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Abstract: Network analyses are becoming increasingly popular in a wide range

disciplines, including social science, finance, and genetics. In practice, it is com-

mon to collect numerous covariates along with the response variable. Because

the network structure means the responses at different nodes are no longer in-

dependent, existing screening methods may not perform well for network data.

Therefore, we propose a network-based sure independence screening (NW-SIS)

method that explicitly considers the network structure. The strong screening con-

sistency property of the NW-SIS method is rigorously established. Furthermore,

we estimate the network effect and establish the
√
n-consistency of the estima-

tor. The finite-sample performance of the proposed method is assessed using a

simulation study and an empirical analysis of a data set from the Chinese stock

market.

Key words and phrases: Feature Screening, Network Structure, Strong Screening

Consistency, Network Autoregression.
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1. Introduction

A network data analysis is an important tool used to explore data that

have a dependency structure by incorporating the network structure into the

modeling framework. Network analyses have been successfully applied in a

wide range of disciplines, including social science (Leenders, 2002; Newman,

2010), finance (LeSage and Pace, 2009; Diebold and Yilmaz, 2014), and

genetics (Monnier et al., 2013; Taylor-Teeples et al., 2015). In the field

of social network analysis, network modeling is used to study users’ social

behavior, where researchers have found positive dependencies between users

through network links (Lee et al., 2010; Chen and Xiao, 2013; Zhu et al.,

2017). In the area of empirical finance, network analyses are used to study

the stock returns of financial institutions. Here, studies have found that

financial contagion could spread via network relationships, which is a key

indicator for financial risk management (Hautsch et al., 2014; Zou et al.,

2017; Zhu et al., 2018).

Along with the responses, researchers often collect numerous predictors.

Consider, for example, a financial network of firms. One can collect firms’

fundamentals from balance sheets, income statements, and the cash flow

statements. However, these might contain hundreds of predictors that are

closely related to the firms’ financial performance (Fama and French, 2015).
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As another example, on a social network platform, a user’s profile is col-

lected from user-created labels. In particular, the network labels are mostly

short keywords created by the user to describe his/her personal character-

istics, career, life status, and so on (Huang et al., 2016). Accordingly, the

total number of keywords could be of ultrahigh dimension. However, to the

best of our knowledge, the ultrahigh dimensionality of predictors has not

been adequately addressed in network modeling literature.

To deal with high dimensionality, a popular solution is to consider a

sparse structure of the regression coefficients. That is, we assume that not

all predictors make a significant contribution to the model prediction. In

this case, the predictors are screened based on their contributions to the

model fitting. Since the seminal work of Fan and Lv (2008), sure indepen-

dence screening (SIS) has received considerable attention in the literature.

Many extensions have been investigated for the feature screening frame-

work. These include the extensions to the generalized linear models and ro-

bust linear models developed by Fan et al. (2009) and Fan and Song (2010),

respectively, the nonparametric SIS procedure designed by Fan et al. (2011)

for additive models, and the correlation-based SIS procedure for linear mod-

els proposed by Li et al. (2012a); see Wang (2009), Li et al. (2012b), He

et al. (2013), Mai and Zou (2013), Liu et al. (2014) and Huang et al. (2014)

Statistica Sinica: Preprint 
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for further details.

Despite their usefulness in many scenarios, traditional screening meth-

ods may not be effective when a network structure is involved, because the

network nodes are dependent through the network links. As a result, two

questions emerge. First, how do we conduct feature screening while con-

sidering the network information? Second, how do we estimate the network

effect after feature screening? In this work, we propose a network-based sure

independence screening (NW-SIS) method that explicitly considers the net-

work structure. Specifically, we design a screening measure by controlling

the network effect. We prove that the NW-SIS method enjoys the strong

screening consistency property and could be easy to compute. Lastly, the

network effect is estimated after screening, and the
√
n-consistency of the

estimator is established.

The rest of this paper is organized as follows. Section 2 introduces

the proposed NW-SIS approach, and establishes its theoretical properties.

Simulation studies, including a real-data example, are given in Section 3.

Section 4 concludes the paper. All theoretical proofs are relegated to the

online Supplementary Material.
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2. Network-Based Independent Screening

2.1 Model and Notation

To describe the structure of a network with n nodes, we define an adja-

cency matrix A = (aij) ∈ Rn×n, where aij = 1 if there is a link from node i

to node j (j 6= i), and aij = 0 otherwise. Define aii = 0, for 1 ≤ i ≤ n. Note

that the network could be directed (i.e., A is asymmetric) or undirected

(i.e., A is symmetric). Let Y = (Y1, · · · , Yn)> ∈ Rn be the continuous re-

sponses and X = (X1, · · · , Xn)> ∈ Rn×p be the corresponding predictors,

with Xi = (Xi1, · · · , Xip)
> ∈ Rp collected from the n nodes. In this study,

we consider the case p � n, which means the predictors are of ultrahigh

dimension.

