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Abstract: Biomedical and clinical research is gradually shifting from a traditional

“one-size-fits-all” approach to a new paradigm of personalized medicine. An

important step in this direction is to identify the treatment-covariate interactions.

Our setting may include many covariates of interest. Numerous machine learning

methodologies have been proposed to aid in treatment selection in this setting.

However, few have adopted formal hypothesis testing procedures. As such, we

present a novel testing procedure based on an m-out-of-n bootstrap that can be

used to sequentially identify variables that interact with a treatment. We study

the theoretical properties of the method, and use simulations to show that it

outperforms competing methods in terms of controlling the type-I error rate and

achieving satisfactory power. The usefulness of the proposed method is illustrated

using real-data examples, from a randomized trial and an observational study.

Key words and phrases: Double robustness; Forward stepwise testing; m-out-of-n

bootstrap; Non-regular asymptotics; Personalized medicine.

1. Introduction
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SEQUENTIAL TEST OF INTERACTION EFFECTS 2

Owning to patients’ heterogeneous responses to treatment programs,

biomedical and clinical research is shifting from the traditional “one-size-

fits-all” treatments to paradigms of personalized medicine. An important

step in this direction is to identify the treatment-covariate interactions. In

the conventional approach, investigators would first identify a set of key

covariates. Then they would examine the treatment-covariate interactions

either by comparing the treatment and control in subgroups defined by the

key covariates, or by testing the regression coefficients of the treatment-

covariate interaction terms in a multivariable linear model. However, this

approaches are either infeasible or unreliable owning to overfitting in the

case of a moderate to large number of covariates.

Several methodologies have been proposed to identify treatment-covariate

interaction effects based on a large set of covariates, and thus optimize the

treatment selection. These include the ranking methods (Gunter, Zhu, and

Murphy 2011; Tian and Tibshirani 2011; Chen et al. 2017), regression-

based methods (Qian and Murphy 2011; Lu, Zhang, and Zeng 2013; Tian

et al. 2014; Fan, Lu, and Song 2016), weighted classification-type learning

methods (Orellana, Rotnitzky and Robins 2010, Zhang et al. 2012; Zhao

et al. 2012; Huang and Fong 2014; Liu et al. 2018), tree-based methods

(Su et al. 2008; Laber and Zhao 2015; Tsai et al. 2016), and functional

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0451



SEQUENTIAL TEST OF INTERACTION EFFECTS 3

data approaches (McKeague and Qian 2014; Ciarleglio et al. 2015; Laber

and Staicu 2018), among others. Nevertheless, very few studies investi-

gate formal hypothesis testing procedures that take variable selection into

account.

A few works have proposed novel hypothesis testing approaches that

identify subgroups of enhanced treatment effects. Shen and He (2015) de-

veloped a likelihood-based test for the existence of a subgroup based on

linear logistic-normal mixture models. Fan, Song, and Lu (2017) proposed

a method to test and identify a subgroup using change-point techniques.

Wager and Athey (2018) investigated a forest-based method for treatment

effect estimations and inferences. Shi, Song, and Lu (2019) proposed a non-

parametric test to assess the incremental value of a given set of new variables

when deciding on an optimal treatment, conditional on an existing set of

prescriptive variables. These methods test nonlinear treatment effects, and

work well with a relatively small set of covariates. Although Shi, Song,

and Lu (2019) apply their method in a forward stepwise fashion and study

its variable-selection properties, the derived p-value loses its interpretation

when used with forward selection. In the presence of a large number of co-

variates, Shen and Cai (2016) proposed a kernel-based method to identify

interactions between a treatment and a group of covariates; however, this
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method can be used only in a randomized trial setting. Zhao, Small, and

Ertefaie (2017) considered a Lasso-based inference approach to identify in-

formative covariates under the condition that the propensity score and the

main effect of the covariates on the outcome are both well estimated.

In a methodologically analogous setting, gene–environment interactions

have been studied extensively in the field of genetics. The most common

approach is to test the interaction of each genetic marker and an environ-

mental exposure separately, and then to adjust for multiple comparisons.

To improve the power and reduce the burden of such comparisons, several

global tests have been proposed to assess the joint interaction effect be-

tween a marker set and an environmental variable (e.g., Lin et al. 2013;

Marceau et al. 2015). However, the validity of these methods relies on hav-

ing an approximately correct model of the main effects of the markers and

environmental factors.

In this study, we consider data from either randomized trials or obser-

vational studies. We aim to identify those covariates that interact with a

treatment, from among a large set of candidate covariates, using a sequen-

tial testing procedure. First, a marginal screening test is used to detect

whether any covariate interacts significantly with the treatment. If so, we

test whether there are additional treatment-covariate interactions in a for-
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ward stepwise fashion. The procedure continues until the p-value exceeds

a prespecified level of significance. Forward stepwise regressions have been

studied extensively (Barron and Cohen 2008; Donoho and Stodden 2006;

Wang 2009; Ing and Lai 2011). However, most of these studies focus on

studying the variable selection consistency properties, instead of hypothesis

testing. In real applications, to enhance reproducibility, clinicians like to

have inferential guarantees for the selected covariates, which is not provided

by variable selection consistency theory alone. These types of selective in-

ference problems have drawn much attention from statisticians, and various

methods have been proposed in the prediction literature (e.g., Bühlmann

2013; Zhang and Zhang 2014; Lockhart et al. 2014; van de Geer et al. 2014;

McKeague and Qian 2015; Ning and Liu 2017; Luedtke and van der Laan

2018).

