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JOINT MODELS FOR GRID POINT

AND RESPONSE PROCESSES IN LONGITUDINAL

AND FUNCTIONAL DATA

Daniel Gervini and Tyler J Baur

University of Wisconsin�Milwaukee

Abstract: The distribution of the grid points at which a response function is

observed in longitudinal or functional data applications is often informative and

not independent of the response process. Here, we propose a covariation model

for estimating and making inferences about this interrelation, where we treat the

data as replicated realizations of a marked point process. We derive the max-

imum likelihood estimators and the asymptotic distribution of the estimators.

The behavior of the estimators is examined using simulations. Lastly, we apply

the model to an online auction data set, and show that there is a strong correla-

tion between bidding patterns and price trajectories.

Key words and phrases: Doubly-stochastic process; Karhunen�Loève decompo-

sition; latent-variable model; Poisson process.
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2. Introduction

In many statistical applications, the objects of analysis are samples of func-

tions, fgi(x) : i = 1; : : : ; ng. In general, these functions are measured at

discrete points fxij : j = 1; : : : ;mig; thus, the observed data are actually

given by f(xij; yij) : j = 1; : : : ;mi; i = 1; : : : ; ng, with

yij = gi(xij) + �ij; (2.1)

where �ij is random noise. Longitudinal data often �t this framework (Rice,

2004; Müller, 2008).

Functional data analyses focus on samples of functions gi(x), which are

usually recovered from raw data using some form of smoothing (James et al.,

2000; Ramsay and Silverman, 2005, ch. 3; Yao et al., 2005). In general, the

distribution of the grid points fxijg is considered noninformative. However,

there are situations in which the distribution of xij may be informative in

its own right.

Consider, for example, the bid price trajectories shown in Figure 1.

These are bid prices for Palm M515 personal digital assistants (PDAs) on

week-long eBay auctions that took place between March and May of 2003.

Bidding activity tends to concentrate at the beginning and at the end of

the auctions, in patterns that have been called �early bidding� and �bid
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sniping,� respectively. Earlier analyses of these data (Shmueli and Jank,

2005; Jank and Shmueli, 2006, 2010) studied the dynamics of the process

using derivatives of the bid price curves. More recently, Wu et al. (2013)

and Arribas-Gil and Müller (2014) investigated the bid time process itself.

However, a joint modeling of the bid time process and the bid price curves

has not yet been attempted, and there are reasons to believe these processes

are not independent. For example, it is suspected that items with prices

below the mean are more likely to experience bid sniping. To answer such

questions, it is necessary to jointly model the bid time process fxijg and

the bid price process fyijg.

The approach we present in this paper considers the data f(xij; yij)g

as n independent realizations of a marked point process. Using common

point-process terminology, for each subject i, xij is viewed as an obser-

vation of a point process, and yij as a corresponding �mark� (Cox and

Isham, 1980; Møller and Waagepetersen, 2004; Baddeley, 2007; Streit,

2010). Note, however, that not all marked point processes arise as dis-

cretizations of smooth functions, as that in model (2.1) does. Therefore,

the methods we propose here are speci�cally intended for functional and

longitudinal data applications. To avoid confusion with terminology, we do

not refer to the mi observations for each subject i as �replications�, as is
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often done in the point-process literature. Instead, we consider the whole

set f(xij; yij) : j = 1; : : : ;mig for each i as a single realization of the process,

and the n sets as the n replications.

As pointed out by Guan and Afshartous (2007) and Møller et al. (2016),

the literature on modeling marked point processes is limited and restricted

to the single-replication scenario, focusing on simple summary statistics of

the processes and on testing broad, generic hypotheses, such as indepen-

dent marking (Guan and Afshartous, 2007; Myllymäki et al., 2017; see

also Baddeley, 2010, sec. 21.7). However, the availability of replications

allows us to estimate the correlations between the intensity functions of the

point process fxijg and the Karhunen�Loève components of the response

process fyijg, which is not possible in a single-replication scenario. Regres-

sion models in point-process contexts have been proposed (Barret et al.,

2015; Rathbun and Shi¤man, 2016); however, their goal is to incorporate

covariates into intensity function models. Similarly, Scheike (1997) related

longitudinal data to marked point processes, but his goal was to model the

conditional distribution of the time points given past observations. None of

the aforementioned works jointly model the time points and the response

processes, which is the goal of this study.
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3. Latent variable model

A point process X is a random countable set in a space S , where S is

usually R for temporal processes, or R2 for spatial processes (Møller and

Waagepetersen, 2004, ch. 2; Streit, 2010, ch. 2). When each point x 2 X

is accompanied by a random feature Yx in some space M , Z = f(x; Yx) :

x 2 Xg is called a marked point process. As mentioned in Section 2, we

are interested in the speci�c situation where Yx follows the model

Yx = g(x) + �x; (3.2)

with g : S ! M the function of interest, and �x denoting random noise.

