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Abstract:

To estimate the treatment effect in an observational study, we use a semipara-

metric locally efficient dimension-reduction approach to assess the treatment as-

signment mechanisms and average responses in both the treated and the non-

treated groups. We then integrate our results using imputation, inverse proba-

bility weighting, and doubly robust augmentation estimators. Doubly robust es-

timators are locally efficient, and imputation estimators are super-efficient when

the response models are correct. To take advantage of both procedures, we in-

troduce a shrinkage estimator that combines the two. The proposed estimators

retains the double robustness property, while improving on the variance when the

response model is correct. We demonstrate the performance of these estimators

using simulated experiments and a real data set on the effect of maternal smoking

on baby birth weight.

Key words and phrases: Average Treatment Effect, Double Robust Estimator,

Efficiency, Inverse Probability Weighting, Shrinkage Estimator.
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1. Introduction

Dimension reduction is a major methodological issue in observational stud-

ies that estimate the causal effect of a non-randomized treatment. This is

largely because of the increased availability of health and administrative

registers, giving access to high-dimensional pre-treatment information sets

that can help identifying causal effects of interest. To better estimate the

average causal effect of a treatment under possibly high-dimensional covari-

ates, while maintaining flexibility in terms of the model assumptions, we

propose and study new estimators. These estimators are based on semi-

parametric sufficient dimension-reduction methods, together with various

well-known missing-data approaches, including imputation, inverse prob-

ability weighting (IPW) and doubly robust augmentation estimators. To

take advantage of the various estimators’ properties, we propose a new

shrinkage-based procedure to estimate the average causal effect. The re-

sulting estimator is consistent in estimating the causal effect, even when the

treatment assignment model or one of the outcome models in the treated

and untreated groups is misspecified. Furthermore, its asymptotic variance

is no larger than that of any single approach.

Dimension reduction for feasible nonparametric and semiparametric

causal inference has recently been formalized, with most contributions fo-
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cusing on covariate selection, that is, methods that determine which co-

variates are confounders that need to be controlled for; see, for example,

Gruber & van der Laan (2010), de Luna et al. (2011), Farrell (2015), and

Shortreed & Ertefaie (2017). Dimension reduction must consider nuisance

conditional models, that is, the probability of treatment given the covari-

ates (propensity score), and models for the two potential responses (i.e.,

responses under two possible levels of a binary treatment) given the covari-

ates (de Luna et al. 2011). Sufficient dimension reduction (Li 1991, Li &

Duan 1991, Cook 1998, Xia et al. 2002, Xia 2007, Ma & Zhu 2012) con-

stitutes an alternative to covariate selection, and has the advantage that,

in addition to considering covariates in isolation as confounders, it can ac-

commodate linear combinations of the whole covariate set. Such methods

have recently attracted attention in semiparametric causal inference. For

example, Liu et al. (2018) considered sufficient dimension reduction when

estimating the propensity score alone, and Luo et al. (2017) considered that

when estimating the response models alone. In contrast, Ma et al. (2018)

considered classical sufficient dimension in all nuisance models.

In this study, we take a general approach to estimating the average

causal effect. We first use efficient semiparametric sufficient dimension-

reduction methods (Ma & Zhu 2013, 2014) in all nuisance models to explain
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the potential responses and the treatment assignment. Then, we combine

these into classical imputation (IMP) and IPW estimators. Although our

semiparametric sufficient dimension-reduction model is very flexible, nui-

sance models may still be misspecified. Thus, a doubly robust estimator

(augmented inverse probability weighting (AIPW) estimator) is also con-

sidered, which allows for the misspecification of one of the nuisance models.

The AIPW estimator is locally efficient, in the sense that it reaches efficiency

at the true nuisance models. The imputation estimator is super-efficient,

in the sense that if the true response model is known, then this knowledge

yields a lower asymptotic efficiency bound than that which the AIPW es-

timator may reach (Tan 2007). We therefore propose a novel estimator

that shrinks the imputation and AIPW estimators toward each other. The

shrinkage estimator is also doubly robust. Furthermore, it is asymptotically

equivalent to the AIPW estimator if the response model is misspecified; if

all nuisance models are correctly specified, it shrinks toward the imputation

estimator, which is more efficient than the AIPW in this case. In general,

the variability of the estimator is no larger than that of the AIPW or IMP.

The remainder of the paper is organized as follows. Section 2 introduces

the semiparametric sufficient dimension-reduction structures and their esti-

mations for the nuisance models. Section 3 proposes estimators of average
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causal effect using the models and estimations pressented in Section 2. This

section also provides the asymptotic properties of the imputation, IPW,

AIPW, and shrinkage estimators. Section 4 examines the finite-sample

performance of the estimators for different designs, including well-specified

and misspecified situations. A real data example on the effect of smoking

on birth weight illustrates the use of the methods proposed in Section 5.

Section 6 concludes the paper.

2. Model and Dimension Reduction

Let YT be the treatment response under treatment T , where T “ 1 if the

treatment of interest is applied, and T “ 0 if some alternative treatment

(e.g., a placebo or no treatment) is applied. Let X P Rp be the set of pre-

treatment covariates. We observe a random sample tXi, Ti, Y1iTi ` Y0ip1´

Tiqu, for i “ 1, . . . , n. In particular, Yti is observed only for unit i, such

that Ti “ t, and is therefore called a potential response. Our goal is to

estimate the average causal effect of the treatment, here D “ EpY1 ´ Y0q.

We assume 0 ă prpT “ 1 | Y0, Y1,Xq “ prpT “ 1 | Xq ă 1 throughout.

This assumption is often called strong ignorability of the treatment assign-

ment, and yields the parameter D under the above sampling scheme (e.g.,

Rosenbaum & Rubin 1983).

Statistica Sinica: Preprint 
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We now describe the flexible dimension-reduction structures that we

combine into different semiparametric estimators for D. First, the treat-

ment assignment probability, also called the propensity score in the litera-

ture, can be modeled as

prpT “ 1 | X “ xq “ eηpα
Txq
{t1` eηpα

Txq
u, (2.1)

where ηp¨q is an unknown function that is smooth and bounded from both

above and below to guarantee that the propensity is strictly in p0, 1q, and

α is an unknown index vector or matrix with dimension pˆ dα, for p ą dα.

