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Abstract:

This study investigates parametric inferences for the regression of an outcome

variable Y on covariates (V,L). Here, the data are fused from two separate

sources, one of which contains information only on (V, Y ), while the other con-

tains information only on the covariates. This setting may be viewed as an ex-

treme form of missing data in which the probability of observing complete data

(V,L, Y ) on any given subject is zero. We develop a large class of semiparametric

estimators, including doubly robust estimators, of the regression coefficients in

the fused data. The proposed method is doubly robust in that it is consistent and
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asymptotically normal if, in addition to the model of interest, we correctly specify

a model for either the data source process under an ignorability assumption, or

the distribution of the unobserved covariates. We evaluate the performance of

our estimators using an extensive simulation study. Then, we apply the proposed

methods to investigate the relationship between net asset value and total expendi-

ture among U.S. households in 1998, while controlling for potential confounders,

including income and other demographic variables.

Key words and phrases: Doubly robust, data fusion

1. Introduction

Parametric likelihood-based inferences for regression analyses is a well-

developed area of modern statistical theory. The theory on how to account

for incomplete outcome or covariate information in a regression analysis is

relatively well established, and includes methods such as inverse probability

weighting (IPW) of complete cases and multiple imputation (Robins et al.,

1994; Little and Rubin, 2014). Most missing data methods assume that the

probability of observing a subject with complete data is bounded away from

zero. Also known as the positivity assumption, this is often necessary to

identify the full data law and its smooth functionals (Robins et al., 1994).

In this study, we consider a more extreme form of incomplete data, in which

the positivity assumption does not hold; that is, the probability of observing

complete data is zero for all units in the population.
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This situation may arise, for instance, when two data sets from sepa-

rate sources are fused together, such that no unit belongs to both sources,

and some variables obtained from one source are not available in the other

source. For instance, as in this paper, it may be that the outcome of inter-

est Y is collected in the first data set, but not in the second; similarly, a

subset of regressors L may be observed in the second data set, but not in

the first. Both data sets contain information on the common variables V .

This situation is common in main/validation study design of comparative

effectiveness studies. Here, the main study sample in contains the outcome,

treatment variable, and a relatively limited subset of confounders. Then,

this sample is enriched with an external validation sample that contains

extensive potential confounders, together with treatment information, but

lacks outcome information (Stürmer et al., 2005). The two data sets are

then fused together in the hope that the information from the validation

sample can somehow be leveraged to reduce the confounding bias.

Another example, somewhat related to using a meta-analysis to eval-

uate a prediction model (Riley et al., 2010; Debray et al., 2013, 2017),

might involve enriching the data set of a clinical study to improve clinical

risk prediction, using covariate information from a separate source, say a

study containing socio-demographic or summary-level information, but no
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outcome data (Chen and Chen, 2000; Chatterjee et al., 2016). Clearly, in

both examples, a regression model for the outcome on the combined set of

covariates can be identified only under fairly stringent parametric assump-

tions and, as we discuss below, provided there is a nontrivial overlap in the

amount of information available from both sources of data. We shall refer

to this general framework as regression analysis for data fusion.

The missing data literature has previously described the data fusion

problem as that of “statistical matching.” D’Orazio et al. (2006) and

Rässler (2012) provide extensive overviews of the state of the art for data fu-

sion. DOrazio et al. (2010)compare existing data-matching methods, as well

as the assumptions needed to recover valid inferences using these methods.

Much of this literature relies on the assumption of conditional indepen-

dence between Y and L, given V , an assumption that is likely untenable in

practice. This assumption is particularly problematic in the two settings

described above, where a potential non-null association between Y and L,

given V , is an important part of the scientific hypothesis under consid-

eration. When the samples are drawn from a finite population according

to a complex survey design, concatenation (Rubin, 1986) and calibration

(Renssen, 1998; Wu, 2004) are two commonly used methods for statistical

matching. Concatenation involves modifying the sample weights to obtain
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a unique sample given by the union of the original sample and the new

weights that represent the population of interest. The new weights require

computing the probability of the subjects in one sample under the survey

design of the other sample, which requires detailed knowledge of the survey

designs. Calibration preserves both samples and calibrates the two sets of

survey weights. The method obtains a unique estimate of the distribution of

the common variable, V , by combining the estimates of the distribution of V

from both samples, and then calibrating the original sample weights to the

obtained estimate. The weights are then used to estimate the distribution

f(L|V ) in the sample with L, and the distribution f(Y |V ) in the sample

with outcome Y . Wu (2004) suggests similar approaches with different con-

straints for the sample weights, such as forbidding negative weights. Conti

et al. (2016) estimate the distribution function of variables not jointly ob-

served in the presence of logical constraints, without necessarily imposing

the conditional independence assumption, and the corresponding bounds

for the matching error can be estimated from the sample data. Graham

et al. (2016) propose a general framework for data combination under mo-

ment restrictions and estimators that are doubly robust (DR) only under a

restricted model specification of the nuisance parameters.

Data fusion is also prominent in the literature on instrumental variable
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(IV) methods for causal inference. An IV is an exogenous variable known

to be associated with a treatment or exposure variable of interest, and to

be associated with an outcome of interest only through its association with

the treatment. The IV approach can, under certain conditions, be used to

recover an unbiased estimate of a causal effect in the presence of unmea-

sured confounding. The most common IV approach assumes a linear model

relating the outcome to the exposure and the observed covariates, together

with a linear model relating the exposure to the IV and the covariates. An-

grist and Krueger (1992) examine estimation and inference related to the

causal effect of the exposure under such linear models when the IV and

exposure are available from one data source, while the outcome and IV are

available in a separate data source. As such, no subject has data available

on all three variables, namely, the IV, exposure, and outcome. These two-

sample IV estimators deliver point identification and inference by explicitly

leveraging parametric assumptions. Klevmarken (1982) proposed the two-

sample two-stage least squares regression, which was later shown by Inoue

and Solon (2010) to be more efficient than the two-sample IV estimator.