To model the relationship between the response and the covariates, we

consider the following network vector autoregression model:

Y = ρWY + Xβ + E , (2.1)

where W = (wij) ∈ Rn×n is the normalized weighting matrix, with wij =

aij/
∑n

j=1 aij, and β = (β1, · · · , βp)> ∈ Rp is the regression coefficient. The

coefficient ρ is the autocorrelation parameter representing the network influ-

ence effect. The model in (2.1) is similar in spirit to the spatial autoregres-
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sion (SAR) model (Lee, 2004; Anselin, 2013). However, it takes the network

structure A into consideration rather than geographical distance informa-

tion, and allows the dimension of the covariates to be ultrahigh. Lastly,

E = (ε1, · · · , εn)> ∈ Rn is assumed to have mean 0n = (0, · · · , 0) ∈ Rn and

covariance matrix σ2In ∈ Rn×n, where In is the identity matrix of dimension

n. It is assumed that E and X are mutually independent.

Remark 1. Note that the weighting matrix W is row-normalized such that∑
j wij = 1. This form is widely assumed in the literature (Chen and Xiao,

2013; Liu, 2014; Zhu et al., 2017; Cohen-Cole et al., 2018). Therefore, the

autocorrelation parameter in model (2.1) is viewed as the average network

effect that nodes receive from their following friends. One could consider

other flexible forms of W , such as the non-normalized adjacency matrix,

or other weighting matrices. In those cases, the autocorrelation should be

explained accordingly.

The row-normalized W leads to the simple assumption about the range

of ρ. In order to ensure the invertibility of (In−ρW ), ρW should have eigen-

values all different from one. Banerjee and Gelfand (2004) have shown that

the largest absolute eigenvalue of W is one. Consequently, it can be easily

verified that |ρ| < 1 is a sufficient condition to make (In − ρW ) invertible

for a general W . As a matter of fact, this is also a necessary condition;

Statistica Sinica: Preprint 
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refer to Banerjee and Gelfand (2004) for a more detailed discussion. Thus,

throughout this paper, we assume |ρ| < 1.

For convenience, define Xj = (X1j, X2j, · · · , Xnj)
> ∈ Rn as the jth

column of X, for 1 ≤ j ≤ p. We follow convention, and normalize each

predictor Xj and Y so that the means are zero and the marginal variances

are one. In the high-dimension literature, sparsity is typically assumed.

This means only the important features have a significant effect on the

response (Fan and Lv, 2008). Therefore, we define the full model asMF =

{1, 2, · · · , p} and let MT = {1 ≤ j ≤ p : βj 6= 0} be the true sparse model

with non-sparsity size |MT |.

In model (2.1), the nodes are no longer independent. Instead, they are

dependent via the network structure W . As a result, unimportant features

might be correlated with the responses through their linkages with the im-

portant features. This makes the traditional marginal independence screen-

ing method unreliable. To see this, one can easily verify that zj = X>j Y =

X>j (In − ρW )−1(Xβ + E)(1 ≤ j ≤ p) depends on the network influence pa-

rameter ρ and the weighting matrix W . In this case, the correlation between

Xj and Y can no longer be an appropriate measurement for the screening

procedure. To obtain a feasible screening method in a network setting, we

propose a network-based independence screening method.

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0400
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2.2 Network-based Independence Screening

We consider a feature screening procedure when the dimension of the

predictor is ultrahigh in model (2.1). If we define Y ∗ = (In − ρW )Y =

(Y ∗1 , Y
∗
2 · · · , Y ∗n )> ∈ Rn, the model can be written as

Y ∗ = Xβ + E .

A simple calculation reveals that Cov(Y ∗|X) = σ2In. As a result, if the

network effect ρ is known, then Y ∗ follows immediately. In this way, we can

apply traditional screening approaches, such as the marginal correlation

between Y ∗i (1 ≤ i ≤ n) and Xij(1 ≤ j ≤ p). Unfortunately, in the model

defined in (2.1) with ultrahigh-dimensional predictors, the estimator of ρ

can be difficult to obtain.

To avoid having to estimate ρ, we evaluate the marginal correlation

between Y ∗i and Xij(1 ≤ j ≤ p) directly. This amounts to measuring the

multiple correlation between (Y,WY ) and Xj(1 ≤ j ≤ p). Specifically, we

treat Xj as the response and (Y,WY ) as the predictors. By regressing Xj

on (Y,WY ), we obtain an R-square-type statistic. This measurement can

function as the multiple correlation between (Y,WY ) and Xj. As a result,

it plays a role as an approximation to the the marginal correlation between

Statistica Sinica: Preprint 
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Y ∗i and Xij. Let Ỹ = (Y,WY ) ∈ Rn×2. Then R̂2
j is defined as,

R̂2
j =

X>j
{
Ỹ (Ỹ >Ỹ )−1Ỹ >

}
Xj

X>j Xj

, (2.2)

for every 1 ≤ j ≤ p. For a given constant cγ, one can estimate MT using

M̂R =
{

1 ≤ j ≤ p : R̂2
j ≥ cγ

}
. (2.3)

As a result, the full modelMF is reduced to a submodel M̂R of size |M̂R|.

The rank of R̂2
js (1 ≤ j ≤ p) learns the order of importance of the features

based on their comprehensive correlation with (Y,WY ). Consequently, it

filters out those features with weak correlations to (Y,WY ). This is the

NW-SIS method. It is generalized from the SIS approach, but incorporates

the network structure.

Remark 2. The problem can also be converted to one of feature screening

with multiple responses, for example, the SIS procedure based on the dis-

tance correlation (DC-SIS) by Li et al. (2012b). This approach is model-free

and can handle multiple responses. However, it is not designed for models

with network structure information, and thus does not work as well as R̂2
j .

We compare the performance of each in the numerical studies in Section 3.