Further, we model Y1 given X “ x using the flexible dimension-reduction

model

Y1 “ m1pβ
T
1 xq ` ε1, (2.2)

where Epε1 | xq “ 0. Similarly, we model Y0 given X “ x as

Y0 “ m0pβ
T
0 xq ` ε0, (2.3)

where Epε0 | xq “ 0. Here, m1p¨q and m0p¨q are unknown functions, and β1

and β0 are unknown index vectors or matrices with dimensions pˆ d1 and
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pˆ d0, respectively, for p ą d1 and p ą d0, respectively.

The models (2.1), (2.2), and (2.3) separately describe the probability of

receiving treatment and the mean potential responses, respectively, with-

out imposing a relation between these models. Indeed, unless prior knowl-

edge suggests otherwise, the three processes are irrelevant to each other

and, hence, should be modeled separately. Conceptually, when the struc-

tural dimension (dα, d1 or d0) is p, dimension-reduction modeling includes

nonparametric modeling; hence, using the dimension-reduction models in

(2.1), (2.2), and (2.3) provides large flexibility in practice. Using each of

the three models, we can estimate the corresponding unknown parameters

and unknown functions separately using a random sample. We can then

combine these estimators in various ways to estimate the treatment effect

D “ EpY1 ´ Y0q.

2.1 Estimation of Response Models

We first consider (2.2). Because of the ignorability of the treatment as-

signment assumption, the treated subsample forms a random sample from

which to fit model (2.2). Thus, we can directly implement the semipara-

metric method of Ma & Zhu (2014) for the estimations of β1 and m1p¨q

based on the subset of the data with Ti “ 1. For identifiability purposes,
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we adopt the parameterization of Ma & Zhu (2014), fix the upper d1 ˆ d1

submatrix of β1 as the identity matrix, and leave the lower pp ´ d1q ˆ d1

submatrix arbitrary. Thus, the locally efficient estimator of β1 is obtained

by solving

n
ÿ

i“1

tity1i ´ pm1pβ
T
1 xi,β1qu pm

1
1pβ

T
1 xi,β1q b txLi ´ pEpXLi | β

T
1 xiqu “ 0,(2.4)

where the Nadaraya–Watson kernel estimator is used to obtain pEpXL |

βT
1 xq, and the local linear estimator is used to obtain pm1pβ

T
1 x,β1q and

pm1
1pβ

T
1 x,β1q, where XL represents the subvector of X formed by the lower

p´d1 components. Specifically, in (2.4), pEpXL | β
T
1 xq “

řn
i“1 xLiKhpβ

T
1 xi´

βT
1 xq{

řn
i“1Khpβ

T
1 xi ´ βT

1 xq and pm1pβ
T
1 x,β1q “ c0, pm

1
1pβ

T
1 x,β1q “ c1 are

the solution to

min
c0,c1

n
ÿ

i“1

tity1i ´ c0 ´ cT
1 pβ

T
1 xi ´ βT

1 xqu2Khpβ
T
1 xi ´ βT

1 xq. (2.5)

Many kernel functions can be used, for example, the Epanechnikov kernel

p1 ´ u2q3{4Ip|u| ď 1q, the quartic kernel p1 ´ u2q215{16Ip|u| ď 1q, and so
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on. It is easy to verify that the minimizer of (2.5) has the explicit form

pm1pβ
T
1 x,β1q “ A11 ´AT

13pA14 ´A13A
T
13q

´1
pA12 ´A13A11q, (2.6)

pm1
1pβ

T
1 x,β1q “ pA14 ´A13A

T
13q

´1
pA12 ´A13A11q,

where A11 “
řn
i“1 tiy1iKhpβ

T
1 xi ´ βT

1 xq{
řn
i“1 tiKhpβ

T
1 xi ´ βT

1 xq,A12 “

řn
i“1 tiy1ipβ

T
1 xi ´ βT

1 xqKhpβ
T
1 xi ´ βT

1 xq{
řn
i“1 tiKhpβ

T
1 xi ´ βT

1 xq,A13 “

řn
i“1 tipβ

T
1 xi´β

T
1 xqKhpβ

T
1 xi´β

T
1 xq{

řn
i“1 tiKhpβ

T
1 xi´β

T
1 xq,A14 “

řn
i“1 tipβ

T
1 xi´

βT
1 xqb2Khpβ

T
1 xi ´βT

1 xq{
řn
i“1 tiKhpβ

T
1 xi ´βT

1 xq, and ab2 “ aaT through-

out the text. Note that the above description is a typical profiling esti-

mation procedure for β1. Once we obtain pβ1, we then estimate m1 using

pm1p
pβ
T

1 x, pβ1q given in (2.6). Note that the incorporation of the kernel-based

nonparametric estimation enables us to perform the dimension reduction

without assuming the frequently adopted linearity or constant variance con-

ditions.

Theorem 1 of Ma & Zhu (2014) established the property of the above

estimator. Specifically, the estimator pβ1 satisfies

?
n1veclppβ1 ´ β1q “ ´B1n

´1{2
1

n
ÿ

i“1

tity1i ´m1pβ
T
1 xiquvecrm1

1pβ
T
1 xiq

btxLi ´ EpXLi | β
T
1 xiqus ` opp1q, (2.7)
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where n1 “
řn
i“1 Ti, veclpβ1q is the vector formed by the lower pp´d1qˆd1

submatrix of β1, and

B1 (2.8)

”

"

E

ˆ

BvecrTitY1i ´m1pβ
T
1 Xiqum

1
1pβ

T
1 Xiq b tXLi ´ EpXLi | β

T
1 Xiqus

Bveclpβ1q
T

˙*´1

.

We can estimate β0 and m0 in a similar manner using the subset of the

data set corresponding to Ti “ 0. Then, implementing Theorem 1 from Ma

& Zhu (2014), the asymptotic behavior of the efficient estimator pβ0 is given

by

?
n0veclppβ0 ´ β0q “ ´B0n

´1{2
0

n
ÿ

i“1

p1´ tiqty0i ´m0pβ
T
0 xiquvecrm1

0pβ
T
0 xiq

btxLi ´ EpXLi | β
T
0 xiqus ` opp1q, (2.9)

where n0 “ n´ n1, and

B0 (2.10)

”

"

E

ˆ

Bvecrp1´ TiqtY0i ´m0pβ
T
0 Xiqum

1
0pβ

T
0 Xiq b tXLi ´ EpXLi | β

T
0 Xiqus

Bveclpβ0q
T

˙*´1

.

