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Abstract: We propose a new test for heteroscedasticity in parametric and partial

linear regression models in multidimensional spaces. When the dimension of the

covariates is large, or even moderate, existing tests for heteroscedasticity perfor-

m badly, owing to the “curse of dimensionality.” To address this problem, we

construct a test for heteroscedasticity that uses a projection-based empirical pro-

cess. Then, we study the asymptotic properties of the test statistic under the null

and alternative hypotheses. The results show that the test detects the departure

of local alternatives from the null hypothesis at the fastest possible rate during

hypothesis testing. Because the limiting null distribution of the test statistic is

not asymptotically distribution free, we propose a residual-based bootstrap ap-

proach and investigate the validity of its approximations. Simulations verify the

finite-sample performance of the test. Two real-data analyses are conducted to

demonstrate the proposed test.

Key words and phrases: Heteroscedasticity testing; Partial linear models; Pro-

jection; U-process.
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1. Introduction

In many regression models, the error terms are assumed to have a com-

mon variance. However, ignoring the presence of heteroscedasticity in a

regression model may result in inefficient inferences of the regression coeffi-

cients, or even inconsistent estimators of the variance function. Therefore,

regression models should be tested for heteroscedasticity whenever the error

terms are assumed to have equal variance. Consider the following regression

model:

Y = m(Z) + ε, (1.1)

where Y is the dependent variable with a p-dimensional covariate Z, m(·) =

E(Y |Z = ·) is the regression function, and the error term ε satisfies E(ε|Z) =

0. Thus, the null hypothesis when testing for heteroscedasticity in regres-

sion model (1.1) is as follows:

H0 : V ar(Y |Z) = E(ε2|Z) ≡ C for some constant C > 0;

the alternative hypothesis is that H0 is totally incorrect:

H1 : V ar(Y |Z) = E(ε2|Z) is a nonconstant function of Z.

Many test for heteroscedasticity in regression model (1.1) haven been

proposed in the literature. Cook and Weisberg (1983) constructed a score

test for heteroscedasticity in parametric regression models with parametric

structure variance functions. Simonoff and Tsai (1994) proposed a mod-

ified score test for heteroscedasticity in linear models. Muller and Zhao
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(1995) developed a data-based test for heteroscedasticity in a general semi-

parametric variance function model with a fixed design. Dette and Munk

(1998) proposed a consistent test for heteroscedasticity in a nonparametric

regression setting, based on the L2-distance between the underlying vari-

ance function and the constant variance. Zhu, Fujikoshi, and Naito (2001)

developed a test for heteroscedasticity based on residual marked empirical

processes. Extending the work of Zheng (1996) on checking the regression

function, Dette (2002) and Zheng (2009) proposed residual-based tests for

heteroscedasticity under different regression models. Su and Ullah (2013)

introduced a nonparametric test for conditional heteroscedasticity in non-

linear regression models. Recently, following Stute, Xu, and Zhu (2008),

Chown and Müller (2018) proposed a test for heteroscedasticity based on a

weighted-residual empirical distribution function. Lin and Qu (2012) devel-

oped a test for heteroscedasticity in nonlinear semi-parametric regression

models, based on the work of Dette (2002). Furthermore, Dette, Neumeyer,

and van Keilegom (2007), Wang and Zhou (2007), Koul and Song (2010),

and Pardo-Fernández and Jiménez-Gamero (2018) considered a more gen-

eral problem of checking the parametric form of the conditional variance

function in nonparametric regressions.

To motivate the construction of our test statistic, we first give a detailed

comment on two representative tests, namely, those of Zhu, Fujikoshi, and

Naito (2001) and Zheng (2009). Let E(ε2) = σ2 and η = ε2 − σ2. Then,
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the null hypothesis H0 is equivalent to E(η|Z) = 0. Consequently,

E[ηE(η|Z)f(Z)] = 0,

where f(·) is the density function of Z. Based on a consistent estimator of

E[ηE(η|Z)f(Z)], Zheng (2009) proposed the following test statistic:

Tn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

1

hp
K(

Zi − Zj

h
)η̂iη̂j,

where η̂i = ε̂2i − σ̂2, σ̂2 = (1/n)
∑n

i=1 ε̂
2
i , ε̂i = Yi − m̂(Zi) with m̂(·) being an

estimator of the regression function, K(·) is a p-dimensional multivariate

kernel function, and h is a bandwidth, which converges to zero as n goes

to infinity. However, because Zheng (2009) used nonparametric smooth

estimators in its construction, the test statistic suffers severely from the

“curse of dimensionality.” More specifically, the above test can only detect

local alternatives that converge to the null at a rate of O(1/
√
nhp/2). When

p is large, this rate could be very slow, which would quickly reduce the

power of this test.

Zhu, Fujikoshi, and Naito (2001) used residual marked empirical pro-

cesses to construct a test for heteroscedasticity. Note that

E(η|Z) = 0 ⇔ E[ηI(Z ≤ t)] = 0 for all t ∈ Rp.