Statistica Sinica: Preprint 
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2.3 Theoretical Properties

In this subsection, we study the theoretical properties of the NW-SIS

method. Intuitively, we wish to haveMT ⊂ M̂R with a large probability. In

fact, this is satisfied if we always define M̂R =MF = {1, ..., p}, which is the

full model. However, by doing so, a large number of irrelevant features are

introduced. To achieve a desirable screening result, two properties should be

satisfied. First, it should include all relevant features consistently. Second,

it should simultaneously control the screening model size.

To facilitate the development of the theory, we first provide some nota-

tion related to network structures. For convenience, define κ
(n)
1 = n−1tr

{
(In−

ρW )−1(In − ρW>)−1
}

, κ
(n)
2 = n−1tr{W (In − ρW )−1(In − ρW>)−1}, κ(n)3 =

n−1tr{(In−ρW>)−1W>W (In−ρW )−1}, κ(n)4 = n−1tr{(In−ρW )−1}, κ(n)5 =

n−1tr{W (In − ρW )−1}, and κ
(n)
6 = n−1tr[{(In − ρW )−1W}2]. Moreover,

let ν0 = β>Σβ + σ2 and νj = β>Σ·j, where Σ = Cov(X) ∈ Rn×n and

Σ·j ∈ Rn×1 denotes the jth column of Σ. In addition, for an arbitrary semi-

positive-definite matrix M , let λmin(M) and λmax(M) denote the smallest

and largest eigenvalues, respectively, of matrix M . Lastly, define R2
j =

(c
(n)
κ )−1(κ

(n)
1 κ

(n)2
5 − 2κ

(n)
2 κ

(n)
4 κ

(n)
5 + κ

(n)
3 κ

(n)2
4 )ν2j and γ∗min = minj∈MT

R2
j ,

where c
(n)
κ = (κ

(n)
1 κ

(n)
3 −κ

2(n)
2 )ν0. We show in Proposition 1 that maxj |R̂2

j −

R2
j | = op(1), where R̂2

j is defined in (2.2).
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Remark 3. Note that the population screening measure R2
j is proportional

to ν2j , where νj = β>Σ·j =
∑

i∈MT
βiΣij. This might lead to the so-called

“signal cancellation” problem (Wasserman and Roeder, 2009). For instance,

if
∑

i6=j,i∈MT
βiΣij/Σjj ≈ −βj, then νj ≈ 0, regardless of the size of βj. This

corrupts the performance of the univariate screening, especially when the

signals are rare and weak (Jin et al., 2014). To solve this problem, one

can either impose faithfulness assumptions, or use multivariate screening

procedures (Ji and Jin, 2012; Jin et al., 2014). We leave this as an important

future extension to this work.

Next, to establish the two abovementioned properties of the NW-SIS

estimator M̂R, the following technical conditions are needed.

(C1) (Sub-Gaussian Distribution) The covariates Xij (1 ≤ i ≤ n)

and the random errors εi (1 ≤ i ≤ n) are idependent and identi-

cally distributed (i.i.d.) mean zero sub-Gaussian random variables

with scale parameters 0 < σx < ∞ and 0 < σe < ∞; that is, for any

t, E{exp(tXij)} ≤ exp(σ2
xt

2/2) and E{exp(tεi)} ≤ exp(σ2
et

2/2).

(C2) (Divergence Speed) Let log p ≤ νnξ, where 0 ≤ ξ < 1 and ν is a

positive finite constant.

(C3) (Convergence) The limits κ
(n)
1 → κ1, κ

(n)
4 → κ4, and κ

(n)
6 → κ6

Statistica Sinica: Preprint 
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exist as n→∞.

(C4) (Sparsity) Let |ρ| < 1, and define Σy = Cov(Y ) and W = WW>. For

finite positive constants τmin and τmax, 2τmin ≤ min{λmin(Σ), λmin(Σy)}

≤ max{λmax(Σ), λmax(Σy), λmax(W)} ≤ 2−1τmax.

(C5) (Minimum Signal) Let γ∗min = 2cγ as n→∞, where cγ is a positive

constant, as defined in (2.3).

The following comments relate to the above technical conditions. First,

Condition (C1) assumes the sub-Gaussian assumption for Xj (1 ≤ j ≤ p)

and E . Note that this assumption is a more relaxed condition than the nor-

mality assumption commonly employed in the feature screening literature

(Fan and Lv, 2008; Wang, 2009; Wang et al., 2013). One can easily verify

that the response Y , which is essentially a linear combination of X and E ,

also follows a sub-Gaussian distribution (Bartlett, 2013). Second, Condi-

tion (C2) restricts the divergence rate of p with respect to the sample size

n. Specifically, the feature dimension p can be allowed to grow exponen-

tially fast with the sample size n. Third, Condition (C3) contains a series

of convergence conditions. These conditions are easily satisfied as n → ∞

if the whole network admits certain uniformity properties. In addition, the

following values also converge: κ
(n)
2 = ρ−1(κ

(n)
1 −κ

(n)
4 )→ ρ−1(κ1−κ4)

def
= κ2,

Statistica Sinica: Preprint 
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κ
(n)
3 = ρ−2(κ

(n)
1 − 2κ

(n)
4 + 1) → ρ−2(κ1 − 2κ4 + 1)

def
= κ3, and κ

(n)
5 =

ρ−1(κ
(n)
4 − 1)→ ρ−1(κ4− 1)

def
= κ5. Thus, Condition (C3) is sufficient to en-

sure the convergence of all κ
(n)
1 to κ

(n)
6 . Subsequently, Conditions (C4) and

(C1) ensure the sparse Riesz condition (SRC), which controls the eigenval-

ues of a fixed subset of the design matrix. See Zhang and Huang (2008),

Wang (2009), and Pan et al. (2015) for definitions of the SRC and further

discussions. In addition, Condition (C4) sets constraints on the network

structure W , which guarantees uniformity (Zhu et al., 2017). Lastly, Con-

dition (C5) sets a constraint on the minimal signal of the true model MT .