We propose calibrating our test statistic either by directly sampling

from the null (if it is estimable), or by using an m-out-of-n bootstrap.

The m-out-of-n bootstrap is a general tool for conducting valid statistical

inferences for nonregular parameters (Shao 1994; Bickel, Gotze, and van

Zwet 1997). It is the usual nonparametric bootstrap (Efron 1979), except

that the resample size m is of a smaller order than the original sample

size n. With an appropriate choice of m, the m-out-of-n bootstrap acts
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as a smoothing operation on the empirical distribution of the data. Data-

driven methods for choosing m in various contexts have been proposed by

Hall, Horowitz, and Jing (1995), Lee (1999), Bickel and Sakov (2008) and

Chakraborty, Laber, and Zhao (2013). In this study, we develop an adaptive

choice of m. The proposed test is valid as long as the propensity score is

known (or modeled correctly) or the main-effects model of the covariates

on the outcome is specified correctly.

The remainder of the paper is organized as follows. In Section 2, we

set up the framework and describe the initial marginal screening test used

to identify the variable that most strongly interacts with the treatment in

a randomized trial setting. In Section 3, we present the sequential test pro-

cedure. In Section 4, we extend our method to allow for double robustness,

which is particularly useful in observational studies in which the propensity

score model is unknown. In Section 5, we conduct simulations comparing

the proposed methods with existing competitors, and illustrate the meth-

ods using two data examples. We conclude with a discussion in Section 6.

The proofs of the theorems and details of the simulations are presented in

the online Supplementary Material.
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2. Marginal Screening Test for Randomized Trials

2.1 Marginal regression

Suppose we are given the pre-treatment information, treatment assign-

ments, and outcomes for n patients. Further suppose there are only two

competing treatments A ∈ {0, 1}. Let X ∈ Rp be the vector of pre-

treatment variables, and Y be a scalar outcome. Let q0(x) := P (A =

1|X = x) be the propensity of receiving treatment 1 in the observed data

as a function of the pre-treatment variables X = x. In this section and

Section 3, we assume the data come from a randomized trial; thus, q0(x) is

known.

We frame the problem in terms of the following model:

Y = h0(X) + (α0 +XTβ0)A+ ε, (2.1)

where β0 ∈ Rp, h0(X) := E(Y |X, A = 0), and the error term ε has mean

zero, finite variance, and is uncorrelated with A−q0(X) and (A−q0(X))X.

The term α0 + XTβ0 models T (X) := E(Y |X, A = 1) − E(Y |X, A =

0), the causal treatment effect for patients with pre-treatment information

X; thus, (α0 + XTβ0)A is the treatment-by-covariate interaction model.

We propose a sequential testing procedure that identifies which covariates

interact with a treatment.
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2.1 Marginal regression8

As an initial step, we test whether a treatment-by-covariate interaction

exists. That is, we want to test

H0 : β0 = 0 vs. Ha : β0 6= 0. (2.2)

Our proposed method is based on fitting p working marginal regression

models, and then conducting a single test on the marginal regression co-

efficient of the most informative predictor of the causal treatment effect

T (X). Specifically, we can write E(Y |X, A) = E(Y |X) + T (X)W , where

W := A− q0(X) (see Robins 1994). For k = 1, . . . , p, consider the working

model T (X) = αk + θkXk. The kth marginal regression model aims to

estimate

(αk, θk) = arg min
(α,θ)

E
{[
Y − E(Y |X)− (α + θXk)W

]2}
. (2.3)

In addition, the index of the most informative predictor of T (X) is

k0 = arg min
k
E
{[
Y − E(Y |X)− (αk + θkXk)W

]2}
.

By taking the first-order derivative of (2.3) with respect to (α, θ), and

noting that E(W |X) = 0, we have under model (2.1),

θk =
E
[
W (Y − E(Y |X))X ′k

]
E(WX ′k)

2
=

Cov(WX ′k,WX
Tβ0)

E(WX ′k)
2

and k0 = arg max
k

∣∣Corr(WX ′k,WX
Tβ0)

∣∣,
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2.1 Marginal regression9

where X ′k = Xk−E(W 2Xk)/EW
2. Assume that k0 is unique when β0 6= 0.

We can verify that β0 = 0 if and only if θk = 0, for all k = 1, . . . , p. Thus,

hypothesis (2.2) is equivalent to

H0 : θ0 = 0 vs. Ha : θ0 6= 0, (2.4)

where θ0 = θk0 . Using the randomized trial data, we can estimate k0 and

θ0 using

k̂n = arg min
k∈{1,...,p}

Pn
{[
Y − φ̂n(X)− (α̂k + θ̂kXk)W

]2}
and θ̂n := θ̂k̂n =

{
Pn
[(
WX̂ ′

k̂n

)2]}−1 Pn[W (Y − φ̂n(X))X̂ ′
k̂n

]
,

respectively, where Pn denotes the sample average, φ̂n(X) is an estimate

of E(Y |X), (α̂k, θ̂k) = arg min(α,θ)

{
Pn
[
Y − φ̂n(X)− (α+ θXk)W

]2}
, and

X̂ ′k = Xk − Pn(W 2Xk)/PnW 2.