Based on this, Zhu, Fujikoshi, and Naito (2001) proposed the following

residual marked empirical process:

Rn(t) =
1√
n

n∑
i=1

η̂iI(Zi ≤ t).
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Here, I(Zi ≤ t) = I(Zi1 ≤ t1) · · · I(Zip ≤ tp), and Zij and tj are the j-

components of Zi and t, respectively. The test statistic of Zhu, Fujikoshi,

and Naito (2001) is a functional of Rn(t), such as the Cramér−von Mises

or Kolmogorov−Smirnov functional. The authors show that their test can

detect local alternatives converging to the null at the parametric rate 1/
√
n,

which is the fastest documented convergence rate in context of hypothesis

testing. However, when the dimension p of the covariates is large, this test

also suffers severely from the dimension problem due to the data sparseness

in multidimensional spaces.

The purpose of this study is to develop a test for heteroscedasticity in

parametric regression models that avoids the drawbacks of those of Zhu,

Fujikoshi, and Naito (2001) and Zheng (2009) and, thus, can be applied

when the dimension of the covariates is relatively large. Note that Zhu,

Fujikoshi, and Naito’s (2001) test is consistent against local alternatives

converging to the null at the parametric rate 1/
√
n, which is not related to

the dimension of the covariates. Nevertheless, their test still suffers from the

“curse of dimensionality” in practice. This is because their test statistic is

based on the indicator function I(Zi ≤ t), which is the product of p indicator

functions. Therefore, the vector (I(Z1 ≤ t), · · · , I(Zn ≤ t))⊤ is very sparse

for large p, which cause the dimension problem in practice. To overcome this

problem, we propose using the projected covariates α⊤Zi, rather than Zi, to

construct a residual marked empirical process, yielding a test statistic that

does not involve the product of p indicator functions. Escanciano (2006)
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and Lavergne and Patilea (2008, 2012) adopted this approach to construct

goodness-of-fit tests for parametric regression models. Because the test is

based on one-dimensional projections, it behaves as if the dimension of the

covariates is one. As a result, this method is less sensitive to the dimension p

of the regressors than is the method of Zhu, Fujikoshi, and Naito (2001). We

employed residual marked empirical processes to construct the test statistic.

Thus, our test statistic avoids a nonparametric estimation of E(η|Z), which

was used in Zheng (2009), and can detect local alternatives converging to

the null at the parametric rate 1/
√
n. Furthermore, the new test is easy

to compute, does not involve multidimensional numerical integrations, and

exhibits excellent power for large dimension in finite-sample simulations;

see Section 4.

We also use this method to check for heteroscedasticity in partial lin-

ear regression models. When the dimension of the covariates is large, a

nonparametric estimation is less accurate, owing to the “curse of dimen-

sionality.” In addition, partial linear regression models provide a more

flexible substitution if the researchers know that some of the covariates en-

ter the regression model linearly. As a result, this model is widely used in

economics, biology, and other related fields. To construct the test statistic

for partial linear regression models, we need to use locally smoothing meth-

ods to estimate the nonlinear part of the regression function. Although it

involves nonparametric estimators, we show that the limiting distribution

has the same form as that in parametric regression models. Furthermore,
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we show that the proposed detects local alternatives converging to the null

at rate 1/
√
n under this semi-parametric setting.

Chown and Müller (2018) employed a similar procedure to develop

test for heteroscedasticity that uses a weighted empirical process based

on the indicator function I(ε̂j ≤ t); rather than I(α⊤Zj ≤ t). This proce-

dure was first proposed by Stute, Xu, and Zhu (2008) for checking para-

metric regression models in high-dimensional settings. However, Chown

and Müller’s (2018) test applies only to location-scale models; that is,

Y = m(Z)+
√

V ar(Y |Z)e, where e is independent of Z. The independence

between e and Z is then employed to construct suitable test statistics. As

in Chown and Müller (2018), Pardo-Fernandez and Jimenez-Gamero (2018)

rely on this same restriction. Moreover, they considered one-dimensional

covariate only. Our proposed test statistic does not require this restriction.

In fact, we only need E(ε|Z) = 0, and ε may depend on Z in a more gen-

eral way. Another issue is that the weighted function ω(Z) of the empirical

processes suggested by Chown and Müller (2018) also relies on nonparamet-

ric estimations, regardless of the type of regression function. As a result

their test still suffers from the curse of dimensionality even for parametric

regression models.

The rest of the paper is organized as follows. In Section 2, we define

the test statistic using a projection-based empirical process. In Section

3, we study the asymptotic properties of the test statistic under the null

and the alternative hypotheses in parametric and partial linear regression
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models. In Section 4, a residual-based bootstrap method is proposed to

approximate the null distribution of the test statistic. Here, we also present

our simulation results that compare the performance of the proposed test

with that of several existing methods. Furthermore, we analyze two real

data sets to illustrate the proposed method. Section 5 concludes the paper.

All technical proofs are delegated to the online Supplementary Material.

2. Test construction

Recall that the null hypothesis H0 is equivalent to E(η|Z) = 0. Ac-

cording to Lemma 1 of Escanciano (2006) or Lemma 2.1 of Lavergne and

Patilea (2008), we have

E(η|Z) = 0 ⇐⇒ E(η|α⊤Z) = 0, ∀ α ∈ Sp,

where Sp = {α : α ∈ Rp and ∥α∥ = 1}. Consequently,

E(η|Z) = 0 ⇐⇒ E[ηI(α⊤Z ≤ t)] = 0, ∀ α ∈ Sp, t ∈ R.