We then have the following proposition that R2
j is a good approximation

to R̂2
j .

Proposition 1. Assume Conditions (C1)–(C4) hold. Then, we have that

maxj |R̂2
j −R2

j | →p 0.

The proof of Proposition 1 is given in Section S2 of the Supplementary

Material. Condition (C5) essentially requires that the signal of R2
j in the

true model must stay away from zero by a good margin. Note that this is

a crucial condition that guarantees that the signal of the true model will

be strong enough to be detected. Thus, the screening consistency property

holds. Similar conditions are widely assumed in the ultrahigh-dimensional

regression literature; see Fan and Lv (2008).

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0400



14

Under the above technical conditions, the following screening properties

can be established for the proposed NW-SIS method.

Theorem 1. Let mmax = cβγ
∗−1
min τ

2
max|MT |, where cβ is a finite positive

constant. Under Conditions (C1)–(C5), it holds that

P (MT ⊂ M̂R)→ 1, (2.4)

P (|M̂R| ≤ mmax)→ 1, (2.5)

as n→∞.

The proof of Theorem 1 is given in Section S3 of the Supplementary Ma-

terial. The first conclusion in (2.4) reveals that under appropriate con-

ditions, the NW-SIS method selects all relevant features consistently. As

a result, the proposed approach enjoys the screening consistency prop-

erty. Next, the model size should be controlled. As discussed earlier, if

M̂R =MF = {1, ..., p}, the conclusion in (2.4) holds. However, the model

will be overfitted in this case. In contrast, from the second conclusion in

(2.5), we conclude that the overfitting effect is controlled. The conclusions

in (2.4) and (2.5) are referred to as strong screening consistency.

Remark 4. The mmax in (2.5) can be treated as the upper bound for

the estimated model size. From its form, we conclude that the estimated

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0400
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model size will be smaller if (a) the minimal signal of the true model is

stronger (i.e., larger γ∗min), (b) the covariates and the responses are not

highly correlated (i.e., lower τmax), and (c) the true model is sparse (i.e.,

smaller |MT |).

Note that the upper bound of the model sizemmax in Theorem 1 involves

the minimal signal γ∗min. However, if the minimal signal is too small, this

will result in a very high upper bound. In this case, the method may fail

to select a compact model. However, if in the true model the signal of the

other features is sufficiently large, the proposed screening measure is still

able to detect them using a compact screened model size. See the corollary

to Theorem 1, together with the detailed discussion in Section S4 of the

Supplementary Material.

2.4 Parameter Estimation

By Theorem 1, we know that the true model MT can be consistently

covered by a finite selected model using the NW-SIS procedure. Assume

M is a model covering the true model (i.e., MT ⊂ M). In this sub-

section, we estimate the unknown parameters of model (2.1), given M.

For convenience, we first define some notation. Let M = {j1, · · · , js} with

MT ⊂ M and |M| = s, where j1, · · · , js ∈ {1, ..., p}. Correspondingly,

define XM = (Xj1 , · · · ,Xjs)
> ∈ Rn×s and βM = (βM,j1 , · · · , βM,js)

> ∈ Rs.

Statistica Sinica: Preprint 
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Therefore, βM contains the nonzero coefficients (i.e., βM) and the zero co-

efficients.

We next give the estimation procedure. Note that the response Y in

(2.1) takes the form Y = (I − ρW )−1(Xβ + E). Therefore, Y explicitly

contains information on E . Consequently, a direct least squares-type esti-

mation (i.e., minimizing ‖Y − ρWY − Xβ‖2) may introduce endogeneity

and, thus, may be biased (Lee, 2004). As an alternative, we write the quasi-

loglikelihood function as `(ρ, βM) =

log
∣∣I − ρW ∣∣− n/2 log

[{
(I − ρW )Y −XMβM

}>{
(I − ρW )Y −XMβM

}]
,

(2.6)

ignoring some constants. Note that the quasi-loglikelihood (2.6) has often

been studied using spatial econometrics (Lee, 2004; Anselin, 2013). The

corresponding asymptotic properties are established, which suit the spa-

tial data set very well. However, some conditions might be stringent (e.g.,

the bounded column summation of W ) when applied to the network data,

especially when the network is large.

Moreover, note that in (2.6), the dimension of βM diverges slowly ac-

cording to the screening model size. GivenM, it is interesting to study the

asymptotic behavior of the autocorrelation coefficient estimator ρ̂. To this

Statistica Sinica: Preprint 
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end, we first maximize (2.6) with respect to βM, which yields,

β̂M =
(
X>MXM

)−1{X>M(I − ρW )Y
}
. (2.7)

Here β̂M takes an explicit form for a fixed ρ. Next, substituting (2.7) into

(2.6), we have the quasi-loglikelihood as a function of ρ,

`1(ρ) = log
∣∣I − ρW ∣∣− n/2 log

[
Y >(I − ρW>)(I − PX)(I − ρW )Y

]
, (2.8)

where PX = XM(X>MXM)−1X>M is the projection matrix. By maximizing

`1(ρ), we obtain ρ̂ = arg maxρ `1(ρ). To study the asymptotic properties

of ρ̂ obtained in a network, even in a large-scale network, we require the

following conditions.

