X3 X4 X5 All

mSIS 0.86 1.00 1.00 1.00 1.00 0.86 0.27 0.95 0.83 0.94 0.82 0.17

mNIS 0.93 1.00 1.00 1.00 1.00 0.93 0.69 0.99 0.99 1.00 1.00 0.66

mRRCS 0.96 1.00 1.00 1.00 1.00 0.96 0.57 0.99 0.98 0.99 1.00 0.54

DCS 0.96 1.00 1.00 1.00 1.00 0.96 0.59 0.98 0.97 1.00 1.00 0.54

mCCD 0.92 1.00 1.00 1.00 1.00 0.92 0.46 0.97 0.96 1.00 0.99 0.42

mCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRCC1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRCC2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S out of 200 replications in Example 4

Method 5% 25% 50% 75% 95%

mSIS 908.2 1335.0 1573.0 1794.3 1960.1

mNIS 1085.4 1479.8 1665.5 1835.5 1965.2

mRRCS 10.0 11.0 13.0 25.0 76.0

DCS 275.6 600.0 942.0 1375.5 1806.4

mCCD 15.0 56.8 179.5 368.5 807.4

mCC 10.0 10.0 17.0 141.3 912.1

mRCC1 10.0 10.0 10.0 10.0 10.0

mRCC2 10.0 10.0 10.0 10.0 10.0
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Table 7: The proportions of Ps and Pa in Example 4

Ps Pa

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 All

mSIS 0.10 0.03 0.90 0.09 0.07 0.92 0.07 0.78 0.97 0.88 0.00

mNIS 0.04 0.02 0.99 0.05 0.04 1.00 0.02 0.92 1.00 1.00 0.00

mRRCS 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95

DCS 0.49 0.16 0.91 0.42 0.37 0.94 0.24 0.93 0.96 0.90 0.00

mCCD 1.00 0.38 1.00 0.95 0.98 1.00 0.78 1.00 1.00 1.00 0.30

mCC 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.65

mRCC1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRCC2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 8: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S and the proportions of Ps and Pa out of 200 replications in Example

5

S Ps Pa

Method 5% 25% 50% 75% 95% X1 X2 All

mSIS 2.0 3.0 15.5 136.0 1346.5 0.85 0.86 0.70

mNIS 3.0 27.0 58.5 223.0 1405.2 0.79 0.80 0.59

mRRCS 1079.8 1848.3 1971.0 1999.0 2000.0 0.01 1.00 0.01

DCS 2.0 2.0 2.0 5.3 481.1 0.92 0.95 0.87

mCCD 2.0 2.0 2.0 2.0 2.0 1.00 1.00 1.00

mCC 2.0 6.0 16.0 47.5 664.9 0.88 0.92 0.80

mRCC1 2.0 2.0 2.0 2.0 2.0 1.00 1.00 1.00

mRCC2 1208.4 1882.5 1980.0 1999.3 2000.0 0.01 1.00 0.01
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Table 9: The means of the prediction errors in 200 times randomly split

genomic data. The standard errors of the prediction errors are shown in

parentheses, where γ is the proportion of the training samples. NM is the

null model using componentwise means of training responses to predict the

test sample

γ mSIS mNIS mRRCS DCS mCCD mCC mRCC1 mRCC2 NM

0.5 0.769 0.758 0.791 0.765 0.781 0.786 0.774 0.738 1.021

(0.066) (0.068) (0.065) (0.068) (0.067) (0.08) (0.079) (0.067) (0.089)

0.8 0.737 0.737 0.784 0.735 0.753 0.756 0.756 0.685 1.047

(0.135) (0.129) (0.141) (0.129) (0.136) (0.132) (0.146) (0.117) (0.184)

Table 10: The p-values of two-sided paired samples t-test for the proposed

methods against other methods

γ SIS NIS Kendall DC mCCD mCC mRCC1 mRCC2 NM

0.5 mCC 0.001 0 0.307 0 0.336 - 0.01 0 0

mRCC1 0.286 0 0.001 0.072 0.201 0.01 - 0 0

mRCC2 0 0 0 0 0 0 0 - 0

0.8 mCC 0.081 0.079 0.016 0.058 0.743 - 0.917 0 0

mRCC1 0.094 0.092 0.015 0.072 0.785 0.917 - 0 0

mRCC2 0 0 0 0 0 0 0 - 0

Table 11: Genes with top seven highest selection frequency by mRCC2

γ = 0.5 genenames COX4I1 KIAA0174 FLJ13868 KIAA1007 USP10 PARN KATNB1

frequency 0.82 0.76 0.72 0.58 0.57 0.56 0.55

γ = 0.8 genenames COX4I1 FLJ13868 KIAA0174 SF3B3 KATNB1 KIAA1007 USP10

frequency 1.00 1.00 0.99 0.97 0.97 0.96 0.95
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Lemma 2. Given a sample (Xi, Yi)
n
i=1, for any δ > 0, the Spearman cor-