Therefore, the null hypothesis H0 is equivalent to∫
Sp

∫
R
|E[ηI(α⊤Z ≤ t)]|2Fα(dt)dα = 0, (2.1)

where Fα is the cumulative distribution function of α⊤Z, and dα is the

uniform density on Sp. Then, we propose the following test statistic, which

we use to check heteroscedasticity in model (1.1):

HCMn =

∫
Sp

∫
R

1

n
|

n∑
j=1

η̂jI(α
⊤Zj ≤ t)|2Fn,α(dt)dα, (2.2)

where Fn,α is the empirical distribution function of the projected covariates

{α⊤Zj, 1 ≤ j ≤ n}.
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Note that the test statistic HCMn involves a multidimensional integral

for large p. Indeed, by some elementary calculations,

HCMn =
1

n

n∑
i,j=1

η̂iη̂j

∫
Sp

∫
R
I(α⊤Zi ≤ t)I(α⊤Zj ≤ t)Fn,α(dt)dα

=
1

n2

n∑
i,j,k=1

η̂iη̂j

∫
Sp
I(α⊤Zi ≤ α⊤Zk)I(α

⊤Zj ≤ α⊤Zk)dα.

It is well known that multidimensional numerical integrations are extremely

difficult to handle in practice. However, the following lemma enables us to

avoid multidimensional integrations in the numerical calculations and, thus,

obtain an analytic expression for the test statistic HCMn. Its proof can be

found in Appendix B of Escanciano (2006).

Lemma 1. Let u1, u2 ∈ Rp be two nonzero vectors, and let Sp be the p-

dimensional unit sphere. Then, we have∫
Sp
I(α⊤u1 ≤ 0)I(α⊤u2 ≤ 0)dα =

π− < u1, u2 >

2π
,

where dα is the uniform density on Sp, and < u1, u2 >= arccos(
u⊤
1 u2

∥u1∥∥u2∥) is

the angle between u1 and u2.

The integral in Lemma 1 can be viewed as a kernel function. Then, our

test statistic has similar form to that of Zheng (2009). However, in contrast

to the test of Zheng (2009), our test statistic can be viewed as a U -statistic

with a fixed, rather than a varying bandwidth. This is important. From the

theory on U-statistics, we know that those with a fixed bandwidth have a

parametric convergence rate 1/
√
n, which is faster than those with a varying
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bandwidth. This supports our theoretical results derived using empirical

processes. For further information on U -statistics with a fixed bandwidth,

see Anderson et al. (1994) and Fan (1998).

The proposed test works for all regression models, and avoids the fol-

lowing drawbacks of the tests of Zhu, Fujikoshi and Naito (2001) and Zheng

(2009): the nonparametric estimation of E(η|Z), multidimensional numeri-

cal integration, and the low power when the dimension p is large. Note that

the test statistic is based on the residuals ε̂j = Yj−m̂(Zj), that is, it involves

the estimator of the regression function E(Y |Z = ·). Thus, our test works

well if it does not involve multidimensional nonparametric estimations of

E(Y |Z). In this study we deal only with parametric and partial linear re-

gression models, because the test statistic only involves parametric estima-

tions for parametric regression models, and only involves one-dimensional

kernel estimations for partial linear regression models. It can also be ap-

plied to nonparametric regression models. Then, we have to estimate the

unknown regression function in a nonparametric way. Owing to the sparsity

of the data in multidimensional spaces, the behavior of nonparametric esti-

mations quickly deteriorates when the dimension of the covariates increases.

As a result, the test still suffers from the “curse of dimensionality” for non-

parametric regression models in practice. This problem is common to all

existing tests for heteroscedasticity in nonparametric regression, because

they all need to first estimate the unknown regression function. Therefore,

dealing with the dimension problem when testing for heteroscedasticity in
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nonparametric regression models remains a challenging problem.

3. Asymptotic results

First, we consider the following parametric regression model:

Y = m(Z, β) + ε, E(ε|Z) = 0, (3.1)

where β ∈ Rd, and m(·, β) = E(Y |Z = ·) is the given regression function.

Let β̂n be a consistent estimator of β and ε̂i = Yi − m(Zi, β̂n). Then,

η̂i = ε̂2i − σ̂2 = ε̂2i − (1/n)
∑n

i=1 ε̂
2
i . Define the projected empirical process

as follows:

Vn(α, t) =
1√
n

n∑
i=1

η̂iI(α
⊤Zi ≤ t).

The test statistic becomes

HCMn =

∫
Sp

∫
R
|Vn(α, t)|2Fn,α(dt)dα.

To obtain the asymptotic properties of Vn(α, t) under the null and the

alternatives, we impose several regularity conditions:

(A1) E(ε4) < ∞;

(A2)
√
n(β̂n − β) = Op(1);

(A3) The parametric regression function m(z, γ) is twice continuously

differentiable at each γ in a neighborhood of β. Set

m′(z, γ) =
∂m(z, γ)

∂γ
and m′′(z, γ) =

∂m(z, γ)

∂γ⊤∂γ
.