When the mean function models are correct, the meanings of β1, β0, m1

and m0 are easy to understand. When the models are incorrect, as we allow

Statistica Sinica: Preprint 
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in the following, we can understand β1, β0, m1, and m0 as quantities that

satisfy

ErT tY1 ´m1pβ
T
1 X,β1qum

1
1pβ

T
1 X,β1q b tXL ´ EpXL | β

T
1 Xqus “ 0,

Erp1´ T qtY0 ´m0pβ
T
0 X,β0qum

1
0pβ

T
0 X,β0q b tXL ´ EpXL | β

T
0 Xqus “ 0,

where m1pβ
T
1 xq “ EpY1 | β

T
1 xq ‰ EpY1 | xq, and m0pβ

T
0 xq “ EpY0 |

βT
0 xq ‰ EpY0 | xq.

2.2 Estimation of Propensity Score Model

The estimation of α, η has been studied previously (Liu et al. 2018, Ma &

Zhu 2013). Hence, we provide the five-step algorithm here, for completeness

and clarity.

Step 1. Form the Nadaraya–Watson estimator of EpXi | α
Txiq to obtain

pEpXi | α
Txiq.

Step 2. Solve
řn
i“1 veclptxi´ pEpXi | α

Txiqurti´1`1{t1`expp1T
dα

Txiqus1
T
d q “

0 to obtain a consistent initial estimator rα.

Step 3. Obtain the local linear estimators of ηpz,αq and its first derivative

Statistica Sinica: Preprint 
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η1pz,αq by solving

n
ÿ

i“1

„

ti ´
exptb0 ` bT

1 pα
Txi ´ zqu

1` exptb0 ` bT
1 pα

Txi ´ zqu



Khpα
Txi ´ zq “ 0 (2.11)

n
ÿ

i“1

„

ti ´
exptb0 ` bT

1 pα
Txi ´ zqu

1` exptb0 ` bT
1 pα

Txi ´ zqu



pαTxi ´ zqKhpα
Txi ´ zq “ 0,

for b0,b1 at z “ αTx1, . . . ,α
Txn. Write the resulting estimator as

pηpαTxi,αq and pη1pαTxi,αq.

Step 4. Insert pηp¨,αq, pη1p¨,αq and pEp¨q into the estimating equation

n
ÿ

i“1

txLi ´ pEpXLi | α
Txiqu

„

ti ´
exptpηpαTxiqu

1` exptpηpαTxiqu



pη1pαTxiq
T
“ 0,

and solve to obtain the efficient estimator pα, using the starting value

rα.

Step 5. Repeat Step 3 at α “ pα to obtain the final estimator of ηp¨q.

We then have pprpT “ 1 | X “ xq “ exptpηppαTxqu{r1 ` exptpηppαTxqus,

which we use in the final calculation of the average causal effect. Let us

write

pi “
exptηpαTxiqu

1` exptηpαTxiqu
, Pi “

exptηpαTXiqu

1` exptηpαTXiqu
, ppi “

exptpηppαTxiqu

r1` exptpηppαTxiqus
,

Statistica Sinica: Preprint 
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and define

B ”

#

E

˜

Bvec
“

tXLi ´ EpXLi | α
TXiqupTi ´ Piqη

1pαTXiq
T
‰

BveclpαqT

¸+´1

.(2.12)

Then, using Lemma 2 from Liu et al. (2018), we have

?
nveclppα´αq (2.13)

“ ´Bn´1{2
n
ÿ

i“1

pti ´ piqvecrtxLi ´ EpXLi | α
Txiquη

1
pαTxiq

T
s ` opp1q.

When the propensity score model is correct, the meaning of α and η is

clear. When the model is incorrect, as we shall allow in the following, α

and η are quantities that satisfy

ErtXL ´ EpXL | α
TXqu

„

T ´
exptηpαTXqu

1` exptηpαTXqu



η1pαTXqTs “ 0,

where r1` exptηp´αTxqus´1 “ EpT | αTxq ‰ EpT | xq.

3. Average Causal Effect: Estimators and Properties

We are now ready to propose several estimators for estimating the aver-

age treatment effect, based on the semiparametric modeling and estimators

described in Section 2. These propositions all take advantage of existing
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methods in missing-at-random problems, including imputation and weight-

ing; hence, they inherit the properties expected. We also introduce a novel

shrinkage estimator that combines imputation and weighting, and has an

optimal property. Let yi “ tiy1i`p1´ tiqy0i be the observed response value.

3.1 Imputation Estimators

First, we estimate the average causal effect using an imputation approach,

as proposed in the context of missing data (Rubin 1978b). The imputation

approach is semiparametric in spirit, similar to the nonparametric imputa-

tion (Wang et al. 2012). Specifically, we construct pEpY1q “ n´1
řn
i“1

 

tiyi`

p1 ´ tiqpm1p
pβ
T

1 xiq
(

, pEpY0q “ n´1
řn
i“1

 

p1 ´ tiqyi ` ti pm0p
pβ
T

0 xiq
(

, and then

form the imputation estimator IMP as pDIMP “ pEpY1q ´ pEpY0q.

We further consider an alternative imputation estimator that uses the

model-predicted values, while ignoring the observed responses, even when

they are available. Specifically, we still form pDIMP2 ” pEpY1q ´ pEpY0q

for the treatment effect, using pEpY1q “ n´1
řn
i“1 pm1p

pβ
T

1 xiq and pEpY0q “

n´1
řn
i“1 pm0p

pβ
T

0 xiq to obtain the imputation estimator IMP2. The latter is

sometimes called the outcome regression estimator; see, for example, Tan

(2007).
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3.2 (Augmented) IPW Estimators

Robins et al. (1994) proposed a class of semiparametric estimators based

on IPW estimating equations, borrowing from Horvitz & Thompson (1952)

in the survey sampling literature. Later, Liu et al. (2018) implemented an

IPW estimator that uses semiparametric modeling to assess the propensity

score function. Following this procedure, the IPW estimator first constructs

pEpY1q “ n´1
řn
i“1 tiyi{ppi and pEpY0q “ n´1

řn
i“1p1´ tiqyi{p1´ ppiq, and then

estimates the average causal effect pDIPW ” pEpY1q ´ pEpY0q.