These methods assume that both samples are independent and identically

distributed (i.i.d.) random samples from the same population with finite

fourth moments. Pacini (2017) assumes the samples are independent,and
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uses the marginal distributions to characterize the identified set of the coef-

ficients of interest when no assumption is imposed on the joint distribution

of (Y, V, L).

Robins et al. (1995) consider a missing data setting closely related to

ours. The main contribution of their study is to characterize a large class of

semiparametric estimators of a parametric conditional density of Y , given

(L, V ), when L is missing at random. They consider a general semipara-

metric missing data model in which the model for the full data constitutes

the only restriction. Then, they derive the efficient influence function for

the parameters of the parametric model, which is the solution to an inte-

gral equation that is not generally available in closed form. They also point

out in a remark that Bickel et al. (1993) and Hasminskii and Ibragimov

(1983) obtained results similar to theirs when Y and L are never observed

together, which is the data fusion setting we address here.

An important contribution of our study is to show that a large class of

influence functions for the parameters of the conditional density f(Y |L, V )

is available in closed form in a missing data model that is otherwise unre-

stricted; therefore, these functions are convenient candidates as estimating

functions. The proposed semiparametric estimating functions include DR

estimating functions that yield estimators that are consistent and asymp-
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totic normal if, in addition to the outcome model of interest, we correctly

specify the model for the data source process or the distribution of the

unobserved covariates. Importantly, unlike Graham et al. (2016), we do

not restrict the specification of the nuisance models to belong to a certain

class of models. For example, their DR result holds only if the missing

data model is specified as a certain logistic regression model. In addition,

we show that the efficient influence function for the parameters of the con-

ditional density is available in closed form in the special case where the

outcome is polytomous.

In Section 2, we lay out notation and assumptions. In Section 3, we

develop the general class of estimators, as well as a new semiparametric

DR method. In Section 4, we discuss the implementation. In Section 5, we

discuss the local efficiency in the special case of a binary outcome, although

the result readily generalizes to a polytomous outcome. Here, we also pro-

vide approximately efficient influence functions in the case of a continuous

outcome. We evaluate the finite-sample performance of the DR approach

in an extensive simulation study summarized in Section 6. Then, in Section

7, we demonstrate the proposed methods using fused data provided by the

U.S. Bureau of Labor Statistics’ Consumer Expenditure Survey (CEX) and

the Federal Reserve Board’s Survey of Consumer Finances (SCF). Section 8
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concludes the paper.. All proofs and derivations can be found in the online

Supplementary Material.

2. Notation and Assumptions

Let R be an indicator that a subject is observed in data source A

(R = 1) or in data source B (R = 0). Let V denote the covariates observed

in both sources, Y denote the outcome observed only in source A, and L

denote the covariates observed only in source B. The full data (Y, L, V ) are

i.i.d. realizations from a common law f(Y, L, V ). Let f(Y |V, L) denote the

true conditional distribution of Y, given (V, L). Let π(V ) = Pr(R = 1|V )

be the probability that a subject is in data source A. Throughout, we make

the following assumptions:

A1 Correct outcome model: f(Y |V, L; θ) is correctly specified, such that

f(Y |V, L; θ†) = f(Y |V, L), for some value θ†;

A2 Positivity: δ < π(V ) < 1 − δ almost surely, for a fixed positive con-

stant δ;

A3 Ignorability: R ⊥ (Y, L)|V .

In addition, we let M denote the set of models that satisfy (A1–3). As-

sumption (A1) requires that the outcome model proposed for f is correctly

specified. The positivity assumption (A2) states that the probability of
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observing a subject in either data source is bounded away from both zero

and one. Note that (A2) is strictly weaker than the positivity assumption

typically assumed in missing data problems, which requires a positive prob-

ability of observing complete data for each subject. Assumption (A3) states

that the probability that a unit is observed in either data source depends

only on V , and thus does not depend on Y or L. This assumption is akin

to missing at random, and is imposed on the data source process, which

is technically a nuisance parameter not of primary scientific interest. In

contrast, the conditional independence assumption Y ⊥ L|V is imposed

on the full data law of primary interest by some existing methods, such as

matching (DOrazio et al., 2010).

Assumption (A3) is satisfied for a practically relevant type of stratified

sampling in which either or both of the two samples use sampling rates

that vary with some of the fully observed baseline variables. For example,

household surveys commonly use different sampling rates depending on de-

mographic variables such as age and race. In our empirical study on fused

data from the U.S. Bureau of Labor Statistics’ CEX and the Federal Re-

serve Board’s SCF, the former oversamples relatively wealthy families from

the population. Another example concerns Mendelian randomization (MR)

studies, in which one aims to establish a causal relationship between the
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doi:10.5705/ss.202018.0334



Doubly robust data fusion

exposure and the outcome by leveraging one or more genetic markers defin-

ing the IV (Davey Smith and Ebrahim, 2003; Lawlor et al., 2008; Burgess

et al., 2017). It is common for the sampling mechanisms of studies to differ.

For example, the US-based Health and Retirement Study has oversampled

residents of Florida. As a result, the data vary with fully observed demo-

graphic variables and ancestry, which may correlate with the instruments.