Our first result gives the asymptotic distribution of θ̂n.

Theorem 1. Assume i) EX4
k <∞, for k = 1, . . . , p; ii) the error term ε in

model (2.1) has mean zero, finite variance, and is uncorrelated with W and

WX; and iii) φ̂n(X) is estimated from a P -Donsker class of measurable

functions, and there exists some fourth-moment integrable function φ̃(X),

such that E[φ̂n(X) − φ̃(X)]4
P→ 0, as n → ∞. Suppose k0 is unique when

Statistica Sinica: Preprint 
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β0 6= 0. Then, under model (2.1),

n1/2(θ̂n − θ0)
d→ Zk0
E[WX ′k0 ]

2
1β0 6=0 +

ZK
E[WX ′K ]2

1β0=0,

where X ′k = Xk − E(W 2Xk)/EW
2, K = arg maxk=1,...,p Z

2
k/E(WX ′k)

2, and

(Z1, . . . , Zp)
T is a mean-zero normal random vector with covariance matrix

Σ given by that of the random vector with components

WX ′k

{
Y − φ̃(X)− E[W (Y − φ̃(X))]

EW 2
W − E[WX ′k(Y − φ̃(X))]

E(WX ′k)
2

WX ′k

}
,

for k = 1, . . . , p, where Σ is assumed to exist.

Remark 1. The uniqueness of k0 is assumed to ensure that the parameter

θ0 is well defined under Ha. Note that for hypothesis testing purposes, the

test is always calibrated under the null distribution, which does not rely

on this condition. Nonetheless, this condition can be removed with a slight

modification of hypothesis (2.4) and the test statistic. A modified version

of Theorem 1 without the uniqueness condition is presented in Section S3

of the Supplementary Material.

Remark 2. Note that φ̂n(X) is an estimate of E(Y |X), which can be

obtained from the sample mean of Y , the (regularized) regression from a

linear model, or other nonparametric methods based on a Donsker class of

functions that guarantee the convergence of φ̂n(X) to some function φ̃(X).

The result does not require φ̂n(X) to be a consistent estimate of E(Y |X).
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However, a good estimate of E(Y |X) may help reduce the variance of each

Zk, and thus θ̂n. For example, assume q0(X) = 1/2. We can verify that

Var(Zk) = Var
(
WX ′k

[
E(Y |X)− φ̃(X)

])
+ Var (WX ′kε)

+ Var
(
W 2X ′k

[
(X − EX)Tβ0 − θkX ′k

])
.

Therefore, the variance of each Zk is minimized when φ̃(X) = E(Y |X).

One way to test θ0 = 0 is to estimate the null distribution of n1/2θ̂n

by setting β0 = 0 in Theorem 1, and then replacing φ̃(X) with φ̂n(X)

and the expectation with the sample average. The p-value can be calcu-

lated by comparing the observed test statistic n1/2θ̂n with the estimated

null distribution. As an alternative, we introduce an m-out-of-n bootstrap

method to estimate the asymptotic distribution of θ̂n. This method can be

extended easily to cases where the null distribution is difficult to estimate

(see Section 4).

2.2 The m-out-of-n bootstrap

The m-out-of-n bootstrap is a general tool that remedies the bootstrap

inconsistency due to nonsmoothness. When the resample size m is of a

smaller order than n, the empirical distribution converges to the true dis-

tribution at a faster rate than the m-out-of-n bootstrap sample empirical

distribution converges to the empirical distribution. Intuitively, this implies

Statistica Sinica: Preprint 
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that the empirical distribution converges to the true distribution first and,

thus, the bootstrap resamples behave as if they were drawn from the true

distribution.

For a selected resample size m, let θ̂∗m be the analog of θ̂n based on

the bootstrap sample of size m. Theorem 2 shows the bootstrap consis-

tency results. The p-value can be calculated by comparing n1/2θ̂n with the

distribution of m1/2(θ̂∗m − θ̂n).

Theorem 2. Assume all conditions in Theorem 1 hold. Suppose m/n =

O(1)1β 6=0 + o(1)1β=0, and m → ∞ as n → ∞. Then, m1/2(θ̂∗m − θ̂n)

converges to the same limiting distribution as n1/2(θ̂n − θ0) conditionally

(on the data), in probability.

A key challenge when using an m-out-of-n bootstrap is the choice of

m. Bickel and Sakov (2008) proposed using an adaptive choice of m to

construct confidence intervals for the extrema, and proved that the chosen

m satisfies the conditions in Theorem 2. In our simulation studies, we

found that their approach, when applied to our setting, did not achieve

sufficient power, even though it successfully controlled the type-I error rate

at the nominal level. As an alternative, in the context of using Q-learning

to estimate optimal dynamic treatment regimes, Chakraborty, Laber, and

Zhao (2013) developed a scheme for selecting m for inferences of stage-one

Statistica Sinica: Preprint 
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regression parameters that adapts to the degree of nonregularity. However,

the tuning parameter in the procedure is chosen using a double bootstrap,

which is very time consuming in our setting.

We extend Bickel and Sakov’s method for choosing m by adding a crude

pre-testing step that improves the power without inflating the type-I error

rate. In particular, we define

r̂ = 1{|
√
nTn| < max(

√
c log n, upper α/(2p)-quantile of N(0, 1))}, (2.5)

where Tn = θ̂n/σ̂n is the conventional t-statistic based on the selected co-

variate Xk̂n
, α is the level of significance, and c > 0 is a tuning parameter.