If at least one of the mean function models, m1p¨q and m0p¨q, is incor-

rectly specified, the IMP and IMP2 estimators will be inconsistent. Simi-

larly, if ηp¨q is incorrectly specified, the IPW will not be consistent. As a

result, we use the more flexible semiparametric dimension-reduction models

instead of fully parametric models. This reduces, but does not completely

eliminate, the chance of model misspecification. Thus, we still need pro-

tection against either misspecification using the doubly robust estimator

(Robins et al. 1994). This leads to the AIPW estimator, which is consis-

tent when either the mean models are correctly specified or the propensity

score model is correctly specified. The estimate of the average causal ef-

fect is still pDAIPW ” pEpY1q´ pEpY0q, where now pEpY1q “ n´1
řn
i“1

 

tiyi{ppi`

p1´ ti{ppiq pm1p
pβ
T

1 xiq
(

and pEpY0q “ n´1
řn
i“1

“

p1´tiqyi{p1´ppiq`t1´p1´tiq{

Statistica Sinica: Preprint 
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3.3 The Shrinkage Estimator16

p1´ ppiqupm0p
pβ
T

0 xiq
‰

. An improved version of the AIPW estimator was pro-

posed in Robins et al. (1995), providing extra protection against deteri-

orated estimation variability. Based on this idea, Tan (2006) later de-

veloped a nonparametric likelihood estimator. Adopting this idea in the

treatment effect estimation framework, we construct the estimator pEpY1q “

n´1
řn
i“1

 

tiyi{ppi`pγ1 p1´ ti{ppiq pm1p
pβ
T

1 xiq
(

, pEpY0q “ n´1
řn
i“1

“

p1´tiqyi{p1´

ppiq` pγ0t1´p1´ tiq{p1´ ppiqupm0p
pβ
T

0 xiq
‰

, and estimate the average causal ef-

fect by pDIAIPW ” pEpY1q´ pEpY0q. Here, pγ1 “ cov
 

pm1p
pβ
T

1 xiqti{ppi, p1´ ti{ppiq

pm1p
pβ
T

1 xiq
(´1

cov
 

tiyi{ppi, p1´ ti{ppiq pm1p
pβ
T

1 xiq
(

and pγ0 “ cov
“

p1 ´ tiq{p1 ´

ppiqpm0p
pβ
T

0 xiq, t1´ p1´ tiq{p1´ ppiqu pm0p
pβ
T

0 xiq
‰´1

cov
“

p1´ tiqyi{p1´ ppiq,

t1´ p1´ tiq{p1´ ppiqu pm0p
pβ
T

0 xiq
‰

.

3.3 The Shrinkage Estimator

The ideas of imputation and weighting are quite different, and each has its

own advantages and drawbacks. For example, when the treatment mean

models m1pβ
T
1 Xq and m0pβ

T
0 xq are correct, regardless of whether or not the

propensity score model is correct, the IMP and AIPW are both consistent;

however, it is unclear which estimator is more efficient. When the treatment

mean models m1pβ
T
1 Xq and m0pβ

T
0 xq are not both correct, the AIPW is

still consistent as long as the propensity score model is correct, but the IMP
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3.3 The Shrinkage Estimator17

methods will be inconsistent. Of course, if both the mean models and the

propensity models are incorrect, then neither method will provide a consis-

tent estimation. In practice, we typically do not know which scenario we

are in, making it difficult to determie which method to employ. Therefore,

in order to take advantage of both methods, we use the idea of a shrinkage

estimator (Mukherjee & Chatterjee 2008) to construct a weighted average

between the IMP and the AIPW.

The general observation is that if the IMP is consistent, then the AIPW

will be consistent as well, but not vice versa. However, it is not generally

clear which estimator is more efficient. We construct the following shrinkage

estimator: Let
?
np pDAIPW ´ DAIPWq Ñ Np0, vAIPWq in distribution and

?
np pDIMP ´DIMPq Ñ Np0, vIMPq in distribution, and let covt

?
np pDAIPW ´

DAIPWq,
?
np pDIMP ´ DIMPqu Ñ vAI. We form w “ tp pDAIPW ´ pDIMPq

2 `

pvIMP´vAIq{
?
nu{tp pDAIPW´ pDIMPq

2`pvIMP`vAIPW´2vAIq{
?
nu, and form

the shrinkage estimator pD “ w pDAIPW ` p1 ´ wq pDIMP, where we replace

vAIPW, vIMP, and vAI with their estimated versions. This construction has

the property that when the IMP is inconsistent and the AIPW is consistent,

w Ñ 1, and we essentially obtain the AIPW; that is, the shrinkage estimator

is doubly robust. On the other hand, when both estimators are consistent,

w Ñ w0, where w0 ” pvIMP´vAIq{pvIMP`vAIPW´2vAIq in probability, which
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3.4 Asymptotic Properties of the Treatment Effect Estimators18

yields the optimal combination of the two estimators in terms of the final

estimation variability. Of course, when both estimators are inconsistent,

the weighted average is still inconsistent.

To construct the shrinkage estimator described above, we derive the

asymptotic variances and covariances of the estimators in Section 3.4.

Note that one may also choose to shrink the IMP2 and AIPW, or either

of the two versions of the imputation estimator and the improved AIPW,

in a similar fashion.

3.4 Asymptotic Properties of the Treatment Effect Estimators

In this section, we discuss the asymptotic properties of the proposed aver-

age treatment effect estimators. These properties are developed under the

following conditions:

C1 The univariate mth-order kernel function Kp¨q is symmetric and Lip-

schitz continuous on its support r´1, 1s, which satisfies
ş

Kpuqdu “

1,
ş

uiKpuqdu “ 0, for 1 ď i ď m´ 1, 0 ‰
ş

umKpuqdu ă 8.

C2 The bandwidths satisfy nh2m Ñ 0 and nh2d Ñ 8.

C3 The probability density functions of βT
1 x, βT

0 x and αTx, denoted

by f
`

βTx
˘

, f
`

αTx
˘

, and f
`

αTx
˘

, respectively, with an abuse of
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3.4 Asymptotic Properties of the Treatment Effect Estimators19

notation, are bounded away from zero and 8.

Let the true average causal effect be D “ EpY1 ´ Y0q. Then, we have

the following results.