Assume E∥m′(Z, β)∥2 < ∞ and ∥m′′(z, γ)∥ ≤ M(z), with E|M(Z)|2 < ∞,

for all γ. Here, ∥ · ∥ denotes the Frobenius norm.
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Conditions (A1) and (A3) are commonly used in the literature on het-

eroscedasticity testing; see, for example, Zheng (2009). Condition (A2) is

satisfied for the ordinary least squares estimator and its robust modifica-

tions; see, Chapters 5 and 7 in Koul (2002).

Theorem 1. Assume that the regularity conditions A1−A3 hold. Under

H0, we have

Vn(α, t) −→ V∞(α, t) in distribution,

where V∞(α, t) is a zero-mean Gaussian process with covariance function

K{(α1, t1), (α2, t2)} = E{η2[I(α⊤
1 Z ≤ t1)−Fα1(t1)][I(α

⊤
2 Z ≤ t2)−Fα2(t2)]}.

Furthermore,

HCMn −→
∫
Sp

∫
R
V∞(α, t)2Fα(dt)dα in distribution.

Next we apply this approach to check for heteroscedasticity in partial

linear regression models. Consider

Y = β⊤X + g(T ) + ε, E(ε|X,T ) = 0, (3.2)

where T ∈ R, β ∈ Rq, and g(·) is a smooth function. Because the non-

linear part g(T ) in equation (3.2) is unknown, it has to be estimated in a

nonparametric way. Thus, in theoretical investigations, the decomposition

of the proposed projected empirical process involves a U-process. With the

help of the theory on U-process in the literature, e.g., Nolan and Pollard

(1987), we obtain the same asymptotical property as that in Theorem 1 for

partial linear regression models.
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We now use the kernel method to give the estimators of β and g(T ).

Note that

Y − E(Y |T ) = β⊤[X − E(X|T )] + ε.

Set Ỹ = Y − E(Y |T ) and X̃ = X − E(X|T ). It is easy to see that

β = [EX̃X̃⊤]−1E(X̃Ỹ ).

Let {(Xi, Ti, Yi)}ni=1 be an independent identically distributed (i.i.d) sample

from the distribution of (X,T, Y ). The estimator of β is given by

β̂n =

(
1

n

n∑
i=1

[Xi − Ê(X|Ti)][Xi − Ê(X|Ti)]
⊤

)−1(
1

n

n∑
i=1

[Xi − Ê(X|Ti)][Yi − Ê(Y |Ti)]

)
,

(3.3)

where

Ê(X|Ti) =
1

n

n∑
j=1,j ̸=i

XjKh(Ti − Tj)/f̂i(Ti),

Ê(Y |Ti) =
1

n

n∑
j=1,j ̸=i

YjKh(Ti − Tj)/f̂i(Ti),

and f̂i(Ti) = (1/n)
∑n

j=1,j ̸=iKh(Ti − Tj). Here, Kh(t) = (1/h)K(t/h), and

K(·) is a kernel function satisfying the regularity condition (B3), specified

below. To obtain the estimator of g(·), note that g(T ) = E(Y − β⊤X|T ).

Thus, the kernel estimator of g(T ) has the following form:

ĝ(Ti) =
1

n

n∑
j=1,j ̸=i

[Yj − β̂⊤
n Xj]Kh(Ti − Tj)/f̂i(Ti). (3.4)

The following regularity conditions are needed in order to derive the

asymptotic distribution of HCMn in partial linear regression models. In

13

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0322



TESTING HETEROSCEDASTICITY BASED ON PROJECTIONS

the following, C is a constant, although the value may vary depending on

the context.

(B1) Let E ′(Y |T = t) be the derivative of E(Y |T = t), and let F (x|t)

be the conditional distribution function of X, given T = t. Suppose there

exists an open neighborhood Θ1 of zero, such that, for all t and x,

|E(X|T = t+ u)− E(X|T = u)| ≤ C|u|, ∀ u ∈ Θ1;

|E ′(X|T = t+ u)− E ′(X|T = u)| ≤ C|u|, ∀ u ∈ Θ1;

|F (x|t+ u)− F (x|t)| ≤ C|u|, ∀ u ∈ Θ1.

(B2) E(Y 4) < ∞, E(∥X∥4) < ∞, and there exists a constant C, such

that |E(ε2|T = t,X = x)| ≤ C, for all t and x.

(B3) The kernel functionK(·) is bounded, continuous, symmetric about

zero and satisfies the following: (a) the support of K(·) is the interval

[−1, 1]; and (b)
∫ 1

−1
K(u)du = 1 and

∫ 1

−1
|u|K(u)du ̸= 0.

(B4) nh4 → 0 and nh2 → ∞ as n → ∞.

The Conditions (B1), (B2), and (B3) are commonly used to derive the

asymptotic properties of nonparametric estimators; see, for example, Schick

(1996) and Zhu and Ng (2003). Condition (B4) is necessary to obtain the

limiting distribution of the test statistic.

Lemma 2. Under the regularity conditions B1-B4, we have

√
n(β̂n − β) = [EX̃X̃⊤]−1 1√

n

n∑
i=1

X̃iεi +Op(
1√
nh

+
√
nh2)1/2. (3.5)

Lemma 2 can be found in Zhu and Ng (2003). It indicates that, under

the regularity condition (B4), β̂n is root-n consistent. Now we can obtain
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the asymptotic properties of HCMn in partial linear regression models. Set

p = q+1 and Zi = (X⊤
i , Ti)

⊤. The proposed empirical process and the test

statistic have the same form as before,

Vn(α, t) =
1√
n

n∑
i=1

η̂iI(α
⊤Zi ≤ t),

HCMn =

∫
Sp

∫
R
|Vn(α, t)|2Fn,α(dt)dα.