relation r̂s(X, Y ) has the following tail bound

Pr
(
|r̂s−rs| ≥

6

n
+δ
)
≤ 2 exp

(
−(n− 3)(n+ 1)2δ2

24(n− 2)2

)
+2 exp

(
−(n− 2)(n+ 1)2δ2

16

)
,

for n > 3, where rs is the population Spearman correlation.

Proof of Lemma 2. If we take h in (7.1) to be the kernel of degree m = 2

given by

hτ̂

((
x1
y1

)
,

(
x2
y2

))
= sgn(x1 − x2) sgn(y1 − y2),

then τ̂ , Uhτ̂ is the sample Kendall’s tau correlation. If we take h in (7.1)

to be the kernel of degree m = 3 given by

hr̃s

((
x1
y1

)
,

(
x2
y2

)
,

(
x3
y3

))
=

1

2

3∑
i,j,l=1

i6=j,j 6=l,i6=l

sgn(xi − xj) sgn(yi − yl),

and define r̃s , Uhr̃s ,Hoeffding (1948) showed that

r̂s =
n− 2

n+ 1
r̃s +

3

n+ 1
τ̂ . (7.2)

Hence, the dominating term r̃s of Spearman correlation is a U-statistic.

Since r̃s, τ̂ are unbiased estimators of their population version rs, τ respec-

tively, and |hr̃s| ≤ 1, |hτ̂ | ≤ 1, by Lemma 1

Pr
(
r̃s − rs ≥

δ

2

)
≤ exp

(
−(n− 3)δ2

24

)
, (7.3)

Pr
(
τ̂ − τ ≥ δ

2

)
≤ exp

(
−(n− 2)δ2

16

)
, (7.4)
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for any δ > 0 and n > 3. Note that −6 ≤ 3(τ − rs) ≤ 6, we have

Pr
(
|r̂s − rs| ≥

6

n
+ δ
)

≤Pr
(
r̂s − rs ≥

6

n+ 1
+ δ
)

+ Pr
(
r̂s − rs ≤ −

6

n+ 1
− δ
)

≤Pr
(
r̂s − rs −

3(τ − rs)
n+ 1

≥ δ
)

+ Pr
(
r̂s − rs −

3(τ − rs)
n+ 1

≤ −δ
)

≤Pr
(n− 2

n+ 1
(r̃s − rs) +

3

n+ 1
(τ̂ − τ) ≥ δ

)
+ Pr

(n− 2

n+ 1
(r̃s − rs) +

3

n+ 1
(τ̂ − τ) ≤ −δ

)
≤Pr

(n− 2

n+ 1
(r̃s − rs) ≥

δ

2

)
+ Pr

( 3

n+ 1
(τ̂ − τ) ≥ δ

2

)
+ Pr

(n− 2

n+ 1
(r̃s − rs) ≤ −

δ

2

)
+ Pr

( 3

n+ 1
(τ̂ − τ) ≤ −δ

2

)
≤2 exp

(
− (n− 3)(n+ 1)2δ2

24(n− 2)2

)
+ 2 exp

(
− (n− 2)(n+ 1)2δ2

16

)
.

Throughout the rest of the paper, for any matrix A, denote ‖A‖ =√
λmax(ATA) be the spectral norm and ‖A‖max = maxi,j |Ai,j| be the max

norm.

Lemma 3. Under Condition (C1), for any c8 > 0, there exist some positive

constants c3, c4 and C, such that for n > Cq2

Pr
(∣∣‖Σ̂−1R(Y)‖−‖Σ−1R(Y)‖

∣∣ ≥ c8‖Σ−1R(Y)‖
)
≤ 2q2 exp(−c3nq−4)+2q2 exp(−c4n3q−4).

Proof of Lemma 3. For any symmetric matrices A, B and D, by the similar

argument in the proof of Lemma 5 of Fan et al. (2011), we have

|λmin(A)− λmin(B)| ≤ max{|λmin(A−B)|, |λmin(B−A)|},
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|λmin(D)| ≤ d‖D‖max, |λmin(−D)| ≤ d‖D‖max,

where d is the dimension of D. Hence,

|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≤ q‖Σ̂R(Y) −ΣR(Y)‖max.