Theorem 3.1. Under the regularity conditions C1–C3, when n Ñ 8, the

IMP estimator pDIMP satisfies
?
np pDIMP ´ Dq

d
Ñ Np0, vIMPq, where, using

the results for pEpY1q and pEpY0q in the Supplementary Material S3,

vIMP “ E
´

 

m1pβ
T
1 xiq ´m0pβ

T
0 xiq ´ EpY1q ` EpY0q

(

`Er1` expt´ηpαTXiqu | β
T
1 xistity1i ´m1pβ

T
1 xiqu

´Er1` exptηpαTXiqu | β
T
0 xisp1´ tiqty0i ´m0pβ

T
0 xiqu

´Erp1´ PiqvectXLim
1
1pβ

T
1 Xiq

T
us

TB1tity1i ´m1pβ
T
1 xiqu

ˆvecrm1
1pβ

T
1 xiq b txLi ´ EpXLi | β

T
1 xiqus

`ErPivectXLim
1
0pβ

T
0 Xiq

T
us

TB0p1´ tiqty0i ´m0pβ
T
0 xiqu

ˆvecrm1
0pβ

T
0 xiq b txLi ´ EpXLi | β

T
0 xiqus

¯2

, (3.1)

where B1 and B0 are defined in (2.8) and (2.10), respectively.

In the variance expression vIMP, the first term captures the treatment

effect estimation variability due to the different covariates. The second

term is related to the variability of the outcome, given the covariates in
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3.4 Asymptotic Properties of the Treatment Effect Estimators20

the treated group, weighted by the treatment probability. The third term

resembles the second term, but applies to the non-treated group. The fourth

term compensates for the second term to fully capture the variability due

to the imputation and dimension reduction in the treated group. Similarly,

the fifth term compensates for the third term in the non-treated group.

Theorem 3.2. Under the regularity conditions C1–C3, when n Ñ 8, the

IMP2 estimator pDIMP2 satisfies
?
np pDIMP2 ´ Dq

d
Ñ Np0, vIMP2q, where us-

ing the results for pEpY1q and pEpY0q from the Supplementary Material S4,

vIMP2 “ E
`  

m1pβ
T
1 xiq ´m0pβ

T
0 xiq ´ EpY1q ` EpY0q

(

`EpP´1i | βT
1 xiqtity1i´

m1pβ
T
1 xiqu ´ Etp1´ Piq

´1 | βT
0 xiup1´ tiqty0i ´m0pβ

T
0 xiqu

´ErvectXLim
1
1pβ

T
1 Xiq

TusTB1tity1i ´m1pβ
T
1 xiqu ˆ vecrm1

1pβ
T
1 xiq b txLi ´

EpXLi | β
T
1 xiqus ` ErvectXLim

1
0pβ

T
0 Xiq

TusTB0p1 ´ tiqty0i ´m0pβ
T
0 xiqu ˆ

vecrm1
0pβ

T
0 xiq b txLi ´EpXLi | β

T
0 xiqus

˘2
, where B1 and B0 are defined in

(2.8) and (2.10), respectively.

Note that the first three terms in vIMP2 are identical to those in vIMP.

The only difference between vIMP2 and vIMP is in the Pi component in the

last two terms, reflecting the difference due to the imputation method.

Theorem 3.3. Under the regularity conditions C1–C3, when n Ñ 8, the

IPW estimator pDIPW satisfies
?
np pDIPW ´ Dq

d
Ñ Np0, vIPWq, where using

the results for pEpY1q and pEpY0q in the Supplementary Material S1, vIPW “

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0416



3.4 Asymptotic Properties of the Treatment Effect Estimators21

E

ˆ

ttiy1i{pi ´ EpY1q ´ p1´ tiqy0i{p1´ piq ` EpY0qu

`p1´ ti{piqE
 

m1pβ
T
1 Xiq | α

Txi
(

´pti´piq{p1´piqE
 

m0pβ
T
0 Xiq | α

Txi
(

`
`

E
“

tm1ipβ
T
1 Xiqp1´ Piq `m0ipβ

T
0 XiqPiuvectXLiη

1pαTXiq
Tu
‰˘T

Bˆpti´

piqvecrtxLi ´ EpXLi | α
Txiquη

1pαTxiq
Ts

˙2

, where B is defined in (2.12).

The variance vIPW has a very different form to those from the imputa-

tion methods, partially reflecting the difference in how the methods handle

the missing outcomes. The first three terms of vIPW can be rewritten as

E
 

m1pβ
T
1 Xiq | α

Txi
(

´E
 

m0pβ
T
0 Xiq | α

Txi
(

´EpY1q`EpY0q, tipi
´1
“

y1i´

E
 

m1pβ
T
1 Xiq | α

Txi
( ‰

, and´p1´ tiqp1´ piq
´1
“

y0i´Etm0pβ
T
0 Xiq | α

Txiu
‰

.

We can view the first term as the variability in the treatment effect due

to the covariates, and the second term as the variability in the inversely

weighted individual treatment effect in the treatment group. The third

term is similar to the second term, but applies to the non-treated group.

The last term compensates for the combined variability due to the way in

whch the IPW handles the missing outcomes.

Theorem 3.4. Under the regularity conditions C1–C3, when n Ñ 8, the

AIPW estimator pDAIPW satisfies
?
np pDAIPW ´ Dq

d
Ñ Np0, vAIPWq, where
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vAIPW, derived in the Supplementary Material S2, is

vAIPW “ E
`

ty1i ´m1pβ
T
1 xiqutir1` expt´ηpαTxiqus ` tm1pβ

T
1 xiq ´ EpY1qu

´C1B1tity1i ´m1pβ
T
1 xiquvecrm1

1pβ
T
1 xiq b txLi ´ EpXLi | β

T
1 xiqus

`D1Bpti ´ piqvecrtxLi ´ EpXLi | α
Txiquη

1
pαTxiq

T
s

´ty0i ´m0pβ
T
0 xiqup1´ tiqr1` exptηpαTxiqus

´tm0pβ
T
0 xiq ´ EpY0qu `C0B0p1´ tiq

ˆty0i ´m0pβ
T
0 xiquvecrm1

0pβ
T
0 xiq b txLi ´ EpXLi | β

T
0 xiqus

`D0Bpti ´ piqvecrtxLi ´ EpXLi | α
Txiquη

1
pαTxiq

T
s
˘2
, (3.2)

where C1 ” E
“

tBm1pβ
T
1 Xiq{Bveclpβ1q

Tup1´ Ti{Piq
‰

, D1 ” E
“

tY1i´m1pβ
T
1 Xiqu

Ti expt´ηpαTXiquvectXLiη
1pαTXiq

Tu
‰

, C0 ” E
“

tBm0pβ
T
0 Xiq{Bveclpβ0q

Tu

t1´p1´Tiq{p1´Piqu
‰

, and D0 ” E
“

tY0i´m0pβ
T
0 Xiqup1´Tiq exptηpαTXiqu

vectXLiη
1pαTXiq

Tu
‰

. Note that C1, C0, D1, and D0 will degenerate to zero

if the relevant model is correct. Then,

vAIPW “ E
”

ty1i ´m1pβ
T
1 xiquti{pi `m1pβ

T
1 xiq ´ EpY1q (3.3)

´ ty0i ´m0pβ
T
0 xiqup1´ tiq{p1´ piq ´m0pβ

T
0 xiq ` EpY0q

ı2

.