Here η̂i = ε̂2i − σ̂2, σ̂2 = (1/n)
∑n

i=1 ε̂
2
i , and ε̂i = Yi − β̂⊤

n Xi − ĝ(Ti).

Theorem 2. Suppose that the regularity conditions B1 − B4 hold. Then,

under partial linear models 3.2 and the null hypothesis H0, the results in

Theorem 1 continue to hold.

Note that existing tests for heteroscedasticity in partial linear models

usually assume that the variance function V ar(Y |X,T ) depends only on

T . This condition is not necessary for our test. Under this condition, we

can construct a much simpler test using the covariate T , rather than the

projected covariate α⊤(X⊤, T )⊤. Because V ar(Y |X,T ) is a function of T ,

it follows that V ar(Y |X,T ) = E(ε2|T ). Thus, the null hypothesis H0 is

equivalent to E(η|T ) = 0. The resulting test statistic is given as follows

CM (1)
n =

∫
R
| 1√

n

n∑
i=1

η̂iI(Ti ≤ t)|2dt.

More generally, if T ∈ Rd is a multiple random variable, we also encounter

the dimension problem for large d. Then, we can use the projected co-

variates α⊤T to construct a test for heteroscedasticity. The test statistic
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becomes

CM (2)
n =

∫
Sd

∫
R
| 1√

n

n∑
i=1

η̂iI(α
⊤Ti ≤ t)|2Fn,α(dt)dα,

where Fn,α is the empirical distribution function of the projected covariates

{α⊤Ti : i = 1, · · · , n}. The limiting distributions of CM
(1)
n and CM

(2)
n are

similar to that of HCMn, which we derive here.

Now, we investigate the sensitivity of the proposed test to alternative

hypotheses. Consider a sequence of local alternatives converging to the null

at a convergence rate cn:

H1n : E(ε2|Z) = σ2 + cns(Z), (3.6)

where s(Z) is not a constant function of Z, and E[s(Z)] = 0 and E[s2(Z)] <

∞. The following theorem shows that the proposed test is consistent against

all global alternatives, and can detect local alternatives converging to the

null at a parametric convergence rate 1/
√
n.

Theorem 3. Suppose the regularity conditions in Theorem 1 or Theorem

2 hold. Then,

(1) under the alternatives H1n, with
√
ncn → ∞, we have HCMn → ∞ in

probability;

(2) under the alternatives H1n, with cn = 1/
√
n, we have

HCMn −→
∫
Sp

∫
R
[V∞(α, t) + S(α, t)]2Fα(dt)dα in distribution,

where S(α, t) = E{s(Z)[I(α⊤Z ≤ t)− Fα(t)]} is a nonrandom shift term.
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The proofs of Theorems 1−3 are presented in the online Supplementary

material. These theorems confirm the claims made in the introduction.

4. Numerical studies

4.1. Simulation studies

In this subsection, we conduct several simulation studies to investigate

the performance of our test. Because the test is not asymptotically dis-

tribution free, we suggest a residual-based bootstrap to approximate the

distribution of the test statistic. This method was also used by Hsiao and

Li (2001), Wang and Zhou (2007), Su and Ullah (2013), and Guo et al.

(2019). The procedure for the residual-based bootstrap is given as follows:

(1). For a given random sample {(Yi, Zi) : i = 1, · · · , n}, obtain the resid-

ual ε̂i = Yi − m̂(Zi), where m̂(·) is the estimator of the regression

function.

(2). Obtain the bootstrap error ε∗i by randomly sampling, with replace-

ment, from the center variables {ε̂i − ¯̂ε : i = 1, · · · , n}, where ¯̂ε =

(1/n)
∑n

i=1 ε̂i. Then define, Y ∗
i = m̂(Zi) + ε∗i .

(3). For the bootstrap sample {(Y ∗
i , Zi) : i = 1, · · · , n}, obtain the estima-

tor m̂∗(Zi), and then define the bootstrap residual ε̂∗i = Y ∗
i − m̂∗(Zi).

Let η̂∗i = ε̂∗2i − σ̂∗2
i and σ̂∗2

i = (1/n)
∑n

i=1 ε̂
∗2
i . Thus, the bootstrap test

statistic HCM∗
n is calculated based on {(η̂∗i , Zi) : i = 1, · · · , n}.

(4). Repeat steps (2) and (3) many times, say, B times. For a given sig-

nificance level τ , the critical value is determined by the upper τ−
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quantile of the bootstrap distribution {HCM∗
n,j : j = 1, · · · , B} of

the test statistic.

Note that m̂(Zi) = m(Zi, β̂n) for the parametric regression model (3.1), and

m̂(Zi) = β̂⊤
n Xi + ĝ(Ti), with Zi = (Xi, Ti), for the partial linear regression

model (3.2). The bootstrap estimators m̂∗(Zi) are defined similarly.

The next theorem establishes the validity of the residual-based boot-

strap.

