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Abstract: We explore large-scale functional linear regression in which the scalar response

is associated with a potentially ultrahigh number of functional predictors, leading to a more

challenging model framework than the classical case. We establish a rigorous procedure

for testing a general hypothesis on an arbitrary subset of regression coefficient functions.

Specifically, we exploit the techniques developed for post-regularization inferences, and

propose a new test for the aforementioned regression based on a decorrelated score function

that separates the primary and nuisance parameters in functional spaces. We also devise

the corresponding decorrelated Wald and likelihood ratio tests, and establish the exact

equivalence among these three tests for the model under consideration. The proposed test

is shown to be uniformly convergent to the prescribed significance. We show its finite-

sample performance using simulation studies and a data set from the Human Connectome

Project that identifies brain regions associated with emotional tasks.

Key words and phrases: Decorrelated score, functional data, high dimensions, functional

linear regression, multiplier bootstrap.
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1. Introduction

The classical functional linear regression (FLR) is widely used to model the

linear relationship between a scalar response Y and a functional predictor, which

is often assumed to be sampled from an L2(T ) random process X(t) defined on

a compact interval T ⊆ R. Specifically, given n independent and identically

distributed (i.i.d.) pairs {Yi, Xi(·)}, the classical FLR is formulated as

Yi =

∫
T

Xi(t)β(t)dt+ εi, i = 1, . . . , n, (1.1)

where both Yi and Xi are centered, without loss of generality, that is, EYi = 0

and EXi(t) = 0, for t ∈ T ; the unknown regression parameter function β(t) is

square-integrable, that is, β ∈ L2(T ); and the i.i.d. regression error εi is inde-

pendent of Xi with mean zero and finite variance σ2 <∞. This model has been

studied extensively in relation to functional data analyses (Ramsay and Dalzell,

1991; Cardot et al., 1999; Fan and Zhang, 2000; Yuan and Cai, 2010, among

others), including its theoretical considerations (Hall and Horowitz, 2007; Cai

and Yuan, 2012) and statistical inference (Cardot et al., 2003; Lei, 2014; Hilgert

et al., 2013; Shang and Cheng, 2015); see Ramsay and Silverman (2005) for

an overview and examples. Numerous works have extended the classical FLR.

These extensions include the functional response (Faraway, 1997; Cuevas et al.,
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2002; Yao et al., 2005), generalized FLR (Escabias et al., 2004; Müller and

Stadtmüller, 2005; Shang and Cheng, 2015), partially FLR (Lian, 2011; Kong

et al., 2016), and additive regression (Müller and Yao, 2008; Zhu et al., 2014;

Fan et al., 2015), among others.

In modern scientific experiments, the response Y is potentially associated

with multiple, or even a large number of functional predictors. For example,

Lian (2013) proposed an FLR involving a fixed number of functional predictors.

Kong et al. (2016) considered a regularized estimation and variable selection

for a partially FLR that contains high-dimensional scalar covariates and a finite

number of functional predictors. However, when applying an FLR to large-

scale data, the number of potential functional predictors pn can be much larger

than the sample size n, even though the significant predictors of size qn are

usually assumed to be sparse or at a fraction polynomial order of n. Examples

can be found in neuroimaging analyses that focus on the relationship between a

disease marker and a number of brain regions of interest (ROI) over time. This

consideration motivates the following large-scale FLR model:

Yi =

pn∑
j=1

∫
T

Xij(t)βj(t)dt+ εi, i = 1, . . . , n, (1.2)

where pn is allowed to grow exponentially with the sample size n, (without loss
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of generality) the first qn important parameter functions {βj : j = 1 . . . , qn}

are assumed to be nonzero, with the rest zero, and the i.i.d. error εi is in-

dependent of {Xij : j = 1, . . . , pn} with mean zero and variance σ2. It is

common to use a set of pre-fixed (i.e., B-splines, wavelets) or data-driven (i.e.,

eigenfunctions) bases to represent the underlying process Xj of each predictor

{Xij : i = 1, . . . , n}. The data-driven bases, such as eigenfunctions, are effi-

cient for representation, but necessarily for regression. However, they have to

be estimated from pn separate functional principal component analysis (FPCA)

procedures, which is computationally intensive, especially when pn � n. For

instance, a singular value decomposition (SVD)-based method usually demands

computation of order O{pn(nm2 + n2m)}, which can be much higher if pre-

smoothing is needed. Thus, we adopt a common pre-fixed basis {bk : k ≥ 1} that

is complete and orthonormal inL2(T ) for all processesXj , for j = 1, . . . , pn. As

such, we do not further pursue other complicated basis-seeking procedures, such

as the functional partial least squares method (Reiss and Ogden, 2007). The pro-

posed method requires computation of order O(pnnm) and automatically takes

smoothing into account.

The main contribution of this study is to develop a rigorous testing procedure

for a general hypothesis on an arbitrary subset of regression functions {βj : j =

1, . . . , pn}. The challenge arises from the ultrahigh-dimensionality in pn, which
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can be as exponentially large as n, and the intrinsic infinite-dimensionality of

each Xj , for j = 1, . . . , pn. Although the FLR (and its variants) has been well

studied, few works have examined their inference procedures. For example,

Hilgert et al. (2013) and Lei (2014) considered adaptive tests for a single regres-

sion function in a classical FLR, and Shang and Cheng (2015) did so for the

generalized FLR. In the current exposition, we adopt a general class of noncon-

vex penalty functions (Loh and Wainwright, 2015), which include the LASSO

penalty (Tibshirani, 1996), smoothly clipped absolute deviation (SCAD) penalty

(Fan and Li, 2001), and minimax concave penalty (MCP) (Zhang, 2010) as spe-

cial cases. Furthermore, the theoretical properties in high-dimensional linear

regressions have been studied extensively (Meinshausen and Bühlmann, 2006;

van de Geer, 2008; Meinshausen and Yu, 2009; Bickel et al., 2009; Zhang, 2009;

Fan and Lv, 2011; Wang et al., 2013, 2014; Fan et al., 2014; Loh and Wain-

wright, 2015, among many others). Recently, research on inferences in high-

dimensional linear regressions has increased, especially for the LASSO-type

convex penalty (Tibshirani, 1996). These studies include those of Wasserman

and Roeder (2009), Meinshausen and Bühlmann (2010), and Shah and Sam-

worth (2013) on sample splitting and subsampling, Zhang and Zhang (2014)

and van de Geer et al. (2014) on bias correction methods, and Lockhart et al.