Because
√
nTn = Op(1) under H0 and

√
nTn = Op(

√
n) under Ha,

√
c log n

on the right-hand side of (2.5) guarantees that r̂
P→ 1θ0=0. The second

component within max on the right-hand side of (2.5) controls the type-I

error rate for small samples (see McKeague and Qian 2015). Note that

√
c log n is an n-term and the second term in (2.5) is a p-term. Intuitively,

when p is large, we expect that it to play a more important role than n;

thus, the p-term should dominate the n-term, and vice-versa. The tuning

parameter c controls the balance of these two terms. We recommend using

c = 2 because we find it works well in various simulation settings. If r̂ = 0,

we consider this a crude rejection of H0, and propose using the regular

n-out-of-n bootstrap to conduct a refined test. On the other hand, r̂ = 1
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indicates that there might be some nonregularity; in this case we propose

using Bickel and Sakov’s method to choose m. The complete algorithm is

given below.

1. Calculate r̂ defined in (2.5). If r̂ = 0, then choose m̂ = n. Otherwise,

continue with steps 2–4 to obtain Bickel and Sakov’s estimate m̂BS.

2. Consider a sequence of m’s of the form mj = ddjne, for j = 0, 1, 2, . . .

and 0 < d < 1, where dxe denotes the smallest integer ≥ x, and d is

a tuning parameter.

3. For a given data set (with estimate θ̂n), and for all j, define the boot-

strap empirical distribution functionRB
mj

(t, θ̂n) =
∑B

b=1 1
m

1/2
j (θ̂∗,bmj

−θ̂n)≤t
/B,

where θ̂∗,bmj
is the mj-out-of-n bootstrap version of the estimate θ̂n from

the bth bootstrap sample, for b = 1, . . . , B.

4. Following Bickel and Sakov (2008), set m as the minimizer of the sup-

norm of the successive differences between the bootstrap empirical dis-

tribution functions: m̂BS = arg minmj
supt |RB

mj
(t, θ̂n)−RB

mj+1
(t, θ̂n)|.

5. Output m̂ = (1− r̂)n+ r̂m̂BS.

The tuning parameter d in Step 2 can be viewed as a step size because

mj+1/mj ≈ d. Bickel and Sakov (2008) used d = 0.75 in their simulation

Statistica Sinica: Preprint 
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study, and reported robustness to other values. In our setting, we find

that our method is robust to a choice of d ∈ [0.7, 0.9] (see Section S5.4 in

the Supplementary Material). In the simulation, we use d = 0.8 for our

analysis.

3. Conditional Sequential Test for Randomized Trials

In the previous section, we proposed a marginal screening test to detect

whether any covariate interacts with the treatment. If the null in (2.4)

is rejected, we select k̂n as the most informative predictor of the causal

treatment effect. In this section, we extend our test to detect additional

treatment-by-covariate interactions.

The procedure is carried out in a forward stepwise fashion. At each

step, let J ⊂ {1, . . . , p} denote the index set such that {Xj : j ∈ J} have

been identified in previous steps as having a significant interaction with the

treatment. We aim to test whether there is any Xk ∈ {Xj : j ∈ JC} that

interacts with the treatment. Specifically, we rewrite model (2.1) as

Y = h0(X) + (α0 +XT
Jβ0,J +XT

JCβ0,JC )A+ ε, (3.1)

where XJ = {Xj : j ∈ J} and XJC = {Xj : j ∈ JC}. The goal here is to

test β0,JC = 0.

Note that the index set J includes previously selected covariates. Thus,

Statistica Sinica: Preprint 
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the null hypothesis is actually a function of the observed data. This makes

any sequential test beyond the initial step a conditional hypothesis test.

Nonetheless, under the alternative hypothesis, the selected covariate is the

most informative predictor at each step, with probability tending to one

(see the proofs of Theorems 1 and 3). Thus, the index set J converges to a

fixed set if the alternative hypotheses in the previous steps are true.

For each k ∈ JC , let Uk = Xk−X̃
T

Jγk, where X̃J = (1,XT
J )T and γk =

arg minγ

{
E
[
W (Xk − X̃

T

Jγ)
]2}

. That is, X̃
T

Jγk is the weighted projection

of Xk on the space spanned by X̃J . After algebraic simplification, we can

reformulate model (3.1) as

Y = h′0(X) + (α′0 +UTβ0,JC )A+ ε′, (3.2)

where U = {Uk : k ∈ JC}; at the same time,

h′0(X) = h0(X) + q0(X)

[
X̃J −

E(W 2X̃J)

EW 2

]T
λ,

α′0 =
E(W 2X̃

T

J )

EW 2
λ, and ε′ = ε+W

[
X̃J −

E(W 2X̃J)

EW 2

]T
λ,

where λ = (α0,β
T
0,J)T + Γβ0,JC , with Γ being a parameter matrix with

columns consisting of {γk : k ∈ JC}.