For any δ1 > 0, it follows from Lemma 2 that the union bound of probability

Pr
(
|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≥ q(

6

n
+ δ1)

)
≤q2 Pr

(
|r̂s(Yj, Yl)− rs(Yj, Yl)| ≥

6

n
+ δ1

)
≤2q2 exp(−c̃3nδ21) + 2q2 exp(−c̃4n3δ21),

for some positive constant c̃3 and c̃4. Take δ1 = c9c0q
−2 − 6

n
in the above,

where c9 ∈ (0, 1), denote C = 6/(c9c0), by the Condition (C1), when n >

Cq2 it follows that

Pr
(
|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≥ c9λmin(ΣR(Y))

)
≤2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4),

for some positive constant c3 and c4. If A and B are two positive constants,

it is shown in the proof of Lemma 5 of Fan et al. (2011) that for a ∈ (0, 1),

|A−1 −B−1| ≥ cB−1 implies |A−B| ≥ aB,

where c = 1/(1− a)− 1. Therefore, by the fact that λ−1min(D) = λmax(D
−1),
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we have

Pr
(∣∣‖Σ̂−1R(Y)‖ − ‖Σ−1R(Y)‖

∣∣ ≥ c8‖Σ−1R(Y)‖
)

= Pr
(
|λ−1min(Σ̂R(Y))− λ−1min(ΣR(Y))| ≥ c8λ

−1
min(ΣR(Y))

)
≤Pr

(
|λmin(Σ̂R(Y))− λmin(ΣR(Y))| ≥ c9λmin(ΣR(Y))

)
≤2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4),

where c8 = 1/(1− c9)− 1 > 0.

Proof of Theorem 1. We only focus on the proof for mRCC1, since the proof

for mRCC2 is similar by modifying tail probability using (7.4) in Lemma 3

and the following. For the first part of the theorem, recall that

ω̂mRCC1
k = r̂Tk Σ̂

−1
R(Y)r̂k,

ωmRCC1
k = rTkΣ−1R(Y)rk,

we have

ω̂mRCC1
k − ωmRCC1

k =(r̂k − rk)
TΣ̂
−1
R(Y)(r̂k − rk)

+ 2(r̂k − rk)
TΣ̂
−1
R(Y)rk

+ rTk (Σ̂
−1
R(Y) −Σ−1R(Y))rk

,I1 + I2 + I3.
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Note that

I1 ≤ ‖Σ̂
−1
R(Y)‖ · ‖r̂k − rk‖2.

By Lemma 2, for any δ > 0, the union bound of probability is

Pr
(
‖r̂k − rk‖2 ≥ q(

6

n
+ δ)2

)
≤q Pr

(
|r̂s(Xk, Yj)− rs(Xk, Yj)|2 > (

6

n
+ δ)2

)
≤2q exp(−c̃5nδ2) + 2q exp(−c̃6n3δ2),

for some positive constant c̃5 and c̃6. Under Condition (C1),

‖Σ−1R(Y)‖ ≤ c−10 q.

By Lemma 3,

Pr
(
‖Σ̂
−1
R(Y)‖ ≥ (c8 + 1)c−10 q

)
≤ 2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4),

for any c8 > 0, n > Cq2 and some positive constants c3, c4 and C. Hence,

the union bound of probability for I1 is

Pr
(
|I1| ≥ (c8 + 1)c−10 q2(

6

n
+ δ)2

)
≤2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4)

+ 2q exp(−c̃5nδ2) + 2q exp(−c̃6n3δ2).

We next deal with the probability bound for I2. Note that

|I2| ≤ 2‖(r̂k − rk)
T‖ · ‖Σ̂

−1
R(Y)‖ · ‖rk‖.

It is obvious that

‖rk‖2 ≤ q.
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Hence, the union bound of probability for I2 is

Pr
(
|I2| ≥ 2(c8 + 1)c−10 q2(

6

n
+ δ)

)
≤2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4)

+ 2q exp(−c̃5nδ2) + 2q exp(−c̃6n3δ2).

To bound I3, note that

I3 = rTk Σ̂
−1
R(Y)(ΣR(Y) − Σ̂R(Y))Σ

−1
R(Y)rk.