We consider only M = R in this paper, but extensions to the multivariate

case M = Rk are straightforward.

A point process X is locally �nite if #(X \ B) < 1 with probability

one, for any bounded B � S . For a locally �nite process the count function

N(B) = #(X \ B) can be de�ned, and ZB := f(x; Yx) : x 2 X \ Bg is

a �nite set, ZB = f(x1; y1); : : : ; (xN(B); yN(B))g. A Poisson process is a

locally �nite process, for which there exists a locally integrable function

� : S ! [0;1), called the intensity function, such that (i) N(B) has a

Poisson distribution with rate
R
B
�(t)dt, and (ii) for disjoint sets B1; : : : ; Bk,

the random variables N(B1); : : : ; N(Bk) are independent. A consequence of
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(i) and (ii) is that the conditional distribution of the points in X \B given

N(B) = m, is the distribution of m independent and identically distributed

(i.i.d.) observations with density �(t)=
R
B
�.

For replicated point processes, a single intensity function � rarely pro-

vides an adequate �t for all replications. It is more reasonable to assume

that � is subject-speci�c, and then to treat it as a random e¤ect. Such

processes are called doubly stochastic processes, or Cox processes (Møller

and Waagepetersen, 2004, ch. 5; Streit, 2010, ch. 8). A doubly stochastic

process is a pair (X;�), where Xj� = � is a Poisson process with intensity

function �, and � is a random function that takes values on the space F

of nonnegative locally integrable functions on S . Then, the n replications

of the point process can be seen as i.i.d. realizations of a doubly stochastic

process (X;�), where X is observable, but � is not. Similarly, for g in (3.2),

we assume there is a process G, such that Y j (X;G = g) follows model

(3.2). Then, the n replications of the marked point process can be seen as

i.i.d. realizations of (X; Y;�; G), where X and Y are observable, but � and

G are not.

Our main goal is to study the relationship between the intensity process

� that generates x and the response process G that generates y. To this
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end, we assume that G follows a �nite Karhunen�Loève decomposition

G(x) = �(x) +

p2X
k=1

vk k(x); (3.3)

where f kg are orthonormal functions in L2(S ), and fvkg are uncorrelated

zero-mean random variables. Any stochastic process in L2(S ) with �nite

variance can be decomposed as in (3.3), with a possibly in�nite p2 (Ash

and Gardner, 1975, ch. 1.4). However, because we are interested in smooth

processes, for practical purposes, it is su¢ cient to consider only �nite p2.

A similar decomposition for � would be problematic, owing to the

nonnegativity constraint. A nonnegative decomposition was proposed by

Gervini (2016). However, for simplicity, we use an alternative approach.

We decompose the logarithm of �, which is unconstrained,

log �(x) = �(x) +

p1X
k=1

uk�k(x); (3.4)

where f�kg are orthonormal functions in L2(S ), and fukg are uncorrelated

zero-mean random variables.

The association between � and G is then determined by the association

between the component scores u = (u1; : : : ; up1) and v = (v1; : : : ; vp2) in

(3.4) and (3.3), respectively. As a working model, we assume that (u;v) fol-

lows a joint multivariate normal distribution with mean zero and covariance
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matrix

� =

0BB@ diag(�2u) �uv

�T
uv diag(�2v)

1CCA ;

where �2u and �
2
v are the variances of the elements of u and v, respectively.

The error term � in (3.2) is assumed N(0; �2�) and independent of u and

v. The parameter of interest is the cross-covariance matrix �uv; the others

are mostly nuisance parameters.

The signs of the component scores are not identi�able, because �uk and

��k(x) satisfy the same model as uk and �k(x), respectively; similar reason-

ing holds for vk and  k. Consequently, the signs of �uv;kl = cov(uk; vl) are

not identi�able either, and can be chosen for convenience of interpretation

for any given application.