Note that (3.2) is similar in form to model (2.1), where X is replaced

withU . Thus, testing β0,JC = 0 is equivalent to testing H0 : θ′0 = 0 vs. Ha :

Statistica Sinica: Preprint 
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θ′0 6= 0, where

θ′0 =
E[W

(
Uk′0 − E(W 2Uk′0)/EW

2
)
(Y − E(Y |X))]

E
{[
W
(
Uk′0 − E(W 2Uk′0)/EW

2
)]2} =

Cov(WUk′0 ,WU
Tβ0,JC )

E
(
W 2U2

k′0

) ,

and k′0 = arg max
k:k∈JC

∣∣Corr(WUk,WU
T)β0,JC

∣∣.
Similarly to the approach described in Section 2, we can estimate θ′0

by θ̂′n using empirical quantities. The theorem below gives the asymptotic

distribution of θ̂′n and establishes the bootstrap consistency.

Theorem 3. Assume conditions i)–iii) in Theorem 1 hold. Suppose k′0 =

arg maxk:k∈JC

∣∣Corr(WUk,WU
Tβ0,JC )

∣∣ is unique when β0,JC 6= 0. Then,

under model (3.1),

n1/2(θ̂′n − θ′0)
d→ Zk0
E(WUk0)

2
1β

0,JC 6=0 +
ZK

E(WUK)2
1β

0,JC=0,

where K = arg maxkinJC Z2
k/E(WUK)2, and {Zk : k ∈ JC} is a mean-

zero normal random vector with a covariance matrix Σ given by that of the

random vector with components

WUk

{
Y − φ̃(X)− E[WUk(Y − φ̃(X))]

E(WUk)2
WUk

−WX̃
T

J

(
EW 2X̃JX̃

T

J

)−1
E
[
WX̃J

(
Y − φ̃(X)

)]}
,

for k ∈ JC, where Σ is assumed to exist.

Furthermore, Let θ̂′∗m be the m-out-of-n bootstrap analog of θ̂′n. Assume

m/n = O(1)1β
0,JC 6=0 + o(1)1β

0,JC=0, and m → ∞ as n → ∞. Then,
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m1/2(θ̂′∗m−θ̂′n) converges to the same limiting distribution as that of n1/2(θ̂′n−

θ′0) conditionally (on the data), in probability.

The test of θ′0 = 0 can be conducted using either the sampling from

the null procedure or the m-out-of-n bootstrap procedure, as described in

Section 2.

4. Extension to Allow for Double Robustness

The methods presented in the previous sections are designed for scenarios

in which the propensity score q0(X) is known. In this section, we extend

the procedure to allow for double robustness, in the sense that as long as

q0(X) or h0(X) is consistently estimated, a valid inferential procedure can

be established. This is particularly useful in observational studies, where

the propensity score q0(X) is usually unknown.

We start with model (3.1), where the goal is to test β0,JC = 0 after

{Xj : j ∈ J} have been detected in previous steps. Note that the initial

test of β0 = 0 is a special case, with J = ∅. Let q̂n(X) and ĥn(X) be the

estimates of q0(X) and h0(X), respectively, based on the data, and let q̃(X)

and h̃(X) be the limits of q̂n(X) and ĥn(X), respectively (see Appendix A

for the conditions on q̃(X) and h̃(X)). Denote W̃ := A− q̃(X).

To ensure double robustness, parameter estimates are often obtained
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by solving estimating equations, a method known as the G-estimation for

structural mean models (Robins 1989, 1994). Past research in this area

has focused on fitting a full causal treatment effect model restricted to a

small set of variables, and then studying the efficiency of the estimate.

In this section, we apply the G-estimation marginally on each covariate,

and conduct the test based on the selected most informative covariate.

Specifically, for each k ∈ JC , let (δk, ψk) be the solution to

E
{

(X̃
T

J , Xk)
TW̃

[
Y − h̃(X)− (X̃

T

Jδ +Xkψ)A
]}

= 0. (4.1)

This yields ψk =
[
E(AW̃L2

k)
]−1

E[W̃ (Y − h̃(X))Lk], where Lk = Xk −

X̃
T

Jηk with ηk = arg minη E
[
AW̃ (Xk − X̃

T

Jη)2
]
.

To identify the most informative predictor, we need to identify the

optimization objective function corresponding to equation (4.1). Note that

under model (3.1), when q̃(X) = q0(X) or h̃(X) = h0(X) a.s., the left-

hand side of (4.1) is equivalent to E
{

(X̃
T

J , Xk)
TAW̃

[
α0 +XTβ0− (X̃

T

Jδ+

Xkψ)
]}

, where the quantity inside the expectation can be viewed as a

quasi-likelihood score function. Thus, the solution to (4.1) satisfies

(δk, ψk) = arg min
(δ,ψ)

E
[
AW̃ (α0 +XTβ0 − X̃

T

Jδ −Xkψ)2
]
.

Intuitively, X̃
T

Jδk + Xkψk can be viewed as the best weighted linear ap-

proximation of the causal treatment effect T (X) = α0 + XTβ0 based on
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(X̃J , Xk). Thus, it is natural to define the most informative predictor in

{Xj : j ∈ JC} as

ko0 := arg min
k:k∈JC

E
[
AW̃ (α0+X

Tβ0−X̃
T

Jδk−Xkψk)
2
]

= arg max
k:k∈JC

[
E
(
AW̃L2

k

)
ψ2
k

]
.