The expression for vAIPW is closely realated to that for vIMP2. In fact,
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the third and seventh terms in vAIPW are refinements of the fourth and fifth

terms, respectively, in vIMP2. Furthermore, we have an additional fourth

and eighth term in vAIPW to provide extra protection against a treatment

assignment model misspecification. When the outcome models and assign-

ment models are correct, as seen from (3.3), the variability contains only two

parts, that due to the covariate variability, and that due to the incomplete

outcomes and random errors.

Noting that p1´ ti{piqm1pβ
T
1 xiq and t1 ´ p1 ´ tiq{p1 ´ piqum0pβ

T
0 xiq

have mean zero, it is straightforward to show that the improved AIPW

estimator has the same asymptotic expansion as the AIPW estimator when

all three models are correct. Thus, despite their different finite-sample

performance, the expansion in (3.3) also applies to the improved AIPW

estimator. Therefore, the following result holds.

Theorem 3.5. Under the regularity conditions C1–C3, and assuming all

models are correct, then when n Ñ 8, the improved AIPW estimator

pDIAIPW satisfies
?
np pDIAIPW ´ Dq

d
Ñ Np0, vAIPWq, where vAIPW is given

by (3.3).

Finally, when both estimators D̂IMP and D̂AIPW are consistent, we have

?
np pD ´ Dq “

?
nw0p pDAIPW ´ Dq `

?
np1 ´ w0qp pDIMP ´ Dq ` opp1q, as

noted above.
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Theorem 3.6. Under the regularity conditions C1–C3, when pDAIPW and

pDIMP are consistent and nÑ 8, the shrinkage estimator pD satisfies
?
np pD´

Dq
d
Ñ Np0, vshrinkageq, where vshrinkage “ w2

0vAIPW ` p1´w0q
2vIMP ` 2w0p1´

w0qvAI, with vAI “ E
!

`

ty1i ´m1pβ
T
1 xiquti{pi `m1pβ

T
1 xiq ´ EpY1q

´ty0i´m0pβ
T
0 xiqup1´ tiq{p1´piq´m0pβ

T
0 xiq`EpY0q

˘

ˆ

´

tiy1i´p1´ tiqy0i

` p1 ´ tiqm1pβ
T
1 xiq ´ tim0pβ

T
0 xiq ´ EpY1q ` EpY0q ` Erexpt´ηpαTXiqu |

βT
1 xistity1i´m1pβ

T
1 xiqu´ErexptηpαTXiqu | β

T
0 xisp1´ tiqty0i´m0pβ

T
0 xiqu

´Erp1´PiqvectXLim
1
1pβ

T
1 Xiq

TusTB1tity1i´m1pβ
T
1 xiquˆvecrm1

1pβ
T
1 xiqb

txLi´EpXLi | β
T
1 xiqus`ErPivectXLim

1
0pβ

T
0 Xiq

TusTB0p1´tiqty0i´m0pβ
T
0 xiqu

ˆ vecrm1
0pβ

T
0 xiq b txLi ´ EpXLi | β

T
0 xiqus

¯)

.

The vAI term is a simple result of the correlation between the AIPW

estimator and IMP estimator. When pDIMP is not consistent owing to a

misspecification of at least one of the treatment mean models m1p¨q and

m0p¨q, w Ñ 1; thus,
?
np pD ´Dq

d
Ñ
?
np pDAIPW ´Dq.

4. Simulation Study

We conducted a simulation study to compare the performance of the estima-

tors discussed in Section 3. We used a sample size n “ 1000 and covariate

dimension p “ 6 with 1000 replicates.

Specifically, the covariate vector X “ pX1, . . . , X6q
T is generated as
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follows. First, X1 and X2 are generated independently from Np1, 1q and

Np0, 1q, respectively. We let X4 “ 0.015X1 ` u1, where u1 is uniformly

distributed in p´0.5, 0.5q. Then, X3 and X5 are generated independently

from the Bernoulli distributions with success probabilities 0.5`0.05X2 and

0.4`0.2X4, respectively. We let X6 “ 0.04X2`0.15X3`0.05X4`u2, where

u2 „ Np0, 1q. We set β1 “ p1,´1, 1,´2,´1.5, 0.5qT, β0 “ p1, 1, 0, 0, 0, 0q
T,

and α “ p´0.27, 0.2,´0.15, 0.05, 0.15,´0.1qT.

4.1 Study 1

Our first study examines the estimators when the response and the propen-

sity score models are correctly specified. We generated the response vari-

ables based on Y1 “ 0.7pβT
1 xq2` sinpβT

1 xq` ε1 and Y0 “ βT
0 x` ε0. Here, ε1

and ε0 are normally distributed with mean zero and variances 0.5 and 0.2,

respectively. We let ηpαTxq “ αTx. Thus, the treatment indicator T is gen-

erated from the logistic model prpT “ 1|Xq “ exppαTxq{t1` exppαTxqu.

We implemented the six estimators described in Section 3. In the non-

parametric estimations of ηp¨q and the mean functions m1p¨q and m0p¨q, we

used a local linear regression with an Epanechnikov kernel and a bandwidth

chosen as cσn´1{3, where σ2 is the estimated variance of the corresponding

index, and c is a constant ranging from 0.1 to 3.5. As is frequently observed
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in semiparametric estimations, the final estimator is relatively insensitive to

the bandwidth used for the nuisance estimation, because this bandwidth has

no first-order effect as long as it satisfies Condition C2. When needed, we

extrapolated the local linear fit at the boundary of the support. For compar-

ison, we also computed
řn
i“1 TiY1i{p

řn
i“1 Tiq´

řn
i“1p1´TiqY0i{pn´

řn
i“1 Tiq

as a naive sample average estimator.

From the results summarized in Figure 1 and Table 1, we can see that

the naive estimator is obviously severely biased. As expected, all six meth-

ods yield a small bias, and the IMP2 and IPW provide the smallest and

largest, respectively, variability and mean squared error (MSE). The esti-

mator that shrinls the IMP and the AIPW improves slightly on the latter

with respect to the variability and MSE. The estimated standard deviation

(based on the asymptotics) matches fairly well with the empirical variability

of the estimators.