(C6) (Network Structure)

(C6.1) (Connectivity) Let the set of all nodes {1, · · · , n} be the state

space of a Markov chain, with the transition probability given by

W . It is assumed the Markov chain is irreducible and aperiodic.

In addition, define π = (πi)
> ∈ Rn as the stationary distribution

vector of the Markov chain (i.e., πi ≥ 0,
∑

i π = 1, and W>π =

π). It is assumed that
∑n

i=1 π
2
i → 0 as n→∞.

Statistica Sinica: Preprint 
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(C6.2) (Uniformity) Assume |λmax(W
∗)| = O(log n), where W ∗ is de-

fined to be a symmetric matrix as W ∗ = W +W>.

Condition (C6) sets a constraint on the network structure. Similar assump-

tions are assumed for the recent network vector autoregression model pro-

posed by Zhu et al. (2018). Specifically, (C6.1) requires that a certain con-

nectivity holds for the network structure. This essentially assumes that each

node in the network is reachable from any other node. Thus, two arbitrary

nodes should be connected by a finite path in the network, which fits the

well-known six degrees of separation theory (Newman et al., 2006). The

second condition assumes a certain type of uniformity for the network. In

particular, it requires that the diverging speed of λmax(W
∗) should be suf-

ficiently slow. Consequently, we have the following theorem.

Theorem 2. Assume Conditions (C1)–(C4) and (C6) hold. In addition,

let |M| = o(n(1−ξ)/3). Then, we have ρ̂− ρ = Op(n
−1/2).

The proof of Theorem 2 is given in Section S5 of the Supplementary Ma-

terial. By Theorem 2, we conclude that under the condition that |M| is

slowly diverging (i.e., |M| = o(n(1−ξ)/3)), the estimator ρ̂ is
√
n-consistent.

Subsequently, βM can be estimated using (2.7). The finite performance of

ρ̂ and β̂M is illustrated using a number of simulation studies in the next

section.

Statistica Sinica: Preprint 
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3. Numerical Studies

3.1 Data Generation

We consider four examples. In the first three examples, the adjacency

matrix A is generated from a stochastic block model with block number

K = 50. We randomly assign each node i a block label (k = 1, · · · , K) with

equal probability 1/K. Next, let P (aij = 1) = 0.6 if i and j are in the same

block, and P (aij = 1) = 0 otherwise. In all the examples, the covariance

matrix of E is set to σ2In, with σ2 = 1; ρ is set to 0.8. We illustrate the

generation of X in each example; the responses can be generated using

model (2.1) accordingly. In each example, n is fixed as 500 and p =2,000,

5,000.

Example 1 (Independent Predictors). This example is adopted

from Fan and Lv (2008) with MT = {1, 2, · · · , d0}, where d0 = 8. Each

predictor Xj is generated independently according to a standard multi-

variate normal distribution. Therefore, the predictors are mutually inde-

pendent. Next, the jth (1 ≤ j ≤ d0) nonzero coefficient of β is given by

βj = (−1)Uj(4 log n/
√
n+ |Zj|), where Uj is a binary random variable with

P (Uj = 1) = 0.4, and Zj follows a standard normal distribution.

Example 2 (Autoregressive Correlation). We consider here an

autoregressive-type correlation structure. In this structure, predictors with
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large distances are expected to be mutually independent, approximately.

Specifically, we revise the example in Wang (2009) with MT = {1, 4, 7}.

Each covariate Xj is generated from a multivariate normal distribution with

mean 0p and Cov(Xij1 , Xij2) = 0.5|j1−j2|, for (1 ≤ j1, j2 ≤ p). The first,

fourth, and seventh components of β are given by 0.3, 0.2, and 0.2, respec-

tively. The other components of β are fixed as zero.

Example 3 (Compound Symmetry). By compound symmetry, all

predictors are equally correlated with each other. We borrow the example

from Fan and Lv (2008) with MT = {1, 2, 3}. Specifically, Xj is generated

such that var(Xij) = 1 and Cov(Xij1 , Xij2) = 0.5, for any j1 6= j2 and

1 ≤ j1, j2 ≤ p. The first three coefficients of β are fixed as 0.3. The remainder

are fixed as zero.

Example 4 (A Challenging Case). In this case, a network struc-

ture is involved in the generation of the predictors. Specifically, the predictor

Xj is generated as follows. The first d0 covariates are sampled independently

from a multivariate normal distribution N(0n, In). Next, for d0 < j ≤ p, the

covariate Xj is simulated by Xj = X1 + ρWX1 + 1.1Ej, where Ej indepen-

dently follows the multivariate normal distribution N(0n, In). Then, d0 is

set to three. The first d0 coefficients of β are fixed as 0.5, and the others are

fixed as zero; that is,MT = {1, 2, 3}. In this example, the network structure
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is adopted as ai(i+1) = 1, for 1 ≤ i ≤ n, for computational simplicity. Note

that in the last example, the dependency structure between the important

and unimportant covariates increases the screening difficulty.