An important difference between assumption (A3) and the conditional in-

dependence assumption is that, while the former can be guaranteed to hold

if the investigator allow the sampling mechanism to depend only on V in

the design stage, the latter relates to the full data law of primary interest

and, thus, is beyond the control of the investigator.

3. Estimating Functions

In this section, we describe a large class of IPW estimating functions

for θ under various sets of modeling assumptions of nuisance parameters.

Let π(V ; η) = P (R = 1|V ; η) denote a parametric model for the data source

process indexed by a finite-dimensional parameter η. We make the following

assumption:

A4 π(V ; η) is correctly specified, such that π(V ; η∗) = π(V ), for some

value η∗.

Let Mπ = M∩ {π(V ; η) : η}. For a user-specified function g(Y, V ) of
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(Y, V ), let

Ug(θ; η) =
R

π(V ; η)
g(Y, V )− 1−R

1− π(V ; η)
Eθ[g(Y, V )|V, L]. (3.1)

Below, we discuss the assumptions g(Y, V ) must satisfy to ensure identifi-

cation.

Result 1. Under Mπ,

Eη∗
[
Ug(θ

†; η∗)
]

= 0. (3.2)

The parallel IPW estimating function given in (3.1) assigns to every

subject the inverse probability of observing the subject from the data source

in which he or she was indeed observed. Interestingly, this general class

of estimating functions includes a large set of DR estimating functions.

Suppose that one has specified a parametric model t(L, V ;α) for the density

f(L|V ) of L, given V .

A5 t(L, V ;α) is correctly specified, such that t(L, V ;α‡) = t, for some

value α‡.

Let Mt =M∩ {t(L, V ;α) : α}. Then, let

UDR
g (θ; η, α) =

R

π(V ; η)
{g(Y, V )− Eθ,α [g(Y, V )|V ]}

+
1−R

1− π(V ; η)
{Eθ,α [g(Y, V )|V ]− Eθ[g(Y, V )|V, L]} , (3.3)
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where we note the dependence of

E [g(Y, V )|V = v] =

∫ ∫
g(y, v)f(y|v, l; θ)t(l, v;α)dydl

on (θ, α).

Result 2. Under the union model Mπ∪t =Mπ ∪Mt,

Eη∗,α‡
[
UDR
g (θ†; η, α)

]
= 0, (3.4)

if either η = η∗ or α = α‡, but not necessarily both.

The estimating function (3.3) is said to be DR for θ in that estimators

based on (3.3) are consistent for θ†, provided that we correctly specify

a model for t(V ;α) or π(V ; η), but not necessarily both. Additionally,

when both models are correctly specified, the estimator for θ based on

UDR
g (θ; η, α) is the most efficient (for a fixed choice of g) in Mπ∪t.

Note that owing to the DR property of the estimating function given in

(3.3), its unbiasedness still holds for any choice of π(V ) if the conditional

density t(L, V ;α) is correctly specified. Heuristically, the resulting estima-

tor works by correctly imputing the missing values in L conditional on V .
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For a user-specified function g(Y, V ), let

U imp
g (θ;α) = UDR

g (θ†; π = 0.5, α) (3.5)

∝ R {g(Y, V )− Eθ,α [g(Y, V )|V ]}+ (3.6)

(1−R) {Eθ,α [g(Y, V )|V ]− Eθ[g(Y, V )|V, L]} . (3.7)

Corollary 1. Under Mt,

Eα‡
[
U imp
g (θ†;α‡)

]
= 0. (3.8)

In the next section, we construct feasible IPW, imputation (IMP), and

DR estimators as solutions to the empirical versions of (3.2), (3.4), and

(3.8), respectively. We also describe the large-sample behavior of the re-

sulting estimators of θ.

4. Implementation of Estimators

Deriving feasible IPW, IMP, and DR estimators involves a first-stage

estimation of the nuisance parameters η and α. We propose the following

estimator for η, which maximizes the log-likelihood,

η̂ = arg max
∑
i

{Ri log π(Vi; η) + (1−Ri) log[1− π(Vi; η)]} . (4.1)

By ignorability assumption (A3), α can be estimated using the likeli-

hood maximization restricted to sample B. That is,

α̂ = arg max

{∑
i

(1−Ri) log t(Li, Vi;α)

}
. (4.2)
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As pointed out by a reviewer, although the components t(L, V ) and

π(V ) of the observed data law are variationally independent, in general it is

more challenging to model the former, especially when L or V is of moderate

dimension and consists of a mixture of discrete and continuous variables.

Let Wd = (Ld, Vd) and Wc = (Lc, Vc) denote the discrete and continuous

components of (L, V ), respectively. One strategy is to adopt the general

location model (Olkin et al., 1961), defining the joint density f(L, V ) in

terms of the marginal distribution of Wd and the conditional distribution

of Wc, given Wd. The former is described by a multinomial distribution on

the cell counts x, x|ρ ∼M(n, ρ), where ρ is an array of cell probabilities of

the same dimension as the number of possible values in the support of Wd.

Then Wc is modeled as conditionally multivariate normal, given Wd. The

general location model is also amenable to restrictions on the parameter

space when the number of possible values in the support of Wd is large

relative to the sample size and can be estimated using maximum likelihood

methods (Little and Schluchter, 1985). Finally, t(L, V ) = f(L, V )/f(V ),

where f(V ) is obtained by marginalizing out L; closed-form expressions

for the conditional density can be found in the missing data literature on

building predictive distributions for multiple imputation under the general

location model (Schafer, 1997).
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Let Pn denote the empirical mean operator Pnf(O) = n−1
∑

i f(Oi).