To facilitate the estimation of the functional parameters �, �k, �, and

 k, we use semiparametric basis-function expansions. As basis functions,

we can use, for instance, B-splines if S = R, or normalized Gaussian

radial kernels if S = R2; other families are possible, and perhaps better

in some cases, such as simplicial bases for bivariate functions on irregular

domains. We call this family B. Let (x) be the vector of basis functions

f1; : : : ; qg ofB, with j : S ! R. We assume, then, that �(x) = cT0 (x),

�k(x) = c
T
k (x), �(x) = d

T
0 (x), and  k(x) = d

T
k (x).
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The model parameters are collected, for simplicity, in a single vector

� = (vec�uv; c0; : : : ; cp1 ;d0; : : : ;dp2 ;�
2
u;�

2
v; �

2
�): (3.5)

The orthonormality constraints on �k and  k can be expressed as c
T
k Jcl =

dTk Jdl = �kl, where �kl is Kronecker�s delta and J =
R
(x)(x)Tdx.

4. Penalized maximum likelihood estimation

With a slight abuse of notation, we write f(xij; yij) : j = 1; : : : ;mig in

vector form as (xi;mi;yi). Then, the joint density of the observations and

the latent variables can be factorized as

f�(x;m;y;u;v) = f�(y j x;m;u;v)f�(x;m j u;v)f�(u;v):

Because f�(y j x;m;u;v) does not explicitly depend on u, and f�(x;m j

u;v) does not explicitly depend on v, we can write

f�(x;m;y;u;v) = f�(y j x;m;v)f�(x;m j u)f�(u;v):

From (3.2), (3.3), (3.4), and the distributional assumptions in Section 3, we

have

f�(y j x;m;v) =
1

(2��2�)
m=2

exp

�
� 1

2�2�
ky � �(x)�	(x)vk2

�
; (4.6)

with �(x) = (�(x1); : : : ; �(xm))T and 	(x) = [ 1(x); : : : ;  p2(x)];

f�(x;m j u) = exp
�
�
Z
�u(t)dt

�
1

m!

mY
j=1

�u(xj);
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with �u(x) = expf�(x) + uT�(x)g; and

f�(u;v) =
1

(2�)(p1+p2)=2(det�)1=2
exp

�
�1
2
(uT ;vT )��1(uT ;vT )T

�
:

The marginal density of the observations,

f�(x;m;y) =

ZZ
f�(x;m;y;u;v) du dv;

has no closed form, and requires numerical integration for its evaluation,

for which we use the Laplace approximation. This and other details of the

implementation are discussed in the Supplementary Material.

The maximum likelihood estimator of � is the maximizer of
Pn

i=1 log f�(xi;mi;yi).

However, when a large family of basis functions B is used, it is advisable

to regularize the functional estimators by adding roughness penalties to the

objective function. Therefore we de�ne the penalized log-likelihood

`n(�) =
1

n

nX
i=1

log f�(xi;mi;yi)��1P (�)��2
p1X
k=1

P (�k)��3P (�)��4
p2X
k=1

P ( k);

(4.7)

where �1; : : : ; �4 are nonnegative smoothing parameters, and P (f) is a

roughness penalty function, such as P (f) =
R
(f 00)2 if f is univariate, or

P (f) =
RR
f(@2f

@t21
)2 + 2( @2f

@t1@t2
)2 + (@

2f
@t22
)2g if f is bivariate. The estimator of

� is then de�ned as

�̂ = argmax
�2�

`n(�);
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where � is the parameter space

� = f� 2 Rd : hCkl(�) = 0; k = 1; : : : ; l; l = 1; : : : ; p1; (4.8)

hDkl(�) = 0; k = 1; : : : ; l; l = 1; : : : ; p2;

�2� > 0; � > 0g;

with d the dimension of �, hCkl(�) = cTk Jcl � �kl, hDkl(�) = dTk Jdl � �kl,

and � > 0 denoting that � is symmetric and positive de�nite. The esti-

mating equations for �̂ and an expectation�maximization (EM) algorithm

(Dempster et al., 1977) for its computation are derived in the Supplemen-

tary Material. The programs implementing these algorithms are available

on the �rst author�s website.

Once �̂ has been obtained, individual predictors of the latent component

scores, whether for the sample units or for new data, can be obtained as

ûi = E�̂(u j xi;mi;yi) and v̂i = E�̂(v j xi;mi;yi). These integrals can also

be evaluated numerically using a Laplace approximation.