4.2 Study 2

The second study compares the performance of the estimators when the

mean functionsm1p¨q andm0p¨q are misspecified. We kept the data-generation

procedure identical to that of Study 1, except that we generated the re-

sponse variables based on the models Y1 “ pβ
T
1 xq2` sinpβT

1 xq`pγT
1 xq2` ε1
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and Y0 “ βT
0 x ` sinpγT

0 xq ` ε0, where γ1 “ p0, 1, 1, 0, 0, 0qT and γ0 “

p0, 1,´0.75, 0,´1, 0qT. Here, ε1 and ε0 are normally distributed with mean

zero and variance 0.5 and 0.2, respectively. Note that the mean functions

no longer have the single index forms.

When we implemented the six estimators described in Section 3, we

still treated m1p¨q and m0p¨q as functions of βT
1 x and βT

0 x, respectively;

hence, the mean function models we used are misspecified. The same non-

parametric estimation procedures as in Study 1 were used to estimate ηp¨q,

m1p¨q, and m0p¨q.

From the results in Figure 2 and Table 2, we can see that the IMP and

IMP2 estimators are biased, along with the severely biased naive estimator,

whereas the IPW, AIPW, IAIPW and shrinkage methods yield a small bias,

even when m1p¨q and m0p¨q are misspecified, as expected. Although the IMP

is biased, it provides the smallest variability, whereas the IPW yields the

largest variability. Here, the shrinkage estimator that combines the IMP

and AIPW is able to down-weight the IMP and inherit the lower bias and

variability from the AIPW. Again estimated standard deviations match the

empirical variability of the estimators.
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4.3 Study 3

In the third simulation study, we compare the performance of the estimators

when the model of the propensity score function is misspecified. We followed

the same data-generation procedure as that in Section 4.1, but the true

function inside the logistic link here is ηpαTxq “ pαTxq ` 0.45{tpγTxq2 `

0.5u, where γ “ p1, 0.5,´1, 0.5,´1,´3qT. Thus, ηp¨q is no longer a function

of a single index. The treatment indicator T is generated from

prpT “ 1|Xq “
exprpαTxq ` 0.45{tpγTxq2 ` 0.5us

1` exprpαTxq ` 0.45{tpγTxq2 ` 0.5us
.

In implementing the six estimators described in Section 3, we considered

ηp¨q as a function of αTx only; thus, the propensity score used to estimate

the average causal effect is misspecified. Furthermore, we used the same

nonparametric approach as in Studies 1 and 2 to estimate m1p¨q, m0p¨q, and

ηp¨q.

The results in Figure 3 and Table 3 show that, except for the naive

estimator, which is significantly biased, all six estimators yield small bi-

ases. Whereas the small biases of IMP, IMP2, AIPW, IAIPW, and the

shrinkage estimator are within our expectation, the IPW performs better

than anticipated by the theory. Here, the IMP2 has the smallest variabil-
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ity and MSE, whereas the IPW performs worst. As in Study 1, the IMP

and AIPW are both consistent in this design, and the shrinkage estimator

is again as good as the AIPW. By construction, we expect the shrinkage

estimator to have a lower variability in this situation. However, thi sis

not evident, probably qwing to the difficulty in obtaining precise estimates

of the asymptotic variances used to compute the shrinkage weight. On the

other hand, the variance estimates are sufficiently good to yield satisfactory

empirical coverages for the confidence intervals constructed.

4.4 Study 4

In this last study, we consider a scenario in which all models, m1p¨q, m0p¨q,

and ηp¨q are misspecified. Here, the covariate X is generated as in the

previous studies, the response variables Y1 and Y0 are generated as in Section

4.2, and the treatment assignment is as described in Section 4.3. While

implementing the estimators described in Section 3, we still treat m1p¨q,

m0p¨q, and ηp¨q as functions of βT
1 x, βT

0 x, and αTx, respectively, and use

the same nonparametric estimation procedure as in earlier sections.

From Figure 4 and Table 4, we can see that the misspecification of the

mean function models means the IMP and IMP2 estimators are biased, as is

the naive estimator. As in Study 3, although ηp¨q is misspecified, the IPW
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estimator yields quite a small bias. Consequently, the AIPW, IAIPW, and

shrinkage estimators are not affected significantly by the misspecifications

of the various models. The IMP2 and IMP have the lowest variability,

followed by the IAIPW and AIPW, and IPW has the largest variance, as in

the earlier cases. Because the IMP has a much larger bias than that of the

AIPW, the shrinkage estimator mimics the AIPW, as the theory predicts.

Following the request of a referee, we also conducted the simulation

study using sample sizes of n “ 100, 200, and 500. The results are provided

in the Supplementary Material S5 to Section S7. The results show that

as the sample size increases, the bias and variance (and thus the MSEs)

decrease for all of the estimators.

5. Data Analysis

We now apply the proposed methods to estimate the average causal effect

of maternal smoking during pregnancy on birth weight. The data consist of

the birth weights (in grams) of 4642 singleton births in Pennsylvania, USA

(Almond et al. 2005), for which several covariates are observed: mother’s

age, mother’s marital status, an indicator variable for alcohol consumption

during pregnancy, an indicator variable for a previous birth in which the

infant died, mother’s education, father’s education, number of prenatal care

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0416



31

visits, months since last birth, mother’s race, and an indicator variable for

the first-born child. The data set also contains the maternal smoking habit

during pregnancy, which we view as our treatment, Ti (1 “ Smoking, 0 “

Non-Smoking). This data set was first used by Almond et al. (2005) to

study the economic cost of low birth weights on society, and was further

analyzed in Cattaneo (2010) and Liu et al. (2018). The data set is available

at http://www.stata-press.com/data/r13/cattaneo2.dta.

To determine the structural dimension of the two response models and

the propensity score function model, we use the validated information cri-

terion (VIC) (Ma & Zhang 2015), where the true reduced space dimension

corresponds to the smallest VIC value. We conducted the VIC calcula-

tion separately for all three models to determine their suitable dimensions.

When we consider the mean response model for the non-treated group, the

VIC value at d “ 1 is 84.43, and is 201.86 at d “ 2, after which it con-

tinues to increase with d. Hence, we select d “ 1 for this model, and fit

a single index structure. Similarly, when we conducted the VIC method

on the mean response model for the treated group, the smallest VIC value

was also obtained at d “ 1. Finally, the same is true for the propensity

score model, where the VIC value at the single index case is the smallest.