(2014) and Taylor et al. (2014) on conditional inferences on the event that some
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covariates have been selected, among others.

This study is inspired by the unconditional inference based on a decorre-

lated score function of Ning and Liu (2017), owing to its generality, and because

it does not require data splitting or strong minimal signal conditions. We first

exploit a penalized least squares procedure, treating the truncated coefficients of

each βj as a group. In this way, we obtain estimation consistency without need-

ing oracle properties under weaker minimal signal conditions that allow for a

wider class of suitable settings. Then, we devise the decorrelated score function

in the context of a large-scale FLR that tests a general null hypothesis on any

subset of {βj : j ≤ pn}. Unlike testing a null hypothesis on a single parameter

in a high-dimensional linear regression, the limiting distribution for such a gen-

eral null hypothesis is intractable. Hence, we adopt the multiplier bootstrap to

approximate the limiting distribution of the score test statistic under the null hy-

pothesis, and provide theoretical guarantees for all possible levels in a uniform

manner. Furthermore, we introduce the counterparts of the score test (i.e., the

decorrelated Wald test and decorrelated likelihood ratio test) and establish the

exact equivalence of the three tests for the model under consideration.
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2. Regularized estimation by group penalized least squares

Recall that the large-scale FLR defined in (1.2), underlying predictor processes

Xj , and the corresponding regression functions βj are expressed by a complete

and orthonormal basis {bk : k ≥ 1}, leading to an infinite-dimensional rep-

resentation. Specifically, let the functional predictors and the associated re-

gression functions be expressed as linear combinations of {bk : k ≥ 1}; that

is, βj =
∑∞

k=1 ηjkbk and Xij =
∑∞

k=1 θijkbk, where the coefficients θijk =∫
T
Xij(t)bk(t)dt that coincide with the projections are mean zero random vari-

ables with variances E(θ2
ijk) = ωjk > 0. As a result, model (1.2) can be refor-

mulated as

Yi =

pn∑
j=1

∞∑
k=1

θijkηjk + εi. (2.3)

To perform an estimation and inference on the regression functions of primary

interest, it is not feasible to directly minimize the square loss with respect to the

infinite sequences of unknown coefficients ηjk. A common practice is to truncate

up to the first sn leading terms allowed to grow with n, where sn controls the

complexity of βj as a whole function, rather than viewing the basis terms as

separate predictors, and balances the bias-variance trade-off in a similar spirit to
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a classical nonparametric regression. Hence, model (1.2) becomes

Yi =

pn∑
j=1

sn∑
k=1

θijkηjk + (εi +

pn∑
j=1

∞∑
k=sn+1

θijkηjk), i = 1, . . . , n. (2.4)

A similar technique is used by Rice and Silverman (1991), Yao et al. (2005), Hall

and Hosseini-Nasab (2006), Cai and Hall (2006), Zhang and Chen (2007), Hall

and Horowitz (2007), Fan et al. (2015), and Kong et al. (2016), among others.

Ideally, one would use different truncation sizes for each βk. However, selecting

truncations for a large number of functional predictors is computationally infea-

sible. In practice, we adopt the strategy suggested by Kong et al. (2016) of using

a common sn to perform the regularized estimation. Then, we use an ordinary

least squares for the retained predictors and choose different truncations using

K-fold cross-validation for, say, K = 5. Nonetheless, the use of a common sn

suffices for the methodological development and theoretical analysis.

Remark. To the best of our knowledge, this type of large-scale FLR first

appeared in Fan et al. (2015), who considered a penalized procedure for model

estimation and selection. However, our primary interest is hypothesis testing. A

careful inspection of Condition 1(A) in Fan et al. (2015, Appendix B), which

requires
∑∞

k=1 θ
2
ijkk

4 < C2 for a universal constant C, for i = 1, . . . , n, j =

1, . . . , pn, reveals that all random processes Xj are bounded in L2(T ), which
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excludes the Gaussian processes. Furthermore, Condition 2(D) in Fan et al.

(2015) assumes that the minimal eigenvalues of n−1Θ′jΘj ≥ c0. This is bounded

from below by a constant c0 uniformly in 1 ≤ j ≤ qn (i.e., the important ones),

where Θj = (θijk)1≤i≤n;1≤k≤sn is the n × sn design matrix induced by Xj . In

fact, this crucial condition is not valid for an infinite-dimensional L2 process,

because the minimal eigenvalues necessarily approach zero when sn diverges;

a typical example is given by the Karhunen-Loève expansion. In contrast, we

do not make such assumptions. As such, the predictor processes are genuinely

functional in the large-scale FLR (1.2).

In addition to the truncation, it is essential to impose a suitable penalty on

each regression function as a whole using a functional version of the group regu-

larization (Yuan and Lin, 2006). To regularize predictors on a comparable scale,

we often standardize the scalar predictors in a linear regression (Fan and Li,

2001). For the functional predictors Xj , we choose to account for the vari-

ability in the grouped projection coefficients θijk in the n × sn design matrix

Θj = (θijk)1≤i≤n;1≤k≤sn . Hence, n−1/2||Θjηj||2 invokes a group penalty that

shrinks the unimportant regression function to zero, where ‖ ·‖2 is the Euclidean

or `2 norm (if an infinite sequence). For technical convenience, we scale up the

penalty parameter λn by s1/2
n , which does not affect the relative weighting of

the penalties, given the common group size sn. Thus, our target is to minimize
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the penalized square loss function, as follows, denoting η = (η′1, . . . , η
′
pn)′ with

vectors ηj = (ηj1, . . . , ηjsn)′, and ‖ · ‖1 as the `1 norm:

min
η:||η||1≤Rn

{ Qn(η)︷ ︸︸ ︷
(2n)−1

n∑
i=1

(Yi −
pn∑
j=1

sn∑
k=1

θijkηjk)
2

︸ ︷︷ ︸
Ln(η)

+

pn∑
j=1

ρ
λns

1/2
n

(n−1/2||Θjηj||2)︸ ︷︷ ︸
Pλn (η)

}
,(2.5)

where ρλ(·) with the tuning parameter λ belongs to a general class of nonconvex

penalty functions satisfying conditions (P1)–(P5) in Appendix A, which includes

popular penalties such as the LASSO, SCAD, and MCP (Loh and Wainwright,

2015). The positive constraint Rn should be chosen carefully to make the true

value η∗ a feasible point, such that ‖η∗‖1 ≤ Rn. For instance, it is often the case

that ‖η∗‖1 = O(qn), suggesting that Rn ∼ qn. Upon solving the optimization

problem in (2.5), which is guaranteed to have a global minimum by the Weier-

strass extreme value theorem if ρλ(·) is continuous, the regularized estimator

for each βj is given by β̂j(t) =
∑sn

k=1 η̂jkbk(t), where η̂ is obtained from (2.5).