This model has a number of tuning parameters that have to be chosen

by the user: the numbers of functional components p1 and p1, the type of

basis family B and its dimension q, and the smoothing parameters � in

the penalized likelihood. The speci�c type of basis family will not have

much of an impact for most applications, provided that the dimension q is

Statistica Sinica: Preprint 
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su¢ ciently large. In this study, we use cubic B-splines with equally spaced

knots for our simulations and data analyses; higher-order splines should

be used if an estimation of derivatives is of interest. The dimension q is

more relevant and should be relatively large to avoid bias; the variability

of the estimators will be taken care of by �. As noted by Ruppert (2002,

sec. 3), although q can be chosen systematically using cross-validation, there

is little change in the goodness of �t after a minimum dimension q has been

reached; for a larger q, the �t is essentially determined by the smoothing

parameters.

The choice of �, then, is more important, and can be done objectively

using cross-validation (Hastie et al., 2009, ch. 7). Leave-one-out cross-

validation �nds � that maximizes

CV(�1; �2; �3; �4) =
nX
i=1

log f
�̂
[�i](xi;mi;yi); (4.9)

where �̂
[�i]

denotes the estimator obtained without observation i. A faster

alternative is to use k-fold cross-validation, where the data are split into k

subsets that are used as test data; k = 5 is a common choice. A full four-

dimensional optimization of (4.9) would be too time consuming, even with

�ve-fold cross-validation. As a workable alternative, we suggest a sequential

optimization, where each �j is optimized in turn on a grid, and the others

are kept �xed at an initial value chosen by the user.

Statistica Sinica: Preprint 
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A more practical alternative is to choose the parameters subjectively

by visual inspection. Plots of the means and components for di¤erent � on

a grid can be inspected to determine how new features of the curves appear

or disappear as � varies. Then, we can choose � that produces curves with

features that are well de�ned, but not too irregular. In general, because

curve shapes change smoothly with �, there is a relatively broad range of

� that will produce reasonable results; thus, it is not necessary to specify a

precise optimal. We use this method in our simulations and data analysis.

The choice of the numbers of components p1 and p2 can also be done

either objectively, using cross-validation, or subjectively, by taking into

account the accumulated proportions of variability �2u1 + � � � + �2up1 and

�2v1 + � � � + �2vp2. From a practical perspective, however, the goal of this

model is not so much to �nd the largest possible p that will best approxi-

mate the data, but to capture the most salient modes of variability of the

X and Y processes, and then to estimate and interpret their correlations.

From this perspective, having a few well-estimated components with signif-

icant correlations is preferable to having a higher-dimensional model with-

out many (or any) signi�cant correlations, even if some residual systematic

variability remains unaccounted for.
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5. Asymptotics and inference

The asymptotic behavior of �̂ as n ! 1 can be studied using standard

empirical-process techniques (Pollard, 1984; Van der Vaart, 2000), because

(4.7) is the average of i.i.d. functions and a nonrandom roughness penalty;

for example, see Knight and Fu (2000).

�Nonparametric�asymptotics, where no assumptions about the func-

tional parameters (other than degrees of smoothness) are made, and the

dimension q of the basis family B is allowed to grow with n, is perhaps the

most theoretically satisfying, but it is too di¢ cult. A simpler approach is

that of �parametric�asymptotics, where q is held �xed, and the functional

parameters are assumed to belong to B. This approach, in e¤ect, ignores

the smoothing bias. However, in practice, this is not a serious problem,

as long as q is reasonably large. We follow this approach, which others

have followed in similar semiparametric contexts (e.g., Yu and Ruppert,

2002, and Xun et al., 2013), and show later by simulation that the asymp-

totic variance estimates provide very accurate approximations to the actual

�nite-sample variance of the estimators.

The �rst result in this section, Theorem 1, establishes the consistency

of the estimator �̂. The proof, given in the Supplementary Material, essen-

tially follows along the lines of the classical consistency proof of maximum

Statistica Sinica: Preprint 
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likelihood estimators, with the caveat that the indeterminate sign of the

functional components requires special handling. We further assume that

the components have multiplicity one; thus, we de�ne

� = f� 2 Rs : hCkl(�) = 0; k = 1; : : : ; l; l = 1; : : : ; p1; (5.10)

hDkl(�) = 0; k = 1; : : : ; l; l = 1; : : : ; p2;

�2� > 0; � > 0; �u1 > � � � > �up1 > 0; �v1 > � � � > �vp2 > 0;

ck1 � 0; k = 1; : : : ; p1; dk1 � 0; k = 1; : : : ; p2g;

and make the following assumptions:

A1 The signs of the functional components �̂k;n and  ̂k;n are speci�ed so

that the �rst nonzero basis coe¢ cient of each �̂k;n and  ̂k;n is positive

(then, �̂n 2 � for � de�ned in (5.10).)