Theorem 4. Suppose the regularity conditions in Theorem 1 or Theorem

2 hold. Then,

(1) under the null H0 and the local alternative H1n, the distribution of

HCM∗
n, given {(Yi, Zi) : i = 1, · · · , n}, converges to the limiting null dis-

tribution of HCMn in Theorem 1.

(2) under the alternative H1, the distribution of HCM∗
n, given {(Yi, Zi) :

i = 1, · · · , n}, converges to a finite limiting distribution.

Theorem 4 indicates that the bootstrap is asymptotically valid. Un-

der the null hypothesis, the bootstrap distribution gives an asymptotical

approximation to the limiting null distribution of HCMn. Under the local

alternatives H1n and the global alternative H1, the proposed test based on

the bootstrap critical values remains consistent.

Next, we report several simulation results that evaluate the finite-

sample performance of the proposed test. We also compare the perfor-

mance of the proposed test with that of the tests of Zhu, Fujikoshi, and
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Naito (2001) TZFN
n , Zheng (2009) TZH

n , and Guo et al. (2019) TG
n under

different settings of dimensions. Note that Guo et al. (2019) used the

characteristic function to construct a test for heteroscedasticity, based on

one-dimensional projections. Thus, their test is also less sensitive to the

dimension of the covariates. Specifically, their test statistic is based on the

fact that the null hypothesis H0 is equivalent to E[η exp(it⊤Z)] = 0, for all

t ∈ Rp. The test statistic of Guo et al. (2019) is given as follows:

TG
n =

∫
Rp

| 1
n

n∑
j=1

η̂j exp(it
⊤Zj)|2fδ,p(t)dt,

where fδ,p(t) denotes the density of a spherical stable distribution in Rp,

with a characteristic exponent δ ∈ (0, 2]. Note that∫
Rp

cos(t⊤z)fδ,p(z)dz = exp(−∥t∥δ).

Thus, the test statistic of Guo et al. (2019) has a closed form:

TG
n =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

η̂iη̂j exp(−∥Zi − Zj∥δ).

In the following simulations, a = 0 corresponds to the null, and a ̸= 0

corresponds to the alternatives. The sample sizes are 100 and 200. The

empirical size and powers are calculated using 1000 replications at a nominal

level 0.05. The bootstrap sample is set to B = 500. We choose δ = 1.5 in

TG
n , as suggested by Guo et al. (2019).

Study 1. The data are generated from the following parametric re-
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gression models:

H11 : Y = β⊤Z + |a× β⊤Z + 0.5| × ε;

H12 : Y = β⊤Z + exp(a× β⊤Z)× ε;

H13 : Y = β⊤Z + |a× sin(β⊤Z) + 1| × ε;

H14 : Y = exp(−β⊤Z) + |a× β⊤Z + 0.5| × ε;

where Z ∼ N(0, Ip), independent of the standard normal error ε, and

β = (1, · · · , 1)⊤/√p. To show the effect of the dimension, p is set to 2,

4, and 8 in each model. Note that model H13 is a high-frequency mod-

el, and the other three are low-frequency models. To determine whether

the regression function affects the performance of the tests, we consider a

nonlinear regression function in model H14.

The simulation results for models H11 and H12 are presented in Table

1. The remaining results are relegated to the Supplementary material, for

brevity. When p = 2, Zheng (2009)’s test TZH
n and the test of Guo et al.

(2019) TG
n do not maintain the significance level in some cases, although the

other two perform better. In terms of the empirical power, the tests all work

well. However, the proposed test HCMn and the test of Zhu, Fujikoshi, and

Naito (2001) TZFN
n grow faster than the other two as a increases. When

the dimension p becomes large, the tests HCMn and TZFN
n still control

the empirical size. In contrast, the empirical sizes of TZH
n and TG

n are

slightly away from the significance level. In terms of empirical power, the

tests HCMn and TG
n outperform the other two. Here, TZFN

n performs worst

20

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0322



TESTING HETEROSCEDASTICITY BASED ON PROJECTIONS

when p = 8. These finding validate our theoretical results that the proposed

test HCMn is little affected by the dimension of the covariates, and that the

tests TZH
n and TZFN

n suffer severely from the dimensionality problem. In the

high-frequency model H13, we observe that the locally smoothing test TZH
n

performs much worse than the other tests do. This differs from the case

of model checking, where locally smoothing tests usually outperform their

globally smoothing counterparts in high-frequency models. Furthermore,

we found no significant difference between the empirical size and power of

the regression functions in models H11 and H14.

Tables 1 are about here

In the next simulation study, we investigate the performance of the

proposed test in partial linear regression models. We focus on two cases:

(1) V ar(ε|X,T ) is a function of (X,T ), and (2) V ar(ε|X,T ) is a function

of T .

Study 2. The data are generated from the following models:

H21 : Y = β⊤X + T 2 + |a(β⊤X + T ) + 0.5| × ε;

H22 : Y = β⊤X + T 2 + exp{a(β⊤X + T )} × ε;

H23 : Y = β⊤X + T 2 + |a sin(β⊤X + T ) + 1| × ε;

H24 : Y = β⊤X + exp(T ) + |a(β⊤X + T ) + 0.5| × ε;

H25 : Y = β⊤X + exp(T ) + |a sin(β⊤X + T ) + 1| × ε;

H26 : Y = β⊤X + T 2 + exp(4aT )× ε;
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where X ∼ N(0, Iq), T ∼ U(0, 1), ε ∼ N(0, 1), and β = (1, · · · , 1)⊤/√q.