An implementation using a coordinate descent algorithm based on Ravikumar

et al. (2008), with a slight modification, is presented in Appendix A. The tuning

parameters λn and sn are chosen using K-fold cross-validation (e.g.,K = 5).

Note that for the purpose of general hypothesis testing, it is sufficient to ob-

tain a consistent estimation of η from (2.5) in both the `1 and the `2 sense, as
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stated in Theorem 1, whereas the selection consistency or oracle property is not

necessary. Before stating Theorem 1, the main technical conditions (A1)–(A6)

are discussed below. Conditions (B1)–(B3) on the relationship between sev-

eral quantites, such as Rn, sn, qn, and λn and the penalty function requirements

(P1)–(P5) are deferred to Appendix A and B respectively.

Because we consider a large-scale FLR with functional predictors on a com-

parable scale, it is reasonable to require the second moment of eachXj ,
∫
T
E(X2

j ),

to be uniformly bounded from above. Furthermore, the minimal eigenvalue of

Λ = diag{Λj : j ≤ pn} decays at a polynomial order of sn, where Λj =

diag{ω1/2
jk : k ≤ sn}; that is,

(A1) supj≤pn
∑∞

k=1 ωjk < ∞, λmin(Λ) ≥ cs
−a/2
n , for some constants c > 0

and a > 1.

Condition (A1) implies that the variances {ωjk : k ≤ sn} for each j are allowed

to be unsorted, with possible ties. This is distinct from Condition 2(D) in Fan

et al. (2015), which requires that λmin(Λ) be bounded by a constant from below,

and is not applicable for functional predictors. For the next assumption on the

distributions of several random quantities, we define the subGaussian norm as

‖X‖φ1 = supq≥1 q
−1/2{E(|X|q)}1/q for the subGaussian random variable X ,

and define the sub-exponential norm as ‖X‖φ2 = supq≥1 q
−1{E(|X|q)}1/q for

the sub-exponential random variable X . We assume the following:
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(A2) The random quantities εi, ω
−1/2
jk θijk, and (wl

′Fi − Eil){E(E2
il)}−1/2 are

centered subGaussian random variables satisfying ||εi||φ1 ≤ c, ||ω−1/2
jk θijk||φ1 ≤

c, and ||(wl′Fi−Eil){E(E2
il)}−1/2||φ1 ≤ c, respectively, for some positive

constant c, uniformly in i = 1, . . . , n, j = 1, . . . , pn, k = 1, . . . ,∞, and

l = 1, . . . , hnsn.

Together, conditions (A1) and (A2) imply that θijk and (wl
′Fi − Eil) are also

centered subGaussian satisfying ||θijk||φ1 ≤ c1 and ||wl′Fi − Eil||φ1 ≤ c1, for

some positive constant c1, uniformly in 1 ≤ i ≤ n, 1 ≤ j ≤ pn, 1 ≤ l ≤

hnsn, and k ≥ 1. Next, we denote the information matrix and the standardized

information matrix by I = E(GiGi
′) and Ĭ = Λ−1IΛ−1, respectively, where Gi

is the vector containing θijk projected from the ith subject. We assume that the

eigenvalues of the standardized information matrix satisfy the following:

(A3) m0 ≤ λmin(Ĭ) ≤ λmax(Ĭ) ≤ m1 <∞, for some constants m1 > m0 > 0,

with m0 > 2−1m1µ, where µ > 0 is a constant such that ρλ,µ(t) is convex

in t; see Appendix A for the general conditions on the nonconvex penalty

ρλ,µ(t).

From (A1) and (A3), we have that λmin(I) = λmin(ΛĬΛ) ≥ cs−an , for some

constant c > 0. As a special case, if the functional predictors are uncorrelated,

Ĭ is reduced to an identity matrix that apparently fulfills (A3). Similarly, we
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denote the partial information matrix and its standardized version by IHn|Hcn =

IHnHn −w′IHcnHn and ĬHn|Hcn = Λ−1
HnIHn|HcnΛ−1

Hn , respectively. Then, we impose

a mild assumption on the correlation structure between the predictors to be tested

and the other nuisance predictors:

(A4) c1 ≤ λmin(ĬHn|Hcn) ≤ λmax(ĬHn|Hcn) ≤ c2 <∞, for constants c2 > c1 > 0.

The number of functional predictors pn can grow exponentially with the sample

size:

(A5) log pn ∼ nβ , for some β ∈ (0, 9−1),

where an ∼ bn denotes c1 ≤ limn→∞ |an/bn| ≤ c2, for some c1, c2 > 0. We

assume that the first qn nonzero regression functions belong to a Sobolev ball

with smoothness governed by a regularity constant δ:

(A6) supj≤qn
∑∞

k=1 η
2
jkk

2δ < c, for some positive constants δ and c.

Theorem 1. Under conditions (A1)–(A3), (A5)–(A6), (B1), (B3), and (P1)–(P5),

every local minimizer η̂ of Qn(η) obtained from (2.5) satisfies that

1) ||η̂ − η||2 ≤ c0λns
a/2+1/2
n q

1/2
n , with probability tending to one, for some

constant c0 > 0,

2) ||η̂ − η||1 ≤ c1λns
a/2+1
n qn, with probability tending to one, for some con-

stant c1 > 0.
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Note that the upper bounds in 1) and 2) depend on the truncation size sn,

which behaves like a tuning parameter in a nonparametric regression, and reflects

the variability of η̂. From Theorem 1, the consistency of the estimated regression

curves β̂j(t) =
∑sn

k=1 η̂jkbk(t) follows

sup
j≤pn
||β̂j − βj||L2 ≤ sup

j≤pn
||η̂j − ηj||2 + s−δn sup

j≤qn

( ∞∑
k=sn+1

η2
jkk

2δ
)1/2

= O(λns
a/2+1/2
n q1/2

n + s−δn ), (2.6)

with probability tending to one, where a and δ govern the smoothness of the

functional processes and the regression functions, respectively. Note that (B1)

in Appendix B incorporates δ > a + 1 > 2, which indicates that the regression

curves are relatively smoother than the functional processes, and that qn is rela-

tively small in the sample size, reflecting the sparseness of the model. In particu-

lar, because ||η∗||1 =
∑qn

j=1

∑sn
k=1 |η∗jk| = O(qn) under (A6) and (B1), it is feasi-

ble to assumeRn ∼ qn. In addition, (B3) implies that max{(log pn/n)1/2, qns
−δ
n } ≤