A2 The true functional parameters �0, �0, �k0, and  k0 of models (2.1)�

(3.3)�(3.4) belong to the functional space B used for the estimation,

and the basis coe¢ cients ck1;0 and dk1;0 are not zero. The signs of �k0

and  k0 are then speci�ed such that ck1;0 > 0 and dk1;0 > 0; therefore,

there is a unique �0 in �, such that f�0(x;m;y) is the true density of

the data.

A3 �n ! 0 as n ! 1, where �n = (�1n; �2n; �3n; �4n)
T is the vector of

smoothing parameters in (4.7).
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The requirement in assumption A2 that the �rst basis coe¢ cients ck1;0

and dk1;0 of each �k0 and  k0 be nonzero and, therefore, can be taken as

strictly positive, is somewhat arti�cial. Clearly, �k0 and  k0 must have at

least one nonzero basis coe¢ cient; however, it need not be the �rst, nor

any other, in particular. However, a condition such as this is necessary to

uniquely identify a �true�parameter �0, which would otherwise be uniden-

ti�able, owing to sign ambiguity. This condition has to be consistent with

the sign-speci�cation rule for the estimators in assumption A1.

Theorem 1. Under assumptions A1�A3, �̂n
P! �0 as n!1.

To establish the asymptotic normality of the estimators, we follow the

approach of Geyer (1994), and use the tangent cone of the parameter space.

The de�nition and properties of tangent cones can be found in Rockafellar

andWets (1998, ch. 6). Using Theorem 6.31 of Rockafellar andWets (1998),

the tangent cone of � at �0 is

T0 = f� 2 Rs : rhCkl(�0)T� = 0; k = 1; : : : ; l; l = 1; : : : ; p1;

rhDkl(�0)T� = 0; k = 1; : : : ; l; l = 1; : : : ; p2g:

The explicit forms ofrhCkl(�) andrhDkl(�) are derived in the Supplementary

Material. Let A be the s1 � s matrix with rows rhCkl(�0)T and rhDkl(�0)T ,

where s1 = fp1(p1 + 1)=2 + p2(p2 + 1)=2g, and let B be an orthogonal
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complement of A, that is, an orthogonal (s � s1) � s matrix, such that

ABT = O.

The next theorem gives the asymptotic distribution of �̂n. In addition

to B de�ned above, it uses Fisher�s information matrix,

F0 = E�0fr log f�0(x;m;y)r log f�0(x;m;y)Tg

= �E�0fr2 log f�0(x;m;y)g;

where r and r2 are taken with respect to the parameter �, and DP(�), the

Jacobian matrix of the smoothness penalty vectorP(�) = (P (�);
Pp1

k=1 P (�k);

P (�);
Pp2

k=1 P ( k))
T of (4.7). Explicit expressions for these derivatives are

given in the Supplementary Material. We make one additional assumption:

A4
p
n�n ! � as n!1, for a �nite �.

Theorem 2. Under assumptions A1�A4,
p
n(�̂n��0)

D! N(�VDP(�0)T�;V)

as n!1, with V = BT (BF0B
T )�1B.

Fisher�s information matrix F0 can be estimated by

F̂0 =
1

n

nX
i=1

r log f�̂(xi;mi;yi)r log f�̂(xi;mi;yi)
T

and V by V̂ = BT (BF̂0B
T )�1B. The accuracy of the approximation of V̂

to the actual �nite-sample variance of the estimators depends on the ratio

n=s. We found in our simulations (Section 6) that ratios of n=s � 3 o¤er

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0321



18

very accurate approximations. However, this does impose some limitations

on how large the basis family dimension q and the number of components

p1 and p2 can be, for any given n.

6. Simulations

We examine the �nite-sample behavior of the estimators by simulation, to

assess their consistency as the sample size increases and the accuracy of the

approximation of the asymptotic variances.