The error term ε is independent of (X,T ). The dimension q of the covariates

X is again set to 2, 4, and 8.

We use the kernel function K(u) = (1/
√
2π) exp(−u2/2). A further is-

sue is the selection of the bandwidth h. Several data-driven procedures are

available for selecting the bandwidth automatically in estimation problems,

(e.g., generalized cross validation; GCV). In hypothesis testing, how best

to select a bandwidth remains an open problem. Note that the underlying

regression models are different under the null and the alternatives. Eubank

and Hart (1993) stated that the GCV method works well when choosing

the bandwidth for a homoscedastic model, but may not be useful for a het-

eroscedastic model. Thus, it is unknown whether a data-driven procedure

exists for selecting the bandwidth in hypothesis testing. On the other hand,

Theorems 2 and 3 show that the asymptotic property of the test statistic

HCMn does not rely on the choice of h when the regularity condition (B4)

is satisfied. Thus, the proposed test is not overly sensitive to the choices of

the smoothing parameter h. Thus, we consider a wide range of values of h,

and empirically choose one as the bandwidth. This strategy was also adopt-

ed by Zhu, Fujikoshi, and Naito (2001) and Sun and Wang (2009), among

many others. Let h = j/100, for j = 10, 15, 20, · · · , 100. The empirical size

and power of each dimension are presented in Figures 1 and 2.

Figures 1 and 2 is about here
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From these two figures, we can see that when the bandwidth h is too

small, HCMn cannot maintain the significance level. However, when the

bandwidth h is greater than 0.5, the test statistic HCMn seems robust

against different bandwidths. Thus, we use the bandwidth h = 0.65 in the

following simulation studies.

The empirical size and power values are presented in the Supplementary

Material. We observe that the results are similar to those of Study 1 for the

first five models. The proposed test HCMn still performs best. It seems

the nonlinear part g(·) of a partial linear regression model does not affect

the performance of the test. However, this changes in model H26. When

the dimension q of the covariate X is relatively large, the tests all perform

very poorly, because when q is large, the weight of T that contributes to

the test statistics becomes small.

4.2. Real-data analysis

In this subsection, we analyze two data sets. The first one is a well-

known baseball salary data set ( available from the website

http://www4.stat.ncsu.edu/~boos/var.select/baseball.html.), with

data on the salary Y and 16 performance measures for each of 337 Major

League Baseball players for the 1991 and 1992 seasons. Further details

about the variables in the data set are available from the above website.

Recently, Tan and Zhu (2018) analyzed the data set, and suggested fitting

the data set using the following parametric single-index model:

Y = a+ b(β⊤X) + c(β⊤X)2 + ε.
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Here, we investigate whether heteroscedasticity exists in this model. We

first plot the residuals ε̂ against the fitted values Ŷ in Figure 3, where

ε̂ = Y − â− b̂(β̂⊤
n X)− ĉ(β̂⊤

n X)2 and Ŷ = â+ b̂(β̂⊤
n X)+ ĉ(β̂⊤

n X)2. This plot

shows that heteroscedasticity may exist. When the proposed test is applied,

the p-value is about zero. This indicates the existence of heteroscedasticity.

Thus, a parametric single-index model with heteroscedasticity is plausible

for the salary data set.

Figures 3 is about here

In the next example, we consider the ACTG315 data set, which was

used by an AIDS clinical trial group study to identify the relationship be-

tween virologic and immunologic responses in AIDS clinical trials. The data

set has been studied by Wu and Wu (2001, 2002) and Yang, Xue, and Cheng

(2009). In general, the virologic response RNA (measured by viral load)

and immunologic response (measured by CD cell counts) have a negative

correlation during clinical trials. Let viral load be the response variable,

and let CD4+cell counts and treatment time be the covariates. Liang et

al. (2004) find that a linear relationship between viral load and CD4+ cell

count, but a nonlinear relationship between viral load and treatment time.

Base on these findings, Yang, Xue, and Cheng (2009) suggested a partial

linear regression model to fit the data. Xu and Guo (2013) confirmed this

model using a goodness of fit test. The data set contains 317 observation-

s, with 64 CD4+ cell counts missing. To illustrate our test, we clear the
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observations with missing variables. Let Y be viral load, T be treatment

time, and X be CD4+cell count. Yang, Xue, and Cheng (2009) use the

following model to fit the data:

Y = βX + g(T ) + ε.

We use the proposed test to check for heteroscedasticity in the above mod-

els. When the normal kernel and the bandwidth h = 0.65 are used, the

p-value is about 0.246. Thus, we cannot reject the homoscedasticity as-

sumption in the partial linear regression model. The scatter plot of the

residuals ε̂ against the fitted values Ŷ is presented in Figure 4, where

ε̂ = Y − β̂nX − ĝ(T ) and Ŷ = β̂nX + ĝ(T ). This plot confirms that a

partial linear model with homoscedasticity is appropriate for the data set.