3.2 Results of Screening Consistency

We compare the proposed NW-SIS method with two popular screening

methods and the oracle screening procedure:

• The SIS method (Fan and Lv 2008), which uses the sample Pearson

correlation between Y and Xj for feature screening.

• The DC-SIS method (Li et al. 2012b). The distance covariance be-

tween two random vectors is defined based on characteristic func-

tions. Thus, the distance correlation is defined for multidimensional

vectors. In this way, the DC-SIS method allows for a multidimensional

response. In this study, we apply the method using the distance cor-

relation between (Y,WY ) and Xj for feature screening.

• The oracle procedure, which uses the sample Pearson correlation co-

efficient between Xj and (In−ρW )Y with the true value of ρ. Because

ρ is unknown, we refer to this procedure as an oracle procedure, and

label it as Oracle in Tables 1-4.

The first method is based on the traditional feature screening procedure.
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The second considers the model-free DC-SIS method with multiple re-

sponses (Y,WY ). The third is proposed for feature screening based on

known network information, because we know that (In − ρW )Y = Xβ + E .

The final one is an ideal estimator because in practice, ρ is unknown.

To gauge the finite-sample performance of the proposed method, we

employ the following measurements. Denote the screening model in the

mth replication as M̂(m) = {1 ≤ j ≤ p : R̂2
j,(m) ≥ c

(m)
γ }. The tuning

parameter c
(m)
γ in the mth replication is selected using the EBIC-based

method (Chen and Chen, 2008; Wang, 2009), which is discussed in detail

in Section S6 of the Supplementary Material. We first calculate the average

model size after the tuning parameter selection as MS= M−1∑
m MS(m),

where MS(m) = |M̂(m)| in the mth replication. A smaller MS implies a more

compact screening model. Next, we evaluate the screening performance for

each predictor j. First, we record the rank of the jth (1 ≤ j ≤ p) predictor

as r
(m)
j for the mth (1 ≤ m ≤ M) replication of the simulation. For each

j, the average rank r̄j = M−1∑M
m=1 r

(m)
j is calculated. Next, the correctly

selected probability (i.e., CSPs
j = M−1∑

m I(j ∈ M̂(m))) is reported to

reflect the model recoverability. We repeat the experiment M = 200 times

to evaluate a reliable result.

Detailed results for the simulations are given in Tables 1-4. The oracle
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procedure has the smallest r̄j in all of the examples, as expected, mainly

because we know the network effect ρ and model size in advance. Note that

the proposed NW-SIS method outperforms the SIS and DC-SIS methods in

terms of both r̄j and CSPs
j , which are almost as good as the oracle proce-

dure. In addition, the NW-SIS method achieves a more compact model size

(with lower MS) than those of the other two methods after the selection

of the tuning parameter. In the final example, as expected, X1 is easier to

recover than X2 and X3 for both the oracle procedure and the proposed NW-

SIS. The reason can be explained as follows. Define Corrj as the Pearson

correlation coefficient between Xj and (In−ρW )Y . By the design of Exam-

ple 4, we can calculate explicitly that |Corrj/Corr1| = |ρ|/(2.21 + ρ2) < 1,

for j > 3 (because (In − ρW )−1 can be expressed explicitly in this case).

Thus, the first feature is relatively easy to identify. However, owing to the

correlation between Xj (j > 3) and Y , recovering X2 and X3 is more difficult.

The results show that NW-SIS method outperforms the SIS and DC-SIS

methods in this case.

3.3 Results of Parameter Estimation

In this subsection, we examine the parameter estimation result. Specif-

ically, s is set as 10 and M = 200. Let M̂(m) denote the selected model in

the mth (1 ≤ m ≤ M) replication. Define the coverage probability (CP)
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and the root sum of squares error (RSSE) for ρ, σ2, and β for the mth

(1 ≤ m ≤M) replication as follows:

CP(m) = I(M̂(m) ⊃MT ),

RSSE(m)
ρ = |ρ̂(M̂(m)) − ρ|

2,

RSSE
(m)

σ2 = |σ̂2
(M̂(m)) − σ

2|2,

RSSE
(m)
β = ||β̂(M̂(m)) − β||,

where I(·) is the indicator function. We then average the performance

measures across all replications. This leads to CP = M−1∑M
m=1 CP(m),

RSSEρ = M−1∑M
m=1 RSSE(m)

ρ , RSSEσ2 = M−1∑M
m=1 RSSE

(m)

σ2 , and RSSEβ =

M−1∑M
m=1 RSSE

(m)
β . We fix p = 5,000, and n = {200, 500, 1, 000}. In Ex-

ample 1, β in each replication is not fixed. Therefore, to examine the reli-

ability, we consider only Examples 2–4 in the simulation for the parameter

estimation.

The simulation results are given in Table 5. We conclude the following.

First, the CP values for all examples quickly increase toward 100% as the

sample size n increases. This corroborates the strong screening consistency

property, which we defined in (2.4) and (2.5). Second, RSSEρ decreases as

n increases, as explained by Theorem 2. Lastly, RSSE2
σ and RSSEβ steadily
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decrease as n increases in all of the examples.