We generated data from models (3.2)�(3.4) with p1 = p2 = 2. We con-

sidered a temporal process on S = [0; 1], with �(x) � sin �x � log 1:98 +

log r, �(x) = 5x, �1(x) =
p
2 sin �x, �2(x) =

p
2 sin 2�x,  1(x) = �1(x),

and  2(x) = �2(x). The baseline intensity function �0(x) = exp�(x) inte-

grates to r; we chose two di¤erent values, namely, r = 10 and r = 30, giving

expected numbers of observations per curve of 10:5 and 31:3, respectively.

The lower rate r = 10 corresponds to the sparse situation where most indi-

vidual trajectories cannot be recovered by smoothing. The �rst components

�1 and  1 are essentially size components, explaining the variation in the

overall level above or below the mean. The second components �2 and  2

are contrasts, where, for example, a positive score corresponds to curves

that are above the mean on the �rst half of S , and below the mean on the
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second half.

The component variances are of the form �2u1 = :32�, �2u2 = :32(1� �),

�2v1 = :72�, and �2v2 = :72(1��). Two choices of � were considered: � = :60

and � = :75. The cross-covariance matrix �uv was diagonal with elements

�uv;11 = :7�u1�v1 and �uv;22 = :7�u2�v2. The random-noise variance was

�2� = :32. We considered four sample sizes n: 50, 100, 200, and 400. The

combinations of r, �, and n, yield 16 sampling models.

For the estimation, we considered cubic B-spline families with �ve and

10 equally spaced knots. The smoothing parameters were chosen visually,

as explained in Section 4, from a few trial samples from each of the six

models, with r = 10, and each of the two knot sequences; the same smooth-

ing parameters were used for the respective models with r = 30. These are

listed in the Supplementary Material. The Monte Carlo study, then, con-

sidered a total of 32 scenarios, with two families of estimators per sampling

model. Each scenario was replicated 300 times.

As a measure of the estimation error, we considered the root mean

squared error. For scalar parameters, for example, ��, these errors are

de�ned in the usual way: E1=2f(�̂� � ��)
2g. For functional parameters, for

example, �(x), these errors are de�ned in terms of the L2-norm: E1=2(k�̂�

�k2)g1=2. For the random-e¤ect predictors, for example, fûi1g, the errors
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r = 10 r = 30

Parameter n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

�uv;11 :054 :031 :025 :038 :026 :019

�uv;21 :057 :038 :024 :028 :017 :011

�uv;12 :036 :023 :015 :021 :014 :010

�uv;22 :023 :017 :012 :014 :009 :006

� :121 :102 :090 :096 :082 :072

� :124 :099 :087 :163 :144 :136

�1 :738 :515 :376 :436 :261 :188

�2 :882 :726 :558 :588 :389 :290

 1 :243 :249 :206 :138 :090 :061

 2 :216 :216 :176 :145 :097 :068

�u1 :065 :057 :029 :039 :027 :020

�u2 :065 :069 :038 :033 :024 :018

�v1 :070 :058 :096 :062 :047 :036

�v2 :071 :082 :065 :037 :027 :018

�� :067 :081 :062 :012 :011 :010

ui1 :217 :184 :170 :154 :140 :134

ui2 :163 :141 :121 :118 :104 :097

vi1 :167 :159 :162 :168 :151 :143

vi2 :153 :148 :138 :105 :083 :072

Table 1: Simulation Results. Root mean squared errors of estimators based

on �ve-knot B-splines under di¤erent baseline rates r and sample sizes n.
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are de�ned as E1=2f
Pn

i=1(ûi1 � ui1)
2=ng. The signs of �̂k(x) and  ̂k(x),

which in principle are indeterminate, were chosen as the signs of the inner

products h�̂k; �ki and h ̂k;  ki; the signs of ûik, v̂ik, and the elements of �̂uv

were changed accordingly. For brevity, we only report here the results for

the six sampling models with � = :75, n � 200, and estimators obtained

using �ve-knot splines (Table 1). The rest of the results can be found in

the Supplementary Material, and are largely in line with those reported

here. Also given in the Supplementary Material are plots of the functional

estimators, which help assess the relative weights of the bias and variance

in the overall mean squared error.