In addition, the hypothesis of interest is

H0 : ψ0 = 0 vs. Ha : ψ0 6= 0, (4.2)

where ψ0 := ψko0 . We can estimate ψ0 using ψ̂n := ψ̂k̂on , where ψ̂k =

Pn
[
Ŵ (Y−ĥn(X))L̂k

]/
Pn
(
AŴL̂2

k

)
and k̂on = arg maxk∈JC

[
ψ̂2
kPn
(
AŴL̂2

k

)]
,

with Ŵ = A− q̂n(X), L̂k = Xk − X̃
T

J η̂k, and η̂k = arg minη Pn
[
AŴ (Xk −

X̃
T

Jη)2
]
.

The asymptotic distribution of ψ̂n depends on the limiting behavior

of q̂n(X) and ĥn(X), and is difficult to estimate. Thus, the m-out-of-n

bootstrap plays an important role in obtaining a valid inference for ψ0.

Let ψ̂∗m denote the bootstrap analog of ψ̂n. Below, we give the asymptotic

distribution of ψ̂n, and prove the bootstrap consistency. A complete list of

assumptions is given in Appendix A.

Theorem 4. Suppose Assumptions (A1)-(A5) in Appendix A hold. Then,

under model (3.1),

n1/2(ψ̂n − ψ0)
d→

Z̃ko0

E(AW̃L2
ko0

)
1β

0,JC 6=0 +
Z̃K

E(AW̃L2
K)

1β
0,JC=0,
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where K = arg maxk∈JC

[
Z̃2
k/E(AW̃L2

k)
]
, and {Z̃k : k ∈ JC} is the normal

random vector defined in (A.1).

Furthermore, suppose Assumption (A6) in Appendix A holds, and that

m/n = O(1)1β
0,JC 6=0 + o(1)1β

0,JC=0 and m → ∞ as n → ∞. Then, under

model (3.1), m1/2(ψ̂∗m − ψ̂n) converges to the same limiting distribution as

that of n1/2(ψ̂n − ψ0) conditionally (on the data), in probability.

Note that although the doubly robust method can be used for random-

ized trials, it may cause extra dispersion in the variance in our setting. This

issue is discussed in Section S4 of the Supplementary Material and using

simulations.

5. Numerical Studies

In this section, we examine the performance of the proposed sequential

testing procedure using simulated data, and apply the approach to two

real-data examples.

5.1 Simulations

Below, we briefly summarize the simulation studies. See Section S5 in the

Supplementary Material for further detail.

In the randomized trial setting, we compare the proposed sampling from

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0451



5.1 Simulations22

null (NULL), m-out-of-n bootstrap (m̂-boot), and doubly robust m-out-of-

n bootstrap (m̂-boot-DR) procedures with four competing methods: the

likelihood ratio test (LRT); multiple testing with a Bonferroni correction

(BONF); the n-out-of-n bootstrap (n-boot); and the m-out-of-n bootstrap,

with m chosen using Bickel and Sakov’s method ( m̂BS-boot). Three data-

generating models are considered: i) a null model; ii) a model with one

active interaction term; and iii) a model with two equally active interaction

terms. The sequential testing procedure is carried out to evaluate the power

(when there is at least one active predictor in the candidate set) or the type-

I error rate (when there is no active predictor remaining in the candidate

set) at each step. The two proposed methods for randomized trials (NULL

and m̂-boot) provide good control of type I error rate and good power in

all cases. The m̂-boot-DR, m̂BS-boot, and LRT methods are less powerful

than the NULL and m̂-boot methods, and n-boot fails to control the type-I

error rate. When the components of X are uncorrelated, BONF is as good

as our proposed methods in terms of the type-I error rate control and power.

However, when the components of X are highly correlated, BONF is less

powerful for large p (see Tables S1 and S2 in the Supplementary Material).

In the observational study setting, we compare the m̂-boot-DR method

with the m̂BS-boot and n-boot methods. We consider four data-generating
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models: two with correctly specified q0(X) and misspecified h0(X), and two

with misspecified q0(X) and correctly specified h0(X). A linear logistic

regression model with adaptive Lasso is used to estimate the propensity

score model q0(X), and a linear regression with adaptive Lasso is used to

estimate the main effect h0(X). The proposed m̂-boot method provides

good control of the type-I error rate and good power in all cases. The

m̂BS-boot method lacks power relative to the m̂-boot method, and n-boot

fails to control the type-I error rate (see Table S3 in the Supplementary

Material).

We also compare our methods with the kernel-based method proposed

by Shen and Cai (2016) (KMl) and the GESAT method proposed by Lin

et al. (2013) for the global test of no treatment-by-covariate interactions.

Both KMl and GESAT are designed to test for the integrated effect of all

covariates, with KMl based on randomized trials, and GESAT based on

a correct specification of both the main effect of the covariates and the

interaction effects. As a result, we expect KMl and GESAT to be more

powerful in the case of weak dense signals, whereas our method will perform

better in the case of strong sparse signals. This is indeed the case (see Table

S4 in the Supplementary Material). All methods perform better when the

covariates are correlated. In addition, KMl fails to control the type-I error
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rate in the observational studies, and GESAT fails when the main effect is

misspecified (see Table S5 in the Supplementary Material).

5.2 Nefazodone-CBASP trial example

The Nefazodone-CBASP trial was conducted to compare the efficacy of

three treatments for chronic depression (Keller et al. 2000). In this trial,

681 patients were randomly assigned to 12 weeks of outpatient treatment

with nefazodone, the cognitive behavioral analysis system of psychotherapy

(CBASP), or a combination of the two treatments. Various assessments

were taken throughout the study, among which the score on the 24-item

Hamilton Rating Scale for Depression (HRSD) was the primary outcome.