Then, the IPW, IMP, and DR estimates of θ are solutions to the estimating

functions Pn {Ug(θ; η̂)} = 0, Pn
{
U imp
g (θ; α̂)

}
= 0, and Pn

{
UDR
g (θ; η̂, α̂)

}
=

0, respectively. Under the standard regularity conditions given in Theorem

2.6 of Newey and McFadden (1994), the resulting IPW estimator of θ is

consistent if π(V ; η) is correctly specified, and the DR estimator is consis-

tent if either π(V ; η) or t(L, V ;α), but not necessarily both, is correctly

specified.

To illustrate, suppose that we have univariate Y , p-dimensional L, and

q-dimensional V , which are all continuous, with a constant term embedded

in V . Let AT denote the transpose of A. The IPW estimation proceeds

by first obtaining η̂. For example, assuming a logistic model π(V ; η) =(
1 + exp−V

T η
)−1

, we then solve (4.1) by fitting a logistic regression to the

observed data (R, V ). The DR estimation also requires that we estimate

α̂. Suppose the conditional density of L, given V , is multivariate normal

N (αTV,Σ), where the errors in Σ may be correlated, but do not vary among

observations. The q × p estimate α̂ can be computed using least squares

estimation α̂ =
(
L, V T

B VB
)−1

V T
B LB, where (L, VB, LB) is the n × (p + q)

covariate matrix from data source B with n observations. Finally, we assume

that Y |V, L is normally distributed as N (βT (V T , LT )T ,Σ), θ = (β,Σ). If
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we are primarily interested in the mean parameters β, and not the variance

component Σ, then a convenient choice for g(Y, V ) is given by Y g(V ), where

g(V ) is of the same dimension as β. Then, we have the following set of

estimating functions:

Ug(θ; η) = g(V )

{
R

π(V ; η)
Y − 1−R

1− π(V ; η)
Eθ[Y |V, L]

}
, (4.3)

UDR
g (θ; η, α) = g(V )

{
R

π(V ; η)
{Y − Eθ,α [Y |V ]}

+
1−R

1− π(V ; η)
{Eθ,α [Y |V ]− Eθ[Y |V, L]}

}
, (4.4)

U imp
g (θ;α) = g(V ) {R {Y − Eθ,α [Y |V ]}

+(1−R) {Eθ,α [Y |V ]− Eθ[Y |V, L]}} , (4.5)

where Eθ[Y |V, L] = βT (V T , LT )T and Eθ,α[Y |V ] = βT (V T , V Tα)T .

In general, if we are interested in estimating the full set of parameters

θ that indexes the assumed parametric model f(Y |V, L; θ), the choice of

g(Y, V ) should be such that it is of at least the same dimension as θ, where

E
[
UT
g (θ)Ug(θ)

]
<∞ and E

[
∂
∂θ
Ug(θ, η)

]
is nonsingular. Because

E

[
∂

∂θ
Ug(θ, η)

]
= E

{
E[g(Y, V )ST (Y |V, L; θ)|V, L]

}
= E

{
R

π(V ; η)
g(Y, V )E[ST (Y |V, L; θ)|Y, V ]

}
= E

{
g(Y, V )ST (Y |V, L; θ)

}
,
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where S(Y |V, L; θ) is the full data score vector associated with the condi-

tional density f(Y |V, L; θ), a sufficient rank condition for a local identifica-

tion of θ† is that the matrix

Ω ≡ E
{
g(Y, V )ST (Y |V, L; θ†)

}
is nonsingular (4.6)

(Newey and McFadden, 1994). Similar derivations for the IMP and DR

estimating functions show that the form of Ω is the same. We provide two

examples below.

Example 1. Suppose Y is binary and (V, L) are two scalar continuous

random variables. Then, assuming the logistic model f(Y = 1|V, L; θ) =

{1 + exp[−θ0 + θ1V + θ2L]}−1, we have S(Y |V, L; θ) = [Y−f(Y = 1|V, L; θ)](1, V, L)T .

For the choice g(Y, V ) = Y [1, V, h(V )]T , Ω = E{var(Y |V, L; θ†)[1, V, h(V )]T (1, V, L)};

thus, local identification requires a choice of function h(V ) such that h(V )

is correlated with L. A simple choice is h(V ) = V 2. Identification would

then fail if L and V 2 are uncorrelated.

Example 2. If we are only interested in the conditional mean of f(Y |V, L),

we can specify a parametric model E(Y |V, L; θ) directly. For example, sup-

pose (Y, V, L) are three scalar continuous random variables, and we spec-

ify E(Y |V, L; θ) = θ0 + θ1V + θ2L, g(Y, V ) = Y [1, V, h(V )]T for the user-
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specified nonlinear function h(·). Then,

∂

∂θ
E {Ug(θ, η)} = E

{
[1, V, h(V )]T (1, V, L)

}
,

such that identification requires that h(V ) be correlated with L.

Note that the generalized method of moments (GMM) approach can be

adopted to allow g(Y, V ) to have a larger dimension than that of θ.

Let φ denote the set of nuisance parameters, that is, φ = η, φ = (η, α),

and φ = α for the IPW, DR, and imputation estimations, respectively,

and let φ∗ denote the probability limit of φ̂. The scores for the nuisance

parameters are

Sη =
d

dη
log
{
π(V ; η)R [1− π(V ; η)]1−R

}
Sα =

d

dα
log
{
t(L|V ;α)1−R} .