We see in Table 1 that the estimation errors decrease as n increases,

as expected, for both baseline rates r. However, the latter has a signi�cant

impact on the accuracy of the estimators, particularly for the components

�1 and �2. The plots in the Supplementary Material show that most of the

errors of �̂1 and �̂2 come from the bias, rather than the variance and, for a

given n, the bias decreases rapidly as r increases. Part of the bias of �̂1 and

�̂2 can be attributed to a component reversal, which is more frequent for

the models with � = :60 than it is for � = :75. This is also the case, but to

a lesser degree, for  ̂1 and  ̂2, which, for each (n; r) combination, are more

accurate estimators of their respective parameters than are �̂1 and �̂2.
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Table 2 compares the true �nite-sample standard deviations of the el-

ements of �̂uv with their median asymptotic approximations, as well as

median absolute errors of these approximations, for the estimators based

on �ve-knot splines and the models with variance proportion � = :75; for

� = :60 and for 10-knot splines, the results are given in the Supplementary

Material. The dimension of � for �ve-knot splines is s = 63; thus, Fisher�s

information matrix estimator F̂0 is singular for n = 50; therefore, we only

report the results for n � 100. Overall, we see that the asymptotic standard

deviations are very accurate estimators of the true standard deviations for

n � 200. For 10-knot splines, where the dimension of � is s = 93, the

tables in the Supplementary Material show that the approximation is accu-

rate for n � 400. This suggests ratios of n=s � 3 are su¢ cient for accurate

asymptotic approximations of the variances.

7. Application: Online auction data

The eBay auction data mentioned in Section 2 were downloaded from the

companion website of Jank and Shmueli (2010). In this sample, there were

194 items sold at auction, and each auction lasted seven days. A subsample

of 20 bid-price trajectories is shown in Figure 1. The dots are the actual

bids; the solid lines were drawn for better visualization. Figure 1 shows
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r = 10

n = 100 n = 200 n = 400

Parameter True Med MAE True Med MAE True Med MAE

�uv;11 :31 :63 :32 :24 :28 :04 :16 :16 :01

�uv;21 :38 :73 :35 :24 :36 :12 :15 :21 :06

�uv;12 :23 :42 :19 :15 :21 :06 :11 :12 :02

�uv;22 :17 :30 :13 :12 :14 :02 :13 :09 :05

r = 30

�uv;11 :25 :45 :20 :18 :21 :03 :12 :13 :01

�uv;21 :17 :32 :15 :11 :16 :04 :08 :10 :02

�uv;12 :14 :24 :10 :10 :12 :02 :06 :07 :01

�uv;22 :09 :18 :09 :06 :09 :02 :04 :05 :01

Table 2: Simulation Results. True standard deviations and median and me-

dian absolute errors of estimated asymptotic standard deviations (�10) of

estimators under di¤erent baseline rates r and sample sizes n, for estimators

based on �ve-knot B-splines and variance proportion � = :75.
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that bidding activity tends to concentrate at the beginning and at the

end of the auctions, in patterns known as early bidding and bid sniping,

respectively. The bid sniping phenomenon has been observed in dynamic

studies of auction prices in the form of slopes of derivatives of bid prices

(Jank and Schmueli, 2005; Wang et al., 2008). Some articles (e.g., Backus

et al., 2015) have pointed out that bid sniping is annoying for bidders, and

partly as a consequence of this, the number of items auctioned at eBay

has steadily decreased over the years, compared with the number of items

sold at �xed prices (Einav et al., 2015). It has been hypothesized that bid

sniping is triggered by the perception that an item�s current bid price is low.

We do not establish causation here, because our models are not intended for

that; however, the results obtained below are in line with this hypothesis.

To estimate the functional means and components, we used cubic B-

splines with �ve equally spaced knots. We found the smoothing parameters

graphically (the plots can be found in the Supplementary Material), obtain-

ing �1 = �2 = �4 = 10�4 and �3 = 10�6. From preliminary trial �ts with

�ve components for each process, we found that the �rst two components

of X explain 77% of the variability, and the �rst three components of Y

explain essentially 100% of the variability (the other two eigenvalues are

negligible); therefore, we chose p1 = 2 and p2 = 3. The estimated mean
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Figure 1: Online Auction Data. Price trajectories of Palm digital assistants

auctioned at eBay (�rst 20 trajectories in a sample of 194).

and components are shown in Figure 2. Figure 2(a) shows the baseline in-

tensity function �0(t) = exp�(t) of the bidding process. Here, we see that

most of the bidding activity tends to occur toward the end of an auction.