Figure 4 is about here

5. Conclusion

We propose a test for heteroscedasticity that uses a projected empirical

process. The proposed test can be viewed as a generalization of the test of

Zhu, Fujikoshi, and Naito (2001). When the dimension of the covariate is

one, the proposed test reduces to that of Zhu, Fujikoshi, and Naito (2001).

Thus, the tests share several common desirable feathers: both are consis-

tent for all global alternatives; the convergence rate does not relate to the

dimension of the covariates; and they can detect local alternatives departing

from the null at a parametric rate 1/
√
n, which is the fastest convergence

rate in hypothesis testing. Nevertheless, we use the projection of the covari-
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ates rather than the covariates themselves to construct the residual marked

empirical process. Because the proposed test is based on one-dimensional

projections, it performs as if the dimension of the covariates is one. Thus,

our test can significantly alleviate the impact of the “curse of dimensionali-

ty.” The simulation results validate these theoretical results. Furthermore,

our method can easily be extended to a more generalized problem of testing

the parametric form of a variance function. However, the limiting distri-

butions of the empirical processes may have a more complicated structure,

which may lead to the asymptotic test not being available. This is beyond

the scope of this study, and is left to further research.

Supplementary Material

The online Supplementary Material contains proofs for the main results

and additional simulation results.
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Figure 1: The empirical size curves of HCMn against the different bandwidths

and sample size 100 and 200 with a = 0 in Model H21.
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Figure 2: The empirical power curves of HCMn against the different bandwidths

and sample size 100 and 200 with a = 0.2 in Model H21.
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Table 1: Empirical sizes and powers of HCMn, T
G
n , TZH

n , and TZFN
n for H11

and H12 in Example 1.

a HCMn TG
n TZH

n TZFN
n

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

H11, p = 2 0.0 0.045 0.051 0.058 0.062 0.042 0.033 0.052 0.049

0.1 0.528 0.895 0.391 0.751 0.123 0.286 0.503 0.889

0.2 0.966 1.000 0.921 1.000 0.468 0.889 0.961 1.000

0.3 0.998 1.000 0.990 1.000 0.779 0.990 0.985 1.000

0.4 0.998 1.000 0.999 1.000 0.885 0.998 0.974 1.000

0.5 0.994 1.000 0.999 1.000 0.928 1.000 0.965 0.998

H11, p = 4 0.0 0.055 0.053 0.050 0.057 0.031 0.022 0.063 0.051

0.1 0.398 0.767 0.233 0.481 0.049 0.095 0.131 0.593

0.2 0.874 0.997 0.669 0.958 0.145 0.347 0.426 0.956

0.3 0.963 1.000 0.857 0.999 0.306 0.621 0.541 0.964

0.4 0.970 0.999 0.943 1.000 0.430 0.821 0.419 0.916

0.5 0.944 0.998 0.958 1.000 0.492 0.876 0.297 0.809

H11, p = 8 0.0 0.049 0.049 0.053 0.065 0.045 0.036 0.050 0.049

0.1 0.289 0.600 0.151 0.257 0.055 0.055 0.004 0.004

0.2 0.755 0.980 0.352 0.688 0.108 0.132 0.004 0.010

0.3 0.883 0.997 0.526 0.892 0.138 0.187 0.004 0.010

0.4 0.874 0.990 0.623 0.946 0.167 0.254 0.009 0.009

0.5 0.853 0.988 0.647 0.966 0.247 0.324 0.023 0.014

H12, p = 2 0.0 0.054 0.046 0.043 0.068 0.032 0.056 0.052 0.045

0.1 0.183 0.347 0.138 0.262 0.059 0.080 0.153 0.327

0.2 0.564 0.892 0.440 0.753 0.121 0.295 0.502 0.878

0.3 0.882 0.996 0.747 0.967 0.281 0.692 0.810 0.993

0.4 0.973 0.999 0.927 0.999 0.514 0.900 0.919 0.997

0.5 0.987 0.999 0.983 1.000 0.650 0.964 0.944 0.986

H12, p = 4 0.0 0.050 0.046 0.058 0.048 0.028 0.023 0.057 0.056

0.1 0.127 0.270 0.103 0.157 0.034 0.038 0.040 0.110

0.2 0.424 0.789 0.264 0.479 0.048 0.075 0.104 0.529

0.3 0.702 0.976 0.488 0.856 0.114 0.208 0.210 0.804

0.4 0.862 0.993 0.727 0.976 0.163 0.436 0.294 0.857

0.5 0.910 0.993 0.849 0.996 0.272 0.651 0.317 0.802

H12, p = 8 0.0 0.050 0.046 0.085 0.062 0.039 0.037 0.054 0.047

0.1 0.112 0.193 0.083 0.111 0.055 0.053 0.014 0.001

0.2 0.274 0.618 0.156 0.266 0.063 0.057 0.002 0.003

0.3 0.549 0.919 0.252 0.526 0.089 0.086 0.002 0.000

0.4 0.757 0.973 0.372 0.727 0.113 0.154 0.001 0.002

0.5 0.836 0.972 0.494 0.865 0.140 0.207 0.001 0.002
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Figure 3: The scatter plot of the residuals ε̂i against the fitted values Ŷi for the

baseball salary data set.
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Figure 4: The scatter plot of the residuals ε̂i against the fitted values Ŷi for the

ACTG 315 data set.
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