Low HRSD scores are desirable. The primary analysis showed that, on

average, the combination treatment was significantly better than any single

treatment (p-value < 0.001 for both comparisons), and there was no overall

difference between the two single treatments.

In the current analysis, we compare the combination treatment to nefa-

zodone alone and the combination to CBASP alone to determine whether

there are any covariate-by-treatment interactions. The outcome Y is a re-

duction in the 24-item HRSD score from the baseline, and there are 50 base-

line covariates. We consider n = 656 patients, for which the final 24-item
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HRSD were observed. In both comparisons, we estimate φ̃(X) = E(Y |X)

using ridge regressions, and carry out the sequential tests in five steps. The

selected covariates and p-values from the various methods are presented in

Table 1.

For the comparison of the combination treatment with CBASP alone

(n = 438), the regular n-boot suggests three important covariates: sub-

threshold panic disorder (p = 0.016), psychotherapy for past depression

(p = 0.034), and alcohol abuse (p = 0.050). However, this is not supported

by any other methods. For the comparison of the combination treatment

with Nefazodone alone (n = 440), the regular n-boot again identifies three

covariates: psychotherapy for past depression (p < 0.001), alcohol depen-

dence (p = 0.020), and obsessive compulsive disorder (p = 0.030). For

the LRT, all p-values are greater than 0.1. Falling between the two, the

NULL, m̂-boot, and BONF methods show that only “psychotherapy for

past depression” has a p-value less than 0.1, which indicates that this may

be worth further investigation.

5.3 COPES and CODIACS example

The COPES and CODIACS studies were conducted to compare the stepped

care approach to standard care for patients with post-ACS (acute coronary
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Table 1: p-values of sequentially selected covariates in the Nefazodone

CBASP trial example. (PD: Panic Disorder; PsyPD: Psychotherapy for

Past Depression; GAD: Generalized Anxiety Disorder; MDD: Major De-

pression Disorder; OCD: Obsessive Compulsive Disorder; AD-NOS: Anxi-

ety Disorder not otherwise specified.)

Steps Covariates selected NULL m̂-boot n-boot LRT BONF

Combination vs CBASP

1 Subthreshold PD 0.628 0.578 0.016 0.792 1.000

2 PsyPD 0.622 0.754 0.034 0.903 1.000

3 Alcohol abuse 0.764 0.302 0.050 0.966 1.000

4 Threshold GAD 0.983 0.946 0.832 0.990 1.000

5 moderate MDD 0.993 0.564 0.622 0.994 1.000

Combination vs Nefazodone

1 Past Psychotherapy 0.096 0.088 0.000 0.147 0.086

2 Alcohol dependence 0.369 0.122 0.020 0.386 0.458

3 OCD 0.562 0.758 0.030 0.604 0.862

4 AD-NOS 0.907 0.296 0.122 0.774 1.000

5 Atypical MDD 0.925 0.564 0.140 0.852 1.000
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syndrome) depression (Davidson et al. 2010, 2013). Each trial enrolled

about 150 patients. In both trials, patients were randomly assigned to

six months of stepped care or usual care. Stepped-care participants were

assigned to psychotherapy and/or an antidepressant, based on their prefer-

ences and a team of clinicians’ recommendations. Usual-care participants

received psychotherapy and/or an antidepressant from their current physi-

cians. Depressive symptom changes, assessed using the Beck Depression

Inventory (BDI) score, was the primary outcome for the CODIACS and a

secondary outcome for the COPES.

As an example, using the combined data from the above two studies,

we consider treatment A as a patient having received psychotherapy more

than half the time during the six-month study period. Note that although

the original two studies were randomized trials, the “treatment received”

variable A is observational in nature. There are 26 baseline covariates,

including patient demographics, symptoms, and the severity of symptoms

in different domains (cardiac, depression, etc.). The outcome is a reduction

in the BDI at six months from the baseline. The sample size n = 265, for

which the final BDI and treatment information are available.

For the propensity score model, the initial analysis shows that treatment

A depends strongly on the treatment arm and patient preference. Thus, we
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estimate the propensity score using a logistic regression with the treatment

preference and whether the patient was assigned to stepped care or usual

care. The main effect h0(X) = E(Y |X, A = 0) is estimated using a ridge

regression with 26 baseline covariates using patients in the A = 0 group.

We conduct five-step sequential tests; the results from m̂-boot and n-boot

are presented in Table 2. The n-boot method identifies two important

treatment-by-covariate interactions: NEMC role limitation emotional T-

score (p = 0.004), and GRACE score (p = 0.024); our proposed m̂ad-boot

method suggests that only the NEMC role limitation emotional T-score

may be worth further investigation.

Table 2: p-values of sequentially selected covariates in the COPES and

CODIACS example.

Steps Covariates selected m̂-boot-DR n-boot

1 NEMC Role limitation emotional T-score 0.028 0.004

2 GRACE score 0.330 0.024

3 NEMC General health T-score 0.504 0.112

4 BDI≥ 29 0.672 0.186

5 Prefer psychotherapy only 0.690 0.232
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6. Conclusion

This study develops a novel inference procedure to sequentially identify

treatment-by-covariate interactions based on data from randomized trials

and observational studies. The proposed method guarantees rigorous con-

trol of the type-I error rate at each step, and has greater power than compet-

ing testing procedures. Although the derivation of the asymptotic results

assumes a fixed dimension p, numerical studies show that the proposed

test continues to work when p is large. A theoretical investigation of the

diverging p case is a challenging and interesting topic for future research.