Let Sφ = Sη, Sφ =
(
STη , S

T
α

)T
, and Sφ = Sα for the IPW, DR, and

imputation-based estimations, respectively, and let

Uθ,φ =



(
UT
g (θ; η), STφ

)T
, for IPW

(
UDR,T
g (θ; η, α), STφ

)T
, for DR estimation

(
U imp,T
g (θ;α), STφ

)T
, for imputation-based estimation.
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In addition, let

Gθ = E

[
∂

∂θ
Uθ†,φ∗

]
Gφ = E

[
∂

∂φ
Uθ†,φ∗

]
M = E

[
∂

∂φ
Sφ∗

]
Ψ = −M−1Sφ∗ ,

where all the expectations are evaluated at the true parameter values. Then,

under the standard regularity conditions given in Theorem 6.1 of Newey and

McFadden (1994),

√
n
(
θ̂ − θ†

)
d−→ N (0,Σθ), (4.7)

where

Σθ = G−1
θ E

{[
Uθ†,φ∗ +GφΨ

] [
Uθ†,φ∗ +GφΨ

]T}
G−1,T
θ . (4.8)

For inference purposes, a consistent estimator Σ̂θ of the asymptotic covari-

ance matrix given in (4.8) can be constructed by replacing all expected

values with the empirical averages evaluated at
(
θ̂, φ̂
)

. Then, a 95% Wald

confidence interval for θj is found by calculating θ̂j ± 1.96σ̂j, where σ̂j is

the square root of the jth component of the diagonal of n−1Σ̂θ. Alterna-

tively, a nonparametric bootstrap can be performed to obtain estimates of

the variance.
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In general, the choice of the function g(Y, V ) used to index various

estimating equations affects the efficiency, but not the consistency of the

resulting estimators (provided it satisfies the identification condition 4.6).

Modern semiparametric efficiency theory may be used to identify an optimal

choice for such an index function that minimizes the first-order asymptotic

variance of the resulting estimator(Bickel et al., 1993). The optimal choice

of g(Y, V ) should, in fact, ensure identification whenever the model is iden-

tified, without necessarily having to consider a large number of candidate

choices for such a function. When Y contains continuous components, the

optimal choice of g(Y, V ) is, in general, not available in closed form. Section

5 provides the results for the optimal index when Y is categorical, as well

as methods to construct approximately locally efficient estimators when Y

is continuous.

5. Local Efficiency

For binary Y , any function g(·) of Y and V can be expressed as g(Y, V ) =

Y g1(V ) + g0(V ), where g1(·) and g0(·) are arbitrary functions of V . There-

fore, the class of DR estimating functions in (3.3) is equivalently given by

LDR = {g1(V )M(θ) : g1(·) arbitrary} ,

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0334



Doubly robust data fusion

where

M(θ) =
R

π(V ; η)
{Y − Eθ,α [Y |V ]}+ 1−R

1− π(V ; η)
{Eθ,α [Y |V ]− Eθ[Y |V, L]} .

We have the following result.

Result 3. Suppose θ̂h is a regular and asymptotically linear (RAL) estima-

tor of θ in the semiparametric model Mπ∪t. Then,

√
n
(
θ̂h − θ†

)
D−→

N
(

0, E [h(V )∇θM(θ)]−1E
{
M2(θ†)h(V )h(V )T

}
E [h(V )∇θM(θ)]−1T

)
,

for some h(V )M(θ) ∈ LDR. Here, θ̂ĥ achieves the semiparametric efficiency

bound for Mπ∪t at the intersection submodel Mπ ∩Mt if ĥ converges in

probability to

hopt(V ) = −E [∇θM(θ)|V ]E
[
M2(θ)|V

]−1
.

Using a similar approach, Result 3 can easily be extended to polytomous

Y , with s > 2 levels, by noting that g(Y, V ) =
∑s−1

k=1 I(Y = yk)gk(V )+g0(V )

and, therefore,

LsDR =

{
s−1∑
k=1

gk(V )Mk(θ) : gk(·) arbitrary for k = 1, 2, ..., s− 1

}
,
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where

Mk(θ) =
R

π(V ; η)
{I(Y = yk)− P (Y = yk|V ; θ, α)}

+
1−R

1− π(V ; η)
{P (Y = yk|V ; θ, α)− P (Y = yk|V, L; θ)} ,

k = 1, 2, ..., s− 1.

When Y contains continuous components, the semiparametric efficient in-

fluence function for θ is, in general, not available in closed form, in the sense

that it cannot be expressed explicitly as a function of the true distribution

(Robins et al., 1995). Let L2 ≡ L2(F ) denote the Hilbert space of zero-mean

functions of p dimensions, Z ≡ z(V, Y ), with inner product EF
(
ZT

1 Z2

)
=

E
(
ZT

1 Z2

)
, and the corresponding squared norm ||Z||2 = E

(
ZT

1 Z2

)
, where

F is the distribution function that generated the data. We adopt the gen-

eral strategy proposed in Newey (1993) (see also Tchetgen Tchetgen et al.

(2009)) to obtain an approximately locally efficient estimator. As such,

we take a basis system ψj(Y, V ) (j = 1, ...) of functions dense in L2, such

as the tensor products of trigonometric, wavelet, or polynomial bases for

the controls V and Y . For approximate efficiency, in practice, we let the

p-dimensional gK(Y, V ) = τΨK , where τ ∈ Rp×K is a constant matrix, and

ΨK = {ψ1, ψ2, ..., ψK}T , for some finite K > p.

To derive an approximately locally efficient estimator for θ, let K denote
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the linear operator

K(·) =
R

π(V ; η)
{· − Eθ,α [·|V ]}+

1−R
1− π(V ; η)

{Eθ,α [·|V ]− Eθ[·|V, L]} ,

defined over the space of arbitrary functions of Y and V in L2. Consider

the class of influence functions of the form

LΨK
=
{
τK(ΨK) = τ [K(ψ1),K(ψ2), ...,K(ψK)]T : τ ∈ Rp×K

}
.