λn ≤ R−1
n . By simple calculation, we can minimize (2.6) using s∗n =

{
2δ(a +

1)−1λ−1
n q

−1/2
n

}2/(a+1+2δ), yielding supj≤pn ||β̂j−βj||L2 = O
{

(λ2
nqn)δ/(a+1+2δ)

}
.

Note that the estimation consistency in Theorem 1 is sufficient to guarantee the

consistency of the testing procedure in following sections. That is, we do not

have to further refine the convergence rate, which is another advantage of our
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proposal.

3. Bootstrapped score test for a general hypothesis in a large-scale FLR

Our goal is to test a class of hypotheses that is of full generality in a large-scale

FLR framework. Denote Pn = {1, . . . , pn} as the index set of all functional

predictors, let Hn ⊆ Pn be an arbitrary nonempty subset of Pn with cardinality

|Hn| = hn ≤ pn, and denote the complement of Hn as Hc
n = Pn \ Hn. Then,

the hypothesis can be expressed as

H0 : ‖βj‖L2 = 0 for all j ∈ Hn v.s. Ha : ‖βj‖L2 > 0 for some j ∈ Hn, (3.7)

noting that the cardinality hn can be as large as pn, allowing for a hypothesis of

any size on {βj : j = 1, . . . , pn}.

To test the general null hypothesis in (3.7), we use a combination of con-

sistently estimated regression functions and a new type of score function. As

illustrated in Ning and Liu (2017), the motivation for considering a decorrelated

score is the high-dimensionality of the nuisance parameter spaceHc
n = Pn \Hn,

which makes the limiting distribution of the estimated nuisance parameter con-

strained by the null hypothesis intractable (Fu and Knight, 2000). Hence, the

key is to decorrelate the score function of the primary parameter inHn from that

of the nuisance parameter inHc
n in order to control the variability induced by the
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high dimensionality. This decorrelation operation is a natural extension of the

profile score to the high-dimensional case, and leads to a test that is asymptoti-

cally equivalent to the classical Rao score test in the low-dimensional case (Cox

and Hinkley, 1979; Ning and Liu, 2017).

We first introduce some notation for the score decorrelation in the proposed

large-scale FLR. Recall that ωjk is the variance of the i.i.d. projection coefficient

{θijk =
∫
T
Xij(t)bk(t)dt : i = 1, . . . , n}. Denote Λj = diag{ω1/2

j1 , . . . , ω
1/2
jsn
},

for j ≤ pn, as the block diagonal matrix ΛHn = diag{Λj : j ∈ Hn}; similarly

ΛPn ≡ Λ. Let Θ = (G′1, . . . , G
′
n)′ = (ΘHn ,ΘHcn), ΘHn = (E ′1, . . . , E

′
n)′,

and ΘHcn = (F ′1, . . . , F
′
n)′, where Gi, Ei, and Fi are vectors containing the

coefficients θijk from the corresponding functional predictors for the ith sub-

ject. Here, ΘHn is formed by concatenating {Θj : j ∈ Hn} in a row, as

is ΘHcn , where Θj is an n × sn design matrix with θijk as its ikth entry. In

addition, denote η = (η′Hn , η
′
Hcn)′ and Y = (Y1, . . . , Yn)′, where ηHn stacks

{ηj : j ∈ Hn} in a column, as in the case of ηHcn . Here, we view the least

squares Ln(η) = Ln(ηHn , ηHn) = (2n)−1(Y − Θη)′(Y − Θη) as the negative

likelihood function of η without introducing extra notation. Furthermore, denot-

ing IHcnHn = E(FiEi
′) and IHcnHcn = E(FiFi

′), we define

w = I−1
HcnHcnIHcnHn = (w1, . . . , whnsn) ∈ R(pn−hn)sn×hnsn .

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0456



For the decorrelation, we define a new score function with respect to the pri-

mary parameter ηHn , denoted by S(η), in the context of our large-scale FLR, as

follows:

S(η) = S(ηHn , ηHcn) = n−1Λ−1
Hn(w′Θ′Hcn −Θ′Hn)(Y −ΘHnηHn −ΘHcnηHcn)

= n−1

n∑
i=1

Λ−1
Hn(w′Fi − Ei)(Yi − E ′iηHn − F ′iηHcn). (3.8)

It is easy to verify that this new score function with respect to the primary pa-

rameter ηHn is uncorrelated with the traditional score function with respect to

the nuisance parameter ηHcn; that is, E{S(η)∇ηHcn
Ln(η)} = 0 (Ning and Liu,

2017), where ∇γ denotes the gradient vector taken with respect to γ.

Given the consistent estimation of the regression coefficients and the decor-

related score function, we are ready to construct the proposed score test for the

general hypothesis in (3.7) in a large-scale FLR. Note that the decorrelated score

function S(η) defined in (3.8) cannot be calculated directly from the observed

data, owing to the unknown quantities w = I−1
HcnHcnIHcnHn and ΛHn . It is straight-

forward to estimate ΛHn by substituting in ω̂jk = n−1
∑n

i=1 θ
2
ijk, denoted by

Λ̂Hn; the process is similar for Λ̂ and Λ̂Hcn . To estimate w, a natural choice

is the moment estimator ŵ = Î−1
HcnHcn ÎHcnHn , where ÎHcnHcn = n−1ΘHcn

′ΘHcn

for IHcnHn = E(FiEi
′), and ÎHcnHn = n−1ΘHcn

′ΘHn for IHcnHcn = E(FiFi
′).
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However, this estimator may not exist, because the matrix ÎHcnHcn can be sin-

gular in high-dimensional settings. We follow the suggestion by Ning and Liu

(2017) to adopt the Dantzig selector (Candes and Tao, 2007) to estimate the

(pn − hn)sn × hnsn unknown matrix w by column. Alternative procedures

can also be used (not pursued here for brevity). Specifically, for each l =

1, . . . , hnsn, we solve

ŵl ∈ argmin
wl

||wl||1 s.t. ||n−1

n∑
i=1

EilFi
′ − w′ln−1

n∑
i=1

FiFi
′||∞ ≤ τn, (3.9)

where τn is a common tuning parameter chosen using K-fold cross-validation,

giving the resulting estimator ŵ. Therefore, we have the estimated decorrelated

score function

Ŝ(η) = Ŝ(ηHn , ηHcn) = n−1Λ̂−1
Hn(ŵ′Θ′Hcn −Θ′Hn)(Y −ΘHnηHn −ΘHcn η̂Hcn)