By the fact that ‖AB‖ ≤ ‖A‖ · ‖B‖, we have

|I3| ≤ ‖Σ̂
−1
R(Y)‖ · ‖ΣR(Y) − Σ̂R(Y)‖ · ‖Σ−1R(Y)‖ · ‖rk‖

2.

For a d-dimensional square matrix D, it is shown in the proof of Lemma 5

of Fan et al. (2011) that ‖D‖ ≤ d‖D‖max. Therefore,

Pr
(
‖ΣR(Y) − Σ̂R(Y)‖ ≥ q(

6

n
+ δ)

)
≤q2 Pr

(
|rs(Yj, Yl)− r̂s(Yj, Yl)| ≥

6

n
+ δ
)

≤2q2 exp(−c̃5nδ2) + 2q2 exp(−c̃6n3δ2).

Hence, the union bound of probability for I3 is

Pr
(
|I3| ≥ (c8 + 1)c−20 q4(

6

n
+ δ)

)
≤2q2 exp(−c3nq−4) + 2q2 exp(−c4n3q−4)

+ 2q2 exp(−c̃5nδ2) + 2q2 exp(−c̃6n3δ2).
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The final probability bound

Pr
(
|ω̂mRCC1
k − ωmRCC1

k | ≥ c10q
2(

6

n
+ δ)2 + 2c10q

2(
6

n
+ δ) + c11q

4(
6

n
+ δ)

)
≤6q2

(
exp(−c3nq−4) + exp(−c4n3q−4)

)
+ (2q2 + 4q)

(
exp(−c̃5nδ2) + exp(−c̃6n3δ2)

)
,

for some positive constants c10 and c11. Take δ = n−κ − 6/n, when n >

max{Cq2, 61/(1−κ)}, there exists c2 > 0, such that c10q
2n−2κ + 2c10q

2n−κ +

c11q
4n−κ = c2q

4n−κ and

Pr
(
|ω̂mRCC1
k − ωmRCC1

k | ≥ c2q
4n−κ

)
≤6q2

(
exp(−c3nq−4) + exp(−c4n3q−4)

)
+ (2q2 + 4q)

(
exp(−c5n1−2κ) + exp(−c6n3−2κ)

)
,

for some positive constants c5 and c6. Thus the first part immediately

follows the union bound of probability.

Next, we show the second part of the theorem. By Condition (C2),

under the event

Γn =
{

max
k∈j=1,··· ,p

|ω̂mRCC1
k − ωmRCC1

k | ≤
δÃq

4n−κ

2

}
,

we have

min
k∈Ã

ω̂mRCC1
k ≥ min

k∈Ã
{ωmRCC1

k − |ω̂mRCC1
k − ωmRCC1

k |}

≥ max
k∈Ãc

ωmRCC1
k +

δÃq
4n−κ

2
≥ max

k∈Ãc
ω̂mRCC1
k
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Hence, there must exists νn ≥ tn, such that Ã = Âνn . Moreover, for any

tn ≤ νn, Âνn ⊂ Âtn , which implies A ⊂ Ã ⊂ Âtn . Therefore, let c2 = δA/2,

by the choice of tn = c1q
4n−κ, c1 ≤ δA/2, we have

P (A ⊂ Âtn) ≥ P (Γn)

≥1− p ·
{

6q2
(

exp(−c3nq−4) + exp(−c4n3q−4)
)

+ (2q2 + 4q)
(

exp(−c5n1−2κ) + exp(−c6n3−2κ)
)}
.

Proof of Theorem 2. We only focus on the proof for mRCC1, since the proof

for mRCC2 is similar. Under Condition (C1),

p∑
k=1

ωmRCC1
k ≤

p∑
k=1

‖Σ−1R(Y)‖ · ‖rk‖
2 ≤ c−10 sq2 = O(sq2).

This indicates that the number of {k : ωmRCC1
k > εq4n−κ} cannot exceed

O(sq−2nκ) for any ε > 0. Therefore, on the set

∆n =
{

max
1≤k≤p

|ω̂mRCC1
k − ωmRCC1

k | ≤ εq4n−κ
}
,

the number of {k : ω̂mRCC1
k > 2εq4n−κ} cannot exceed the number of {k :

ωmRCC1
k > εq4n−κ}, which is bounded by O(sq−2nκ). Take ε = c1/2, we

have

Pr
(
|Âtn| ≤ O(sq−2nκ)

)
≥ Pr(∆n).
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The conclusion follows from the first part of Theorem 1.
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