Analogous to Result 3, it can be shown based on Theorem 5.3 in Newey

and McFadden (1994) that the efficient estimator of all estimators with

influence functions of the form in LΨK
is indexed by the constant matrix

τ opt = −E [∇θK(ΨK)]E
[
K(Ψ)KT (ΨK)

]−1
.

In particular, the inverse of the asymptotic variance of the estimator indexed

by τ opt is

ΩK = E {∇θK(ΨK)}T E
{
K(ΨK)KT (ΨK)

}−1
E {∇θK(ΨK)}

= E
{
SθKT (ΨK)

}
E
{
K(ΨK)KT (ΨK)

}−1
E
{
SθKT (ΨK)

}T
,

evaluated at θ = θ†, and Sθ is the score vector with respect to θ. Thus, ΩK

is the variance of the population least squares regression of Sθ on the linear

span of K(ΨK). Because ΨK is dense in L2, as the dimension K → ∞,

the linear span of K(ΨK) recovers the subspace in the orthocomplement
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nuisance tangent space Λ⊥, which contains the efficient score Sθ,eff. As a

result, ΩK → ||Π
(
Sθ|Λ⊥

)
||2 = var (Sθ,eff), the semiparametric information

bound for estimating θ† in the union model Mπ∪t.

6. Simulation Study

In this section, we report a simulation study evaluating the finite-

sample performance of our proposed estimators involving i.i.d. realizations

of (R,RY, (1 − R)L, V ). For each of the sample sizes n = 500, 2000, we

simulated 1000 data sets, as follows:

C ∼ N (0, 0.52), A|C ∼ N
(
λ0 + λ1C, σ

2
A

)
, V = (A,C)

L|V ∼ N (α0 + α1A+ α2C + α3AC, σ
2
L)

R|V ∼ Bernoulli {π(V ; η)} , π(V ; η) =
(
1 + exp−η0−η1A+η2C

)−1

Y |V, L ∼ N (β0 + β1A+ β2C + β3L, σ
2
Y ),

with (λ0, λ1, σA) = (0.5, 0.5, 0.3), (α0, α1, α2, α3, σL) = (−0.5, 1.5, 1.0, 2.0, 0.3),

(β0, β1, β2, β3, σY ) = (0.5,−0.5, 1.0, 1.5, 0.4), and (η0, η1, η2) = (0.5,−0.75,−0.75),

such that, marginally, Pr(R = 1) ≈ 0.5. Our aim is to estimate the condi-

tional mean parameters β = (β0, β1, β2, β3), based on the observed data, by

solving empirical versions of (4.3–4.5) for the IPW, DR, and imputation-

based estimations, respectively, with g(V ) = (1, A, C,AC)T , using the R

package “BB” (Varadhan et al., 2009). In each simulated sample, we es-
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timated the proposed estimators’ asymptotic variance given by (4.8); the

Wald 95% confidence interval coverage rates were computed across the 1000

simulations.

We also evaluated the performance of the proposed estimators in situa-

tions where some models may be misspecified. Let the superscript § denote

the probability limits from fitting the misspecified models. The data source

model was misspecified as π̃ by dropping C from the logistic model; that

is, π̃(V ; η§) =
(

1 + exp−η
§
0−η

§
1A
)−1

. The density of L|V was misspecified as

t̃ by fitting a standard linear regression using only (C,C2) as regressors;

that is, E[L|V ;α§] = α§0 + α§1C + α§2C
2. We explored four scenarios: (i)

correct models π and t; (ii) correct t, but incorrect model π̃; (iii) correct π,

but incorrect model t̃; and (iv) incorrect models π̃ and t̃. Figure 1 presents

the estimation results for the regression coefficient β3 and Table 1 shows

the corresponding empirical coverage rates; the results for the remaining

regression coefficients (β0, β1, β2) are qualitatively similar and, therefore,

relegated to the appendix.

Under the correct model specifications (i), the IPW estimator has a

small bias at n = 500, which diminishes with an increase in the sample

size, while the DR and imputation-based estimators have negligible bias.

Supporting our theoretical results, the IPW estimator is significantly biased
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Figure 1: Box plots of inverse probability weighted (IPW), imputation-

based (IMP), and doubly robust (DR) estimators of the regression coeffi-

cient β3, which has a true value of 1.5, as marked by the horizontal line,

when α3 = 2.

in scenarios (ii) and (iv) where the data source process is incorrectly mod-

eled as π̃. The DR estimator shows negligible bias across scenarios (i)–(iii),

and only exhibits a significant bias in scenario (iv), where both models are

misspecified as π̃ and t̃. The imputation-based estimator shows little bias

in scenarios (i) and (ii), but exhibits significant bias in scenarios (iii) and

(iv), with misspecified t̃. Under the data-generating mechanism considered

in this simulation study, the imputation-based estimator is more efficient
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Table 1: Empirical coverage rates based on 95% Wald confidence intervals,

as well as the accuracy of the standard deviation estimator, under four

scenarios: (i) correct π and t; (ii) correct t, but incorrect π̃; (iii) correct

π, but incorrect t̃; and (iv) incorrect π̃ and t̃. In each scenario, the first

row presents the results for n = 500, and the second row shows those for

n = 2000.