= n−1
∑n

i=1 Λ̂−1
Hn(ŵ′Fi − Ei)(Yi − E ′iηHn − F ′iηHcn), (3.10)

where Λ̂Hn is invertible by Lemma 3 in the Supplementary Material. Then,

we substitute in the estimator η̂ obtained from minimizing (2.5) to construct

the decorrelated score test statistic under the null hypothesis H0 : ‖βj‖L2 =
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0, for all j ∈ Hn, leading to

T̂ ∗ = n1/2Ŝ(0, η̂Hcn) = n−1/2

n∑
i=1

Ŝi, Ŝi = Λ̂−1
Hn(ŵ′Fi − Ei)(Yi − F ′i η̂Hcn).(3.11)

Note that the null hypothesis in (3.7) is of full generality with the dimen-

sion hnsn, where sn grows with n (often at a fractional polynomial order) to

approximate the infinite-dimensional functional spaces, and hn can be as large

as pn. Unlike testing a finite-dimensional null hypothesis, it is difficult to find

a tractable limiting distribution, even when testing a single functional predictor,

hn = 1. Hence, we use its infinity norm ||T̂ ∗||∞ = max{|T̂ ∗l | : l = 1, . . . , hnsn}

to test against the null hypothesis in (3.7), and adopt a computationally efficient

and theoretically guaranteed bootstrap method to approximate the limiting distri-

bution of ||T̂ ∗||∞. Because a standard bootstrap is expensive as a result of repeat-

edly estimating η and w, we consider the multiplier bootstrap method proposed

by Chernozhukov et al. (2014). Specifically, denote T̂ ∗e = n−1/2
∑n

i=1 eiŜi,

where {e1, . . . , en} is a set of i.i.d. standard normal random variables indepen-

dent of the data. Then, define

cB(α) = inf{t ∈ R : Pe(||T̂ ∗e ||∞ ≤ t) ≥ 1− α} (3.12)

as the 100(1 − α)th percentile of ||T̂ ∗e ||∞, where Pe(·) denotes the probability
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with respect to {e1, . . . , en}. Based on this critical value, we reject the null hy-

pothesis at the significance level α provided that ||T̂ ∗||∞ ≥ cB(α). Furthermore,

note that the vector T̂ ∗ in ||T̂ ∗||∞ is nearly standardized, owing to the transfor-

mation Λ̂−1
Hn in (3.11). This is sensible because the multiplier bootstrap method

indeed requires that the test statistics have comparative scaling. Theorem 2 states

that under the null hypothesis and some mild conditions, the Kolmogorov dis-

tance between the distributions of ||T̂ ∗||∞ and ||T̂ ∗e ||∞ converges to zero as the

sample size grows. This provides theoretical guarantees for the decorrelated

score test based on the multiplier bootstrap method uniformly over all α ∈ (0, 1).

Theorem 2. Under conditions (A1)–(A6) in Section 2 and (B1)–(B3) and (P1)–

(P5) in Appendices A and B, respectively, and using the local minimizer η̂ from

Theorem 1, then under H0 : ‖βj‖L2 = 0, for all j ∈ Hn, the Kolmogorov

distance between the distributions of ||T̂ ∗||∞ and ||T̂ ∗e ||∞ satisfies

lim
n→∞

sup
t≥0

∣∣P (||T̂ ∗||∞ ≤ t)− Pe(||T̂ ∗e ||∞ ≤ t)
∣∣ = 0

and, consequently, lim
n→∞

sup
α∈(0,1)

∣∣P{||T̂ ∗||∞ > cB(α)} − α
∣∣ = 0.

4. Exact equivalence to decorrelated Wald and likelihood ratio tests

Based on the decorrelation used in the score function in (3.8), we can construct

the counterparts of other classical tests, such as the Wald and likelihood ratio
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tests, for high-dimensional models (e.g., the Cox proportional hazard model) in

which these tests can be shown asymptotically equivalent (Fang et al., 2016). In

this section, we introduce the decorrelated Wald and likelihood ratio tests that

can be shown to be exactly (not asymptotically) equivalent in the context of a

large-scale FLR.

For the decorrelated Wald test, we adopt a one-step procedure based on the

estimated decorrelated score function in (3.10) to find an estimator ήHn of ηHn ,

as follows:

ήHn = η̂Hn − {∂Ŝ(η̂Hn , η̂Hcn)/∂ηHn}−1Ŝ(η̂Hn , η̂Hcn). (4.13)

Then, the decorrelated Wald test statistic is given by

Ŵ ∗ = n1/2Λ̂−1
Hn ÎHn|Hcn ήHn , (4.14)

where ÎHn|Hcn = ÎHnHn − ŵ′ÎHcnHn . Consequently, the decorrelated Wald test

is such that we reject the null hypothesis in (3.7) at the significance level α if

||Ŵ ∗||∞ ≥ cB(α), where cB(α) is the critical value defined in (3.12).

To define the decorrelated likelihood ratio test statistic, we begin with some

assumptions and notation. Without loss of generality, assume that the index

set Hn for the null hypothesis corresponds to the first hn functional predic-

tors (i.e., Hn = {1, . . . , hn}), and rewrite the loss function Ln(η) as Ln(η) =
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Ln(ηHn , ηHcn) = Ln(ηjk, ηHn\ηjk, ηHcn), where ηHn\ηjk represents the vector

that excludes ηjk. We introduce the following negative decorrelated partial like-

lihood function Ljk(η) for each ηjk, for j = 1, . . . , hn and k = 1, . . . , sn:

Ljk(η) = Ljk(ηHn , ηHcn) = Ljk(ηjk, ηHn\ηjk, ηHcn)

= Ln(ηjk, ηHn\ηjk, ηHcn − ηjkw(j−1)sn+k)

=
1

2n
||Y −ΘHnηHn −ΘHcn(ηHcn − ηjkw(j−1)sn+k)||22, (4.15)

wherew(j−1)sn+k is the {(j−1)sn+k}th column of the matrixw = I−1
HcnHcnIHcnHn .