Another challenge is to provide theoretical support to effectively control

the false positive rate over the whole sequence of the forward stepwise path.

As discussed in Tibshirani et al. (2016), sequential testing is typically only

validated at each step. G’Sell et al. (2016) proposed stopping rules for

exact control of the ordered false discovery rate under the assumption that

the null p-values are independent. It would be worthwhile extending their

methods to our setting so that the stepwise guarantees can be converted

into stopping rules with desired inferential properties.

We have considered the case of binary treatments. When there are

more than two treatments (e.g., L arms), the interaction effect between a

treatment and a covariate includes L− 1 terms, and a test statistic can be
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built based on the sum of the squares of the L− 1 standardized parameter

estimates. This would be an interesting extension for future research.

We have restricted our attention to a single-stage treatment-by-covariate

interaction problem. However, time-varying treatments are common, and

are needed by, for example, individuals with a chronic disease who expe-

rience a waxing and waning course of illness. The goal then is to identify

informative covariates of the treatment effect at each stage. Q-learning and

A-learning extend regressions to a multi-stage setting (Murphy 2003, 2005;

Moodie, Richardson, and Stephens 2007; Schulte et al. 2014). It is well

known that the regression coefficients for variables at stages prior to the

last are nonregular (Robins 2004; Moodie, Richardson, and Stephens 2010;

Chakraborty, Murphy, and Strecher 2010; Chakraborty, Laber, and Zhao

2013; Laber et al. 2014; Song et al. 2015). In that case, the selection proce-

dure adds another layer of nonregularity to this already nonregular problem.

It would be interesting, albeit challenging, to extend our approach to the

multi-stage setting. We view this as an important future work.

Supplementary Material

The online Supplementary Material contains the proofs of the theorems,

an extension of Theorem 1 to non-unique k0, a discussion on using the

doubly robust method in randomized trials, and details of the simulation
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studies.
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A. Assumptions of Theorems 4

Theorem 4 requires the following assumptions.

(A1) EX4
k <∞ for k = 1, . . . , p.

(A2) There exist functions h̃(X) and q̃(X) such that n1/2[ĥn(x)− h̃(x)] =

∆h(x)Ŝh + oP (1) and n1/2[q̂n(x) − q̃(x)] = ∆q(x)Ŝq + oP (1), where

∆h(x) and ∆q(x) are vector-valued deterministic functions of x, and

Ŝh and Ŝq are data dependent random vectors satisfying
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i). ∆h(X) and ∆q(X) are square integrable random vectors; and

ii)

({
Gn

[
W̃Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

]
×
[
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)]}
k∈JC

, Ŝh, Ŝq

)T

d→ ({Zo
k : k ∈ JC}, Sh, Sq)T ∼ N(0,Σo)

for some variance-covariance matrix Σo assumed to exist.

(A3) The error term ε in model (2.1) has mean zero, finite variance, and is

uncorrelated with (W̃ , W̃X), where W̃ = A− q̃(X).

(A4) ko0 is unique when β0,JC 6= 0.

(A5) q̃(X) = q0(X) or h̃(X) = h0(X) a.s.

(A6) Let q̂∗m(X) and ĥ∗m(X) be estimates of q0(X) and h0(X) based on

the bootstrap sample of size m. Assume m1/2[ĥ∗m(x) − ĥn(x)] =

∆h(x)Ŝ∗h + oPM
(1) and m1/2[q̂∗m(x)− q̂n(x)] = ∆q(x)Ŝ∗q + oPM

(1) con-

ditionally on the data (in probability), where ∆h(x) and ∆q(x) are

defined in Assumption (A2), and Ŝ∗h and Ŝ∗q are bootstrap sample
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dependent random vectors satisfying({
G∗m
[
W̃Lk

(
Y − h̃(X)− ψkALk − E

[
W̃
(
Y − h̃(X)

)
X̃

T

J

]
×
[
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)]}
k∈JC

, Ŝ∗h, Ŝ
∗
q

)T

d→ ({Zo
k : k ∈ JC}, Sh, Sq)T ∼ N(0,Σo) conditionally, in probability.

Remark 1. {Z̃k : k ∈ JC} in Theorem 4 is defined as, for k ∈ JC ,

Z̃k = Zo
k − E

[
W̃Lk∆h(X)

]
Sh − E

{
Lk

(
Y − h̃(X)− ψkALk

− E
[
W̃
(
Y − h̃(X)

)
X̃

T

J

][
E
(
AW̃X̃JX̃

T

J

)]−1
AX̃J

)
∆q(X)

}
Sq (A.1)

Remark 2. Assumptions (A2) and (A6) require that the original sample

and bootstrap sample estimates of h0(x) and q0(x) are well behaved. One

can verify that, under appropriate conditions, the assumptions hold when

h0(x) and q0(x) are estimated using linear/logistic regression, ridge regres-

sion, or variable selection methods with oracle properties (e.g. SCAD (Fan

and Li 2001), adaptive Lasso (Zou and Hastie 2005)).
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