Coverage SD ratio†

IPW IMP DR IPW IMP DR

(i)
0.916 0.935 0.926 1.178 0.955 0.899
0.948 0.939 0.938 1.141 0.972 0.958

(ii)
0.801 0.935 0.923 1.164 0.955 0.913
0.681 0.939 0.941 1.125 0.972 0.958

(iii)
0.916 0.553 0.888 1.178 0.939 0.876
0.948 0.139 0.938 1.141 1.038 0.998

(iv)
0.801 0.553 0.740 1.164 0.939 0.894
0.681 0.139 0.634 1.125 1.038 1.016

† : Estimated SD / Monte Carlo SD

than the DR estimator, which is, in turn, more efficient than the IPW esti-

mator across all scenarios considered. The efficiency of the DR estimator is

reduced to a greater extent by the misspecification of t than it is by that of

π. In the scenarios where the IPW, DR, and imputation-based estimators

are unbiased, the empirical coverage rates are slightly lower than 0.95 at

n = 500, but approach the nominal rate as the sample size increases.

In the Supplementary Material, we provide a second set of simulations

in which the coefficient for the interaction between A and C in the model for
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generating L is reduced to α3 = 0.5, with all other parameters unchanged.

When the effect of the (A,C) interaction in the model that generates L is

weak, using AC in g(V ) leads to an increase in the finite-sample bias and

a decrease in efficiency for all estimators considered here.

7. Application

As an empirical illustration, we apply the proposed methods to investi-

gate the relationship between asset value (L) and consumption (Y ), while

controlling for potential confounders, including income and other demo-

graphic variables (V ). Previous research by Bostic et al. (2009) leverages

fused data from the U.S. Bureau of Labor Statistics’ CEX which contains

detailed U.S. household expenditure information Y , and the Federal Re-

serve Board’s SCF which provides detailed information on household assets

and liabilities L, housing, and other demographic characteristics. For this

application, the model of substantive interest is E(Y |V, L) = (V T , L)β.

We perform the proposed IPW and DR estimations for β based on the

household expenditure and net worth data obtained from the CEX’s 1997

fourth-quarter survey and the 1998 SCF, respectively, along with demo-

graphic information recorded in both surveys. The variables considered in

this analysis are presented in Table 2.

Although the data source process is largely administrative, the 1998
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Table 2: U.S. household (HH) variables used in the analysis.

Variable Description

R Data source indicator for CEX (R = 1) or SCF (R = 0)

Y log(expd) Log of total HH expenditures in fourth quarter of 1997

L log(netw) Log of HH total net worth in 1997

V

sex Sex of HH head (male=0, female=1)
age Age of HH head

single Marital status of HH head (married=0, single=1)

edu1 HH head with high school diploma or GED (no=0, yes=1)

edu2 HH head with some college or Associate degree (no=0, yes=1)

edu3 HH head with Bachelors degree or higher (no=0, yes=1)

white White HH head (no=0, yes=1)

black Black/African American HH head (no=0, yes=1)

log(income) Log of total HH income before taxes in 1997

SCF oversamples relatively wealthy families based on an index created by

grossing up capital income flows observed in the tax data (Kennickell, 1998).

For the IPW estimation, the data source model π(V ) is specified as a lo-

gistic regression with the main effects for the binary variables, and up to

quadratic terms for age and log(income). In particular, total household

income before taxes in 1997 is included in V , which may serve as a good

proxy for the wealth index in the SCF’s sampling design. For the DR es-

timation, we additionally specify E[L|V ] as a linear model involving the

main effects for the binary variables, and up to quadratic terms for age and

log(income) in V . We solve the empirical versions of (4.3–4.5) for the IPW,

DR, and imputation-based estimations, respectively, with g(V ) specified as
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a vector that includes the main effects of the variables in V and the variable

log(income)2. Based on example 2, the parameter of interest β is identi-

fied if log(income)2 is correlated with household net worth, which is only

recorded in the SCF. We restrict the sample to household heads between

25 and 65 years of age to mitigate heterogenous consumption effects dur-

ing college-age years and retirement. Furthermore, we truncate the SCF

sample at the 90th percentiles of observed total household income and net

worth, owing to the oversampling of wealthy households in the SCF (Bostic

et al., 2009). The final data set consists of n = 5919 households (3388 from

the CEX and 2531 from the SCF). Owing to missing values in the origi-

nal survey data, the publicly available microdata from both the CEX and

the SCF consist of five imputed replicates. An estimation is performed for

each replicate, and the pooled results using Rubin’s rule (Rubin, 2004) are

presented in Table 3.

The DR and imputation-based standard errors are smaller than those

from the IPW, supporting our theoretical and simulation results. The IPW

results suggest that, in general, households with married heads have greater

total expenditure, holding the remaining variables at fixed values. Higher

levels of education for the household head are associated with progressively

greater total expenditure. Finally, after controlling for income and other
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Figure 2: Histogram of fitted data source propensity scores.

demographic variables, the results from the IPW suggest there is a negative

association between household net worth and total expenditure, although

this is not statistically significant at the 0.05 level. To assess any practical

violations of the positivity assumption A2, we plot histograms of the fitted

data source propensity scores π̂(V ) = π(V ; η̂) for the R = 1 and R =

0 groups, separately, in Figure 2. While very few fitted scores are near

zero in the R = 1 sample, about 6% of the scores in the R = 0 sample

are greater than 0.8, corresponding to small values of 1 − π̂(V ), with the

largest contributing weight equal to 23.3. This might explain the fairly

large standard errors of the IPW estimates compared with those of the DR

and imputation-based estimates.
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In general, the DR and imputation-based estimates agree with each

other. The statistically significant relationships include an inverse asso-

ciation between age and total expenditure, as well as a positive associa-

tion between household net worth and total expenditure. Note that both

associations agree qualitatively with the findings of Bostic et al. (2009).