Note that E{∂Ljk(ηjk, ηHn\ηjk, ηHcn)/∂ηjk∇ηHcn
Ln(η)} = 0 uniformly in j =

1, . . . , hn and k = 1, . . . , sn. The estimated version of Ljk(η) is

L̂jk(η) = L̂jk(ηHn , ηHcn) = L̂jk(ηjk, ηHn\ηjk, ηHcn)

= Ln(ηjk, ηHn\ηjk, ηHcn − ηjkŵ(j−1)sn+k)

=
1

2n
||Y −ΘHnηHn −ΘHcn(ηHcn − ηjkŵ(j−1)sn+k)||22, (4.16)

where ŵ(j−1)sn+k is obtained from (3.9). To implement this test, we also need an

estimator ὴjk for each ηjk that approximately minimizes L̂jk(ηjk, 0, η̂Hcn) with

respect to ηjk. Unlike Fang et al. (2016), who used ήHn from the decorre-

lated Wald test, we again employ a one-step estimator ὴjk based on the fact
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that ∂L̂jk(ὴjk, 0, η̂Hcn)/∂ηjk is close to zero; that is,

ὴjk = −{∂2L̂jk(0, 0, η̂Hcn)/∂η2
jk}−1{∂L̂jk(0, 0, η̂Hcn)/∂ηjk}. (4.17)

Denote Υ̂ as an hnsn × 1 vector with {(j − 1)sn + k}th element equal to

2n{L̂jk(0, 0, η̂Hcn) − L̂jk(ὴjk, 0, η̂Hcn)}. Then, the decorrelated likelihood ratio

test statistic is given by

L̂∗ = Λ̂−2
Hndiag{(ΘHcnŵ −ΘHn)′(ΘHcnŵ −ΘHn)/n}Υ̂, (4.18)

with the same critical value cB(α) as that in (3.12) for a level-α test. The ex-

act equivalence between the three proposed tests for the large-scale FLR is es-

tablished in Theorem 3, where Ŵ ∗ and L̂∗ denote the decorrelated Wald and

likelihood ratio statistics, as in (4.14) and (4.18), respectively.

Theorem 3. Under conditions (A1)–(A6) in Section 2 and (B1)–(B3) and (P1)–

(P5) in Appendices A and B, respectively, and using the local minimizer η̂ from

Theorem 1, then under H0 : ‖βj‖L2 = 0 for all j ∈ Hn, one has ||T̂ ∗||∞ =

||Ŵ ∗||∞ = ||L̂∗||1/2∞ .

We conclude this section by pointing out that the exact (not asymptotic)

equivalence between these three tests under the general null hypothesis in (3.7)
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occurs because we use one-step estimators in the Wald and likelihood ratio statis-

tics and in the linear structure of the FLR model. Hence, it suffices to focus on,

for instance, the decorrelated score test only.

5. Simulation Studies

The simulated data {yi, i = 1, . . . , n} are generated from the following model:

yi =

pn∑
j=1

∫ 1

0

βj(t)xij(t)dt =

pn∑
j=1

∑
k

ηjkθijk + εi,

with n = 100 subjects and pn = 200 functional predictors, where the er-

rors ε1, . . . , εn are i.i.d. from N(0, σ2). The functional predictors have mean

zero and a covariance function derived from the Fourier basis φ1 = 1, φ2` =

21/2 cos{`π(2t− 1)}, for ` = 1, . . . , 25, and φ2`−1 = 21/2 sin{(`− 1)π(2t− 1)},

for ` = 2, . . . , 25, t ∈ T = [0, 1]. The underlying regression function is

βj(t) =
∑50

k=1 ηjkφk(t), for j ≤ qn = 3, where ηjk = cj(1.2 − 0.2k) for

k ≤ 4, and ηjk = 0.4cj(k − 3)−4 for 5 ≤ k ≤ 50, with constants {cj : j ≤ qn}

chosen for different settings, and the other βj(t) = 0, for all t ∈ T . To generate

Xij(t), for j = 1, . . . , pn, define Vij(t) =
∑50

k=1 θ̃ijkφk(t), where {θ̃ijk} follows

an independently distributed N(0, k−2) for different i and j. The pn functional
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predictors are then defined using the autoregressive relationship,

Xij(t) =

pn∑
j′=1

ρ|j−j
′|Vij′(t) =

50∑
k=1

pn∑
j′=1

ρ|j−j
′|θ̃ij′kφk(t) =

50∑
k=1

θijkφk(t),

where θijk =
∑pn

j′=1 ρ
|j−j′|θ̃ij′k, and the constant ρ ∈ (0, 1) controls the corre-

lations between the functional predictors; here, we present the case of ρ = 0.3.

For the observed measurements, we take discrete realizations of {Xij(·), j =

1, . . . , pn} at 100 equally spaced times {tijl, l = 1, . . . , 100} ∈ T . Next, we

use an orthonormal cubic spline basis to fit the model, where the tuning param-

eters sn and λn are chosen using five-fold cross-validation and the algorithm

with the SCAD penalty (see Appendix A). Then, we construct the decorrelated

score test statistic and its associated α = 5% empirical quantile using a wild

bootstrap with N = 10000 bootstrap samples. Table 1 summarizes the empirical

sizes and powers under the null and several alternative hypotheses in different

settings specified by {cj : j ≤ qn}, based on the rejection proportion over 500

Monte Carlo replicates. The computation takes between two and three minutes,

on average, for each case in one Monte Carlo run.

From Table 1, the rejection proportions of the first 11 null hypotheses in-

crease quickly as the signal of β1 increases with βj = 0, for j ≥ 2, which is

expected for a power function curve. In addition, the rejection proportion un-
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Table 1: Simulation results for different settings of the regression curves {βj :
j ≤ qn} specified by {cj : j ≤ qn}, under various hypotheses measured over 500
Monte Carlo replicates, where n = 100, pn = 200, qn = 3, ρ = 0.3, and σ2 =
1. Shown are the empirical rejection proportions with corresponding standard
errors in parentheses. In particular, the rejection rates in the first 11 rows depict
the pattern of the power function under H0 : ‖β1‖L2 = 0 with ascending signal
strength in β1, while ‖βj‖L2 = 0 for j ≥ 2. This is followed by testing different
hypotheses H0, when the underlying ‖βj‖L2 6= 0, for j = 1, 2, 3. Note that in all
settings, ‖βj‖L2 = 0, for j ≥ 4.