3.4 Financial Feature Screening for Stock Returns

We next illustrate a real-data example using data collected from the

Chinese Stock Market in 2014. The data set consists of n = 487 stocks

in the Chinese A share market, which are traded in the Shanghai Stock

Exchange and the Shenzhen Stock Exchange. The corresponding response

Yi is the annualized return of stock i (1 ≤ i ≤ n) in 2014.

To construct the network relationship between the stocks, the common

shareholders of the stocks are considered. First, we collect information on

the top 10 shareholders for each stock, which we define as major sharehold-

ers. Second, for i 6= j, if the ith stock and jth stock share at least one

major shareholder, then define aij = aji = 1; otherwise, aij = aji = 0. The

resulting network density (i.e.,
∑

j 6=i aij/{n(n − 1)}) is 9.34%. In addition

to the response (i.e., Yi) and the network information (i.e., A), the firm-

specific financial indices in the previous year (i.e., 2013) are considered as

explanatory covariates. The financial indices are collected from the firms’

financial statements (i.e., the balance sheet, income statement, and cash

flow statement released in 2013). Furthermore, we consider the interaction

effects between Xj1 and Xj2 within the same financial statement, which we

define as Xj1Xj2 . This yields a total of p = 796 predictors.
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We then conduct the NW-SIS analysis. Here, R̂2
j is calculated for j =

1, · · · , p. Next, the covariates are ranked according to the decreasing order

of the R̂2
j values. The covariates with the top eight highest R̂2

j are given in

Figure 1. These are mostly related to the assets (i.e., Asset Impairment

Loss, Capital Reserve Fund, Deferred Tax Asset, Intangible

Assets), liabilities (i.e., Short Term Loan, Total Liability), liquidity

(i.e., Cash Equivalents), and Financial Expense of the firm.

Next, we compare the NW-SIS method with the SIS and DS-SIS meth-

ods using model fitness levels. First, we conduct the screening procedure

for all three approaches. We then compare the fitness levels of the methods

while varying the model size |M| = 1, · · · , 200. The estimation is conducted

as follows. For the SIS method, we follow Fan and Lv (2008) to estimate a

linear regression model, and then obtain the resulting estimator β̂M. There-

fore, the fitted value Ŷ can be calculated as Ŷ = XMβ̂M. Next, for the other

two methods, we use the estimation methods in Section 2.4 to obtain ρ̂M

and β̂M, because the multivariate information is considered in the screening

procedure.

To eliminate the endogenous effect, the fitted value is computed as

Ŷ = (I − ρ̂MW )−1XMβ̂M. Lastly, we compare the fitness of the three

screening approaches using the adjusted R2, as shown in Figure 2. The
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Figure 1: Covariates with top eight R̂2
j related to the assets (i.e., Asset Impair-

ment Loss, Capital Reserve Fund, Deferred Tax Asset, Intangible
Assets), liabilities (i.e., Short Term Loan, Total Liability), liquidity (i.e.,
Cash Equivalents), and Financial Expense of the firm.

figure shows that, as more features are included, the adjusted R2 increases

at first for all three methods. Next, the adjusted R2 of the NW-SIS method

achieves peaks at |M| = 75, which is 25.8%, and the highest of the three

methods. Consequently, compared with the other competing methods, the

NW-SIS method obtains a better fitness level using fewer features.
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Figure 2: The fitted adjusted R2 against the screening model size s for the
three screening methods: NW-SIS, SIS, and DC-SIS. The adjusted R2 of NW-
SIS achieves the peak value first at s = 75, which is 25.8%, and the highest of
the three methods.

4. Conclusion

We have proposed a network-based independence screening approach that

incorporates the network structure. We rigorously show that the proposed

NW-SIS method enjoys the strong screening consistency property. The

properties of the parameter estimation are established next. Lastly, the

proposed method is applied to a financial data set that screens financial

indices effectively with respect to stock returns.
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To conclude, we discuss several topics for future research. First, the

responses considered in this study are continuous. In practice, other types

of responses (i.e., discrete, mixed type) are frequently encountered. Accord-

ingly, corresponding screening methods should be developed and studied.

Second, the innovation term E in model (2.1) has been restricted to be in-

dependent across network nodes. This can be made more flexible to allow

for more sophisticated structures (e.g., autoregressive structures). This may

improve the estimation efficiency. Third, in the numerical study, we show

that the tuning parameter selection method performs well. However, the

theoretical properties of the tuning parameter selection should be investi-

gated further. Lastly, note that unimportant features are typically included

in the post-screening set because the screening technique tends to overse-

lect the features. Consequently, appropriate variable selection methods are

worth investigating after the screening procedure to precisely identify the

true model.

Supplementary Material

The online Supplementary Material contains useful lemmas, the proof

of Proposition 1, the proofs of Theorems 1–2, a corollary to Theorem 1, and

a discussion on selecting the tuning parameter.
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Table 1: Screening Simulation Results for Example 1. The average rank r̄j
and correctly selected probability CSPs

j (%) are reported for each predictor
Xj. In addition, the estimated average model size (MS) is reported after
tuning parameter selection. The network effect ρ and model size are assumed
to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j (CSPs
j)

2000 1 4.6(97.0) 6.5(99.0) 880.3( 2.0) 412.5(24.5)

2 4.6(98.0) 5.6(99.5) 933.3( 2.5) 439.4(24.5)

3 4.7(98.0) 5.1(100.0) 932.2( 3.0) 453.1(18.5)

4 4.7(97.5) 5.7(99.5) 903.0( 1.5) 410.9(20.0)