The similarity between the DR and imputation estimates suggests that the

conditional model E[L|V ] may be specified nearly correctly (Robins and

Rotnitzky, 2001). Here, Tchetgen Tchetgen and Robins (2010) describe a

formal specification test to detect which of the two baseline models π(V )

and t(L, V ) is correct under the union model Mπ∪t. Based on this and

the DR property, it may be that the data source model in this illustrative

analysis for the IPW is misspecified. As such, the results from the DR

estimation may be more meaningful, given its additional protection against

misspecifications of the data source model.

8. Discussion

Traditional regression models break down when two data sources are

fused together such that no subject has complete data. Investigators often

consider parametric models for a given outcome regressed on a number of

independent variables. However, current parametric models do not ade-
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Table 3: Estimates of the conditional mean parameters β for log(total

household expenditure). Pooled standard errors are given in parentheses,

and asterisks denote significance at the 0.05 level.

Variable IPW IMP DR

sex 2.338∗ (0.284) 0.048 (0.067) 0.030 (0.058)

age 0.399 (0.247) -0.264∗ (0.054) -0.160∗ (0.042)

single -4.109∗ (0.367) 0.048 (0.055) 0.023 (0.042)

edu1 0.491 (0.254) 0.016 (0.081) 0.083 (0.079)

edu2 0.886∗ (0.358) 0.038 (0.094) 0.081 (0.098)

edu3 1.373∗ (0.460) -0.001 (0.113) 0.035 (0.123)

white 0.580∗ (0.229) -0.094 (0.086) -0.052 (0.083)

black 0.237 (0.269) 0.134 (0.096) 0.002 (0.104)

log(income) 0.537 (0.432) -0.095 (0.096) 0.085 (0.066)

log(netw) -0.620 (0.417) 0.499∗ (0.089) 0.346∗ (0.066)

quately deal with the missing data structure that arises from data fusion.

In this study, we have developed a general class of semiparametric parallel

IPW estimating functions, the resulting estimators of which are consistent

if the outcome regression and the data source process are correctly specified.

This general class of estimating functions includes a large set of DR estimat-

ing functions, which require an additional model for the missing covariates.

An estimator in this class is DR in that it is consistent and asymptotically

normal if we correctly specify a model for either the data source process or

the distribution of the unobserved covariates, but not necessarily both.

There are several areas for additional research on this topic, notably, the
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open question of how to generalize this method to other settings. A clear

extension is the setting of fusing more than two data sets together. Consider

m data sources, with V observed for all, and each of (L1, L2, ..., Lm−1, Y ) ob-

served in only one source, with respective indicators of observation (R1, R2,

..., Rm−1, Rm) and inclusion probabilities (π1, π2, ..., πm−1, πm). Therefore,

the observed data are O = (V,R1L1, R2L2, ..., Rm−1Lm−1, RmY ). Then, for

example, it is easy to extend (4.3) for linear models to

Um
g (β) = g(V )

{
Rm

πm
Y −

[
β0 +

R1

π1

βT1 L1 +
R2

π2

βT2 L2 + ...

+
Rm−1

πm−1

βTm−1Lm−1 + βTmV

]}
,

provided V is rich enough for identification.

Supplementary Material

The online Supplementary Material contains proofs of the results, as

well as additional simulation results.
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Rässler, S. (2012). Statistical matching: A frequentist theory, practical applications, and alter-

native Bayesian approaches, volume 168. Springer Science & Business Media.

Renssen, R. H. (1998). Use of statistical matching techniques in calibration estimation. Survey

Methodology, 24:171–184.

Riley, R. D., Lambert, P. C., and Abo-Zaid, G. (2010). Meta-analysis of individual participant

data: rationale, conduct, and reporting. Bmj, 340:c221.

Robins, J. M., Hsieh, F., and Newey, W. (1995). Semiparametric efficient estimation of a

conditional density with missing or mismeasured covariates. Journal of the Royal Statistical

Society. Series B (Methodological), pages 409–424.

Robins, J. M. and Rotnitzky, A. (2001). Comment on “inference for semiparametric models:

Some questions and an answer”. Statistica Sinica, 11:920–936.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when

some regressors are not always observed. Journal of the American statistical Association,

89(427):846–866.

Rubin, D. B. (1986). Statistical matching using file concatenation with adjusted weights and

multiple imputations. Journal of Business & Economic Statistics, 4(1):87–94.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys, volume 81. John Wiley

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0334



REFERENCES

& Sons.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. Chapman and Hall/CRC.

Stürmer, T., Schneeweiss, S., Avorn, J., and Glynn, R. J. (2005). Adjusting effect estimates for

unmeasured confounding with validation data using propensity score calibration. American

journal of epidemiology, 162(3):279–289.

Tchetgen Tchetgen, E. J. and Robins, J. (2010). The semiparametric case-only estimator.

Biometrics, 66(4):1138–1144.

Tchetgen Tchetgen, E. J., Robins, J. M., and Rotnitzky, A. (2009). On doubly robust estimation

in a semiparametric odds ratio model. Biometrika, 97(1):171–180.

Varadhan, R., Gilbert, P., et al. (2009). Bb: An r package for solving a large system of nonlinear

equations and for optimizing a high-dimensional nonlinear objective function. Journal of

statistical software, 32(4):1–26.

Wu, C. (2004). Combining information from multiple surveys through the empirical likelihood

method. Canadian Journal of Statistics, 32(1):15–26.

Verily Life Sciences

E-mail: katherineevans@verily.com

Department of Statistics and Applied Probability, National University of Singapore

E-mail: stasb@nus.edu.sg

Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0334



REFERENCES

E-mail: robins@hsph.harvard.edu

Department of Statistics, The Wharton School of the University of Pennsylvania

E-mail: ett@wharton.upenn.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0334