Setting of {βj : j ≤ 3} H0 : ‖βj‖L2 = 0, j ∈ Hn Rejection proportion
c1 = 0, c2 = 0, c3 = 0 Hn = {1} .046 (.009)
c1 = .1, c2 = 0, c3 = 0 Hn = {1} .086 (.013)
c1 = .2, c2 = 0, c3 = 0 Hn = {1} .300 (.021)
c1 = .3, c2 = 0, c3 = 0 Hn = {1} .574 (.022)
c1 = .4, c2 = 0, c3 = 0 Hn = {1} .752 (.019)
c1 = .5, c2 = 0, c3 = 0 Hn = {1} .894 (.014)
c1 = .6, c2 = 0, c3 = 0 Hn = {1} .948 (.100)
c1 = .7, c2 = 0, c3 = 0 Hn = {1} .974 (.007)
c1 = .8, c2 = 0, c3 = 0 Hn = {1} .988 (.005)
c1 = .9, c2 = 0, c3 = 0 Hn = {1} .996 (.003)
c1 = 1, c2 = 0, c3 = 0 Hn = {1} 1.00 (.000)
c1 = 1, c2 = 1, c3 = 1 Hn = {1} .986 (.005)
c1 = 1, c2 = 1, c3 = 1 Hn = {1, . . . , 5} 1.00 (.000)
c1 = 1, c2 = 1, c3 = 1 Hn = {1, . . . , 20} 1.00 (.000)
c1 = 1, c2 = 1, c3 = 1 Hn = {5, . . . , 20} .050 (.010)

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0456



der the first null hypothesis is, as expected, close to the prespecified significance

level α = 5%. Among the last four null hypotheses, which include larger sets

of regression parameter functions, the proposed test has a rejection rate close to

the significance level α = 5% when the nonzero βj all reside in the alternative

parameter space (i.e., the last null hypothesis), and possesses good power for

testing the other three null hypotheses. We repeated the experiments using dif-

ferent settings of n, pn, qn, ρ, and σ2 , finding similar patterns with descending

power for larger values of pn and σ2 and ascending power for larger n. The

influence of ρ on the power is not as noticeable as that of pn and σ2, whereas

the influence of qn is mainly associated with the hypothesis of interest. These

similar results are not reported here.

6. Real-Data Example

We analyze a data set on 848 individuals from the Human Connectome Project

(HCP); see http://www.humanconnectome.org/ for more information

on the HCP. The response of interest is a continuous score called Emotion Task

Shape Acc, calculated from emotion-processing fMRI tasks. These tasks are

related to the brain processing of negative emotions such as fear or anger; a de-

tailed description is available at https://www.humanconnectome.org/

storage/app/media/documentation/s500/hcps500meg2releas
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ereferencemanual.pdf. There are 35 regions of the brain (e.g., lingual,

paracentral, isthmuscingulate etc.). Here, we are interested in identifying those

regions that have a significant effect when processing negative emotional tasks.

Thus, we have pn = 35 functional predictors, where the fMRI readings for each

functional predictor are recorded at 176 equally spaced time points, rescaled to a

unit interval. Previous studies have shown that three regions, the isthmuscingu-

late (Rockstroh and Elbert, 2010), lingual (Goldin et al., 2008), and frontalpole

(Musha et al., 1997), are responsible for negative emotions. Thus, it is of keen

interest to pick out these crucial regions from the study.

We adopt an orthonormal cubic B-spline basis, and fit the large-scale FLR

with the number of inside knots kn = sn−4 and the tuning parameter λn chosen

using five-fold cross-validation. As a result of the regularized estimation, 17 of

the 35 regression functions are retained in the model. To perform hypothesis test-

ing on the importance of these regions, we first conduct a marginal test for each

individual region using the proposed decorrelated score test statistic. From the

results, we reject the null hypotheses for isthmuscingulate (j = 10, p = .0028),

lingual (j = 13, p = .0007), and frontalpole (j = 32, p = .0346) at a signifi-

cance level of 0.05. Based on the marginal significance, we carry out an overall

test for H0 : ‖βj‖L2 = 0, for all j /∈ {10, 13, 32}, and fail to reject this null

hypothesis at level 0.05 with a p-value of 0.2725. This indicates that the other
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functional predictors are not statistically important. Therefore, it is reasonable to

retain these three regions in our model (i.e., isthmuscingulate (j = 10), lingual

(j = 13), and frontalpole (j = 32)). To further justify their significance, we re-

fit the FLR model using these three predictors only, and conduct a marginal test

for each of the three regions. We find that all three marginal tests are rejected

at level 0.05, with p-values of 0.0138, 0.0174, and 0.0203, respectively. This

indicates that a model with these three regions may not be reduced further. In

terms of computation, the proposed method takes around eight minutes.

(a) (b) (c)

Figure 1: The estimated regression coefficient functions obtained from the FLR
model containing three functional predictors corresponding to the isthmuscingu-
late (j = 10), lingual (j = 13), and frontalpole (j = 32) regions, respectively.

The estimated regression parameter functions for the three regions are dis-

played in Figure 1. From the left panel, it appears that the negative emotion is

periodically associated with the isthmuscingulate region over the entire duration,

and becomes more influential over time. This is consistent with the finding of

Rockstroh and Elbert (2010) that the isthmuscingulate region is responsible for
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negative emotions such as fear. Figure 1(b) shows that the effect of the lingual

region appears neutral before t = 0.7 on the re-scaled unit time scale, but be-

comes stronger thereafter, supporting the finding of Goldin et al. (2008) of an

association between the lingual region and negative emotion. In Figure 1(c), the

effect of the frontalpole region varies from negative to positive on the response.

This pattern agrees with the finding of Musha et al. (1997) that the frontalpole

region is associated with emotions in the change of mood from happiness to

sadness. Note that caution is required when interpreting the regression func-

tions, especially for the estimates near the beginning and end times, owing to a

boundary effect.