Thus, we apply the single index structure in all three dimension-reduction
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models. Of the 4642 observations, 864 of the mothers smoked (T “ 1) and

3778 non-smoking (T “ 0). The naive estimator (without the covariate ad-

justment) yields an effect of -275 g. We used a local linear regression with

an Epanechnikov kernel in the nonparametric estimations of the propensity

score function, ηp¨q, and the mean functions, m1p¨q and m0p¨q, where the

bandwidth was selected as cσn´1{3, with σ2 the estimated variance of the

corresponding index and c a constant. In our analysis, we find that the

results are not sensitive to the value of c; for example, when we vary c from

0.01 to 5, the results barely change. Applying the six estimators studied

in Section 3 yields estimated effects of smoking of between -259 and -296

g. These are displayed in Table 5, together with the estimated standard

deviations and the 95% confidence intervals. The IPW stands out, with an

estimated effect larger than the naive value. This is because some observa-

tions have propensity scores close to zero, leading to very large weights, and

thus much larger standard error. Overall, there is evidence that smoking

results in lower birth weight, given the assumption that we have observed

all confounders.
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6. Conclusion

We have introduced feasible and robust estimators for the average causal

effect of a nonrandomized treatment. Nuisance models are fitted using

semiparametric sufficient dimension-reduction methods. The parameter es-

timation in these nuisance models is locally efficient, which is important

when combining the IPW and IMP estimators. The AIPW estimators are

efficient and their asymptotic distributions do not depend on the fit of the

nuisance parameters, as long as the nuisance models are well specified and

the estimations are consistent (e.g., Farrell 2015, Belloni et al. 2014). The

proposed shrinkage estimator combines the AIPW and IMP, thus improv-

ing the efficiency when the nuisance model for the response is correctly

specified. When the latter model is misspecified, the shrinkage estimator

is asymptotically equivalent to the AIPW, and nothing is lost. Numerical

experiments show that the shrinkage estimator performs at least as well as

the AIPW, although no improvement could be observed over the AIPW

for well-specified response models, possibly because the weights estimates

are insufficient for the sample size considered. As is the case for the IMP,

the shrinkage estimator is super-efficient and its asymptotic inference is not

expected to be uniform.
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Figure 1: Box plot of Naive, IMP,
IMP2, IPW, AIPW, IAIPW, and
Shrinkage estimators for Study 1.
The blue horizontal line is the true
average causal effect (ACE), here
2.030.
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Figure 2: Box plot of Naive, IMP,
IMP2, IPW, AIPW, IAIPW, and
Shrinkage estimators for Study 2,
where m1p¨q and m0p¨q are misspec-
ified. The blue horizontal line is the
true ACE, here 3.990.
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Figure 3: Box plot of Naive, IMP,
IMP2, IPW, AIPW, IAIPW, and
Shrinkage estimators for Study 3,
where ηp¨q is misspecified. The blue
horizontal line is the true ACE, here
2.033.
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Figure 4: Box plot of Naive, IMP,
IMP2, IPW, AIPW, IAIPW, and
Shrinkage estimators for Study 4,
where m1p¨q, m0p¨q and ηp¨q are mis-
specified. The blue horizontal line is
the true ACE, here 3.986.
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Table 1: Results for Study 1 based on 1000 replicates; Full gives the average
causal effect and corresponding standard deviation (sd) based on all poten-
tial responses, including the counterfactual ones not observable in practice;
Naive provides the same statistics, but based only on the observed potential
responses. For the different estimators, we also compute the mean of the
estimated sd (based on asymptotics, row psd), empirical coverage obtained
with confidence intervals based on these estimated sd (95% cvg), and mean
squared error (mse).

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 2.030 1.569 2.007 2.032 2.029 2.037 2.036 2.036

sd 0.118 0.172 0.123 0.122 0.168 0.131 0.130 0.131
psd - - 0.134 0.130 0.176 0.146 0.146 0.138

95% cvg - - 96.1% 96% 96.5% 97.8% 98% 97.5%
mse - - 0.016 0.015 0.028 0.017 0.017 0.017

Table 2: Results for Study 2, where m1p¨q and m0p¨q are misspecified; see
also the caption of Table 1.

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 3.990 3.647 3.761 3.716 4.005 3.984 3.979 3.983

sd 0.137 0.202 0.187 0.189 0.207 0.188 0.189 0.188
psd - - 0.188 0.193 0.211 0.195 0.195 0.194

95% cvg - - 79% 74.7% 95.8% 94.9% 94.9% 94.9%
mse - - 0.087 0.111 0.043 0.035 0.036 0.035

Table 3: Results for Study 3, where ηp¨q is misspecified; see also the caption
of Table 1.

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 2.033 1.596 2.009 2.029 2.030 2.037 2.037 2.036

sd 0.122 0.165 0.123 0.122 0.169 0.135 0.134 0.135
psd - - 0.140 0.140 0.160 0.143 0.143 0.142

95% cvg - - 96.8% 97.6% 94.5% 96% 96.3% 95.8%
mse - - 0.016 0.015 0.029 0.018 0.018 0.018
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Table 4: Results for Study 4, where m1p¨q, m0p¨q, and ηp¨q are misspecified;
see also the caption of Table 1.

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 3.986 3.665 3.727 3.637 3.987 3.980 3.977 3.980

sd 0.135 0.198 0.175 0.173 0.202 0.186 0.184 0.186
psd - - 0.194 0.205 0.207 0.191 0.191 0.191

95% cvg - - 78.5% 66.7% 95.4% 95.5% 96.1% 95.5%
mse - - 0.098 0.152 0.041 0.035 0.034 0.035

Table 5: Estimated average causal effect of maternal smoking on birth
weight, including standard error and confidence interval, for the estimators
introduced.

Estimator Estimate se 95% CI
naive -275.3 - -
IMP -259.8 22.2 (-303.3,-216.3)
IMP2 -262.6 23.1 (-307.8,-217.4)
IPW -296.5 85.5 (-464.2,-128.9)

AIPW -264.6 22.2 (-308.1,-221.1)
IAIPW -264.7 22.2 (-308.3,-221.2)

Shrinkage -264.6 22.2 (-308.1,-221.1)

Supplementary Material

The online Supplementary Material contains proofs for Theorems 3.1–

3.4.
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