5 5.1(96.0) 6.9(99.0) 937.9( 2.0) 463.3(17.5)

6 4.7(99.0) 5.6(99.5) 919.0( 2.0) 425.6(21.0)

7 4.5(97.0) 5.4(100.0) 948.9( 2.0) 406.3(26.0)

8 5.0(98.0) 7.3(99.5) 880.4( 1.5) 465.0(22.5)

MS 8.0 11.6 2.3 17.6

r̄j (CSPs
j)

5000 1 4.6(99.0) 4.9(100.0) 2359.5( 3.0) 862.7(17.5)

2 4.6(98.5) 5.0(100.0) 2055.9( 2.0) 835.1(17.5)

3 4.8(96.0) 6.6(99.5) 2150.6( 3.0) 862.8(17.5)

4 10.0(98.5) 9.9(99.5) 2185.7( 2.0) 932.3(15.0)

5 4.8(98.0) 5.1(100.0) 2046.3( 2.0) 892.0(15.5)

6 5.0(97.5) 6.0(99.5) 2244.7( 2.5) 874.6(13.0)

7 4.4(98.0) 4.5(100.0) 2270.8( 2.0) 881.9(18.5)

8 4.4(98.5) 5.1(99.5) 2222.0( 1.5) 818.1(17.0)

MS 8.0 11.2 3.1 14.5
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Table 2: Screening Simulation Results for Example 2. The average rank r̄j
and correctly selected probability CSPs

j (%) are reported for each predictor
Xj. In addition, the estimated average model size (MS) is reported after
tuning parameter selection. The network effect ρ and model size are assumed
to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j(CSPs
j)

2000 1 1.8(97.5) 1.8(99.5) 3.2(97.5) 4.5(93.0)

4 3.3(73.0) 4.6(85.0) 6.9(80.0) 11.7(71.0)

7 1.8(95.5) 1.8(99.5) 2.0(99.0) 2.9(95.5)

MS 3.0 3.6 4.0 3.8

r̄j(CSPs
j)

5000 1 1.8(97.0) 1.8(99.5) 2.1(99.5) 3.3(96.0)

4 3.4(73.0) 4.6(87.5) 10.2(80.5) 22.9(69.0)

7 1.7(97.5) 1.7(100.0) 2.2(99.5) 3.8(95.5)

MS 3.0 4.4 4.7 4.2

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0400



REFERENCES39

Table 3: Screening Simulation Results for Example 3. The average rank r̄j
and correctly selected probability CSPs

j (%) are reported for each predictor
Xj. In addition, the estimated average model size (MS) is reported after
tuning parameter selection. The network effect ρ and model size are assumed
to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j(CSPs
j)

2000 1 2.3(98.5) 2.2(99.0) 5.5(88.0) 8.4(84.5)

2 2.0(98.0) 2.0(100.0) 5.1(92.0) 6.1(87.5)

3 2.0(98.5) 2.1(99.5) 4.5(94.0) 6.3(91.0)

MS 3.0 3.6 4.0 3.8

r̄j(CSPs
j)

5000 1 2.2(95.5) 2.3(99.0) 13.8(88.0) 22.8(85.0)

2 2.4(96.0) 2.3(99.0) 18.9(81.0) 33.7(73.0)

3 2.2(96.0) 2.2(99.0) 10.6(84.0) 13.5(79.0)

MS 3.0 4.4 4.7 4.2
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Table 4: Screening Simulation Results for Example 4. The average rank r̄j
and correctly selected probability CSPs

j (%) are reported for each predictor
Xj. In addition, the estimated average model size (MS) is reported after
tuning parameter selection. The network effect ρ and model size are assumed
to be known for the oracle estimator.

p j Oracle NW-SIS SIS DC-SIS

r̄j(CSPs
j)

2000 1 2.0(99.0) 2.7(96.0) 835.4( 0.0) 841.5( 0.5)

2 10.8(85.5) 44.4(83.5) 1009.9(15.0) 966.8(10.5)

3 10.8(85.0) 49.0(84.0) 965.0(17.0) 943.8(12.0)

MS 3.0 3.6 4.0 3.8

r̄j(CSPs
j)

5000 1 2.1(97.5) 4.5(95.0) 2141.0( 0.0) 1921.7( 1.0)

2 21.6(86.0) 83.8(83.5) 2383.6(12.5) 2231.3(10.5)

3 8.0(85.5) 51.6(83.5) 2187.6(14.5) 2084.4(12.0)

MS 3.0 4.4 4.7 4.2
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Table 5: Parameter Estimation Simulation Results with 200 Replications for
Examples 2–4. The coverage probability CP(%) and root sum of squares
error for ρ (RSSEρ), σ

2 (RSSEσ2), and β (RSSEβ) are reported.

p n CP(%) RSSEρ RSSEσ2 RSSEβ

Example 2

5000 200 27.50 0.0195 0.1717 0.4770

500 97.00 0.0162 0.0689 0.2452

1000 100.00 0.0138 0.0369 0.1550

Example 3

5000 200 34.50 0.0174 0.1455 0.5652

500 99.00 0.0139 0.0669 0.3038

1000 100.00 0.0127 0.0392 0.2086

Example 4

5000 200 18.00 0.0509 0.1396 0.6242

500 84.00 0.0246 0.0717 0.2684

1000 99.00 0.0163 0.0394 0.1537
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