Appendix

A. Nonconvex penalty and algorithm

Without loss of generality, we assume that the data are centered so that we have

n−1
∑n

i=1 Yi = 0 and n−1
∑n

i=1 θijk = 0, for any j = 1, . . . , pn, k = 1, . . . , sn.

In addition, for each j = 1, . . . , pn, we denote f̂j = Θj η̂j , where η̂j is an estima-

tor of ηj , and Uj = Θj(Θj
′Θj)

−1Θj
′. The optimization of (2.5) can be achieved

by adopting the coordinate descent method similar to those used in Ravikumar

et al. (2008) and Fan et al. (2015) with slight modification, where ρλn(·) is re-

placed by ρ
λns

1/2
n

(·). For completeness, we restate below a general class of non-
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convex penalty functions ρλ satisfying the technical conditions (P1)–(P5) as in

Loh and Wainwright (2015).
(P1) ρλ is an even function, and ρλ(0) = 0.

(P2) For t ≥ 0, ρλ(t) is nondecreasing in t.

(P3) gλ(t) = ρλ(t)/t is nonincreasing in t, for t > 0.

(P4) ρλ(t) is differentiable except at t = 0, limt→0+ ρ
′
λ(t) = λL, for some positive constant

L.

(P5) ρλ,µ(t) is convex in t, for some positive constant µ, where ρλ,µ(t) = ρλ(t) + 2−1µt2.

It is known that most nonconvex regularizers, e.g., LASSO, SCAD and

MCP, meet those conditions, and Lemma 1 in the online supplement studies

the properties of those penalty functions. Then, we provide a fitting algorithm

for the large-scale FLR by slightly modifying that of Ravikumar et al. (2008).
(i) Start with the initial estimator f̂j = 0, for each j = 1, . . . , pn.

(ii) Caculate the residual Rj = Y −
∑
k 6=j f̂k , while fixing the values of {f̂k : k 6= j}.

(iii) Caculate the P̂j = UjRj .

(iv) Let f̂j = max
{

1− ρ′
λns

1/2
n

(n−1/2||f̂j ||2)n1/2/||P̂j ||2, 0
}
P̂j .

(v) Let f̂j = f̂j − n−11n′f̂j1n, where 1n denotes the n× 1 vector of ones.

(vi) Repeat (ii) to (v) for j = 1, . . . , pn and iterate until convergence to obtain the final

estimates f̂j , for j = 1, . . . , pn.

(vii) Compute η̂j = (Θj
′Θj)−1Θj

′f̂j by using the final estimates f̂j from step (vi) to get

the final estimates η̂j , for j = 1, . . . , pn.

B. Conditions on the large-scale FLR model

Next we quantify the relationship among the parameters qn, sn, Rn and the sam-

ple size n, which is needed for establishing the estimation consistency in Theo-
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rem 1. Recall that qn is the number of significant predictors, Rn is a parameter

such that ||η∗||1 ≤ Rn where η∗ represents the true value of η. Then we assume

(B1) max(nβq2
ns

a+1−δ
n , n2βq2

ns
a/2+1−δ
n , n5β/2−1/2Rnqns

a/2+1
n , n3β/2−1/2Rnqns

a+1
n ,

nβ+1/2qns
−δ
n log sn) = o(1).

In particular, since ||η∗||1 =
∑qn

j=1

∑sn
k=1 |η∗jk| = O(qn) under (A6) and (B1), it

is feasible to assume Rn ∼ qn in practice. We provide two concrete examples to

illustrate (B1) as follows:

• If Rn ∼ qn ∼ c for some constant c > 0, then (B1) is reduced to

max(nβsa+1−δ
n , n2βsa/2+1−δ

n , n5β/2−1/2sa/2+1
n , n3β/2−1/2sa+1

n , nβ+1/2s−δn log sn) = o(1).

(B.19)

It is easy to check that there exists sn satisfying (B.19) if min{(2δ−a−2)/(4β), (δ−

a− 1)/β, (2δ − 2)/(2β + 1)} > max{(a+ 2)/(1− 5β), (2a+ 2)/(1− 3β)}.

• If Rn ∼ qn ∼ sn, then (B1) is reduced to

max(nβsa+3−δ
n , n2βsa/2+3−δ

n , n5β/2−1/2sa/2+3
n , n3β/2−1/2sa+3

n , nβ+1/2s1−δ
n log sn) = o(1),

(B.20)

and sn satisfies (B.20), if min{(2δ−a−6)/(4β), (δ−a−3)/β, (2δ−2)/(2β+

1)} > max{(a+ 6)/(1− 5β), (2a+ 6)/(1− 3β)}.

Next, we denote ρn = supl≤hnsn ||wl||0, where ||wl||0 is the number of
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nonzero elements in the lth column of w. Now we quantify the relationship

between ρn and various other parameters, which is needed in Theorem 2.

(B2) max{n3β/2ρnqns
3a/2−δ
n log sn, n

5β/2−1/2ρnq
2
ns

2a+1−δ
n , n2β−1/2(log n)1/2ρns

3a/2
n ,

n3β−1Rnρnqns
2a+1
n } = o(1).

Note that the order of ρn is determined by the relative orders of parameters qn,

sn and Rn. For instance, if the predictors in Hn are uncorrelated with nuisance

predictors, (B2) holds trivially. If ρn ∼ c and Rn ∼ qn ∼ sn, then (B1) entails

(B2). We also impose some conditions on the tuning parameters λn and τn in the

regularizers in (2.5) and in the Dantizig method (3.9), respectively.

(B3) nβqnsa+1
n = o(λ−1

n ), n2βqns
a/2+1
n = o(λ−1

n ), n5β/2−1/2ρnqns
2a+1
n =

o(λ−1
n ), nβ/2−1/2Rn = o(λn), qns−δn = o(λn), τn ∼ {log(pnsn)/n}1/2.

In particular, if Rn ∼ qn, then (B3) implies that max{(log pn/n)1/2, qns
−δ
n } ≤

λn ≤ R−1
n , which is consistent with the assumption (6) of Theorem 1 in Loh and

Wainwright (2015). By combining (A5), (B1) with (B3), one has τn ∼ nβ/2−1/2.

Supplementary Material

The auxiliary lemmas used to show the main theorems, as well as the proofs

of those lemmas and theorems, are deferred to the online Supplementary Mate-

rial.
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