Some items attract, overall, more bids than others, and this is explained by

the �rst component (Fig. 2(c)): a positive score on �1 corresponds to an

intensity function � above the baseline. The second component is related

to bid sniping: for items with positive scores on �2, the number of bids in

the �nal two days of the auction will be above the mean. With regard to

the bid price, Fig. 2(b) shows the mean price trajectory �(t), and Fig. 2(d)
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shows the components. The �rst component is associated with the price

level: items with positive scores on  1 show prices above the mean over

the whole auction period. The second component is a contrast: items with

positive scores on  2 tend to show prices below the mean at the beginning

of the auction, and above the mean toward the end.

The estimated cross-covariance and cross-correlation matrices are

�̂uv =

0BB@ �256:9 48:1 22:6

�83:1 �36:9 �1:5

1CCA and �̂uv =

0BB@ �:69 :41 :28

�:54 �:77 �:05

1CCA ;

respectively. The asymptotic standard deviations of the elements of �̂uv

obtained from Theorem 2, and the bootstrap standard deviations based on

100 wild bootstrap replications are

sdasymp(�̂uv) =

0BB@ 73:3 17:7 9:9

20:5 6:8 5:7

1CCA and sdboot(�̂uv) =

0BB@ 76:7 18:3 13:4

22:3 7:5 5:3

1CCA ;

respectively, which are very similar to one another. We conclude that all

correlations involving the �rst two components of each process are statisti-

cally signi�cant, but none of the correlations involving  3 are.

Figure 3 shows scatter plots of the estimated random e¤ects ûik versus

v̂ik for the signi�cant components. Normal probability plots of the compo-

nent scores and the residuals �̂ij are shown in the Supplementary Material.

The component scores appear to be largely Gaussian; only ûi1 shows a mild
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Figure 2: Online Auction Data. (a) Baseline intensity function of bidding

time process. (b) Mean price trajectory. (c) Components of bidding time

process, �1 (dashed line) and �2 (dash-dot line). (d) Components of price

trajectories,  1 (dashed line),  2 (dash-dot line), and  3 (dotted line).
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departure from normality. The residuals �̂ij show tails somewhat heavier

than normal, but no gross outliers are evident.

These results are in line with our intuition. The negative correlations

between v1 and both u1 and u2 show that items with perceived low prices

tend to attract more bidders and trigger bid sniping. The strong negative

correlation between u2 and v2 shows that bid sniping is particularly asso-

ciated with price trajectories that are found to be well below the mean on

the �fth day of the auction.

To illustrate with a few speci�c cases, Figure 4 shows the price trajec-

tories of items with the largest and smallest scores v1 and v2, respectively.

Figure 4(a) shows the item with largest v1 score and, consequently, low u1

score: an expensive item that attracted only two bids. Figure 4(b) shows

the opposite, the item with the lowest v1 score and, consequently, large u1

and u2 scores: an underpriced item that attracted many bids toward the

end of the auction, which is a typical case of bid sniping. Figure 4(c) shows

the item with the largest v2 score and, consequently, a large u1 score, but

a low u2 score: this was an item that started o¤ with a low price and at-

tracted many bids at the beginning of the auction; this sent the price above

the mean early in the auction period, and then did not attract many late

bidders. Figure 4(d), the item with the lowest v2 score, shows the opposite
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Figure 3: Online Auction Data. Scatter plots of component scores of the

bidding time process versus component scores of the price trajectories.
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situation: the few bids placed at the beginning of the auction period were

well above the mean, but toward the end, some lower bids are placed (an

unusual, but possible situation) which triggered bid sniping.

8. Discussion

We have presented a uni�ed model for the joint statistical analysis of a func-

tional response variable and the distribution of the grid points at which the

variable is measured. Although the problems of estimating sparse func-

tional data and intensity functions of point processes have been considered

in the literature, to date, this has been done separately.

Our model allows statistical inferences for the correlations between the

components of the grid-point process and the response variable. For this,

we have developed a parametric asymptotic theory in Section 5, where
p
n-

consistency is obtained, but at the price of ignoring the asymptotic bias.

When the latter is negligible, for example, when the target functions are

smooth and the basis family used for the estimation is su¢ ciently large,

the asymptotic approximation is very accurate, as shown in the simulations

and example in Sections 6 and 7, respectively. However, if the target func-

tions are more irregular, and the asymptotic bias is more signi�cant, truly

nonparametric asymptotics with the dimension of the basis family growing
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Figure 4: Online Auction Data. Estimated price trajectories (solid line) and

mean price trajectory (dashed line), along with actual bids (asterisks) for

items with (a) the largest score on the �rst Y -component, (b) the lowest

score on the �rst Y -component, (c) the largest score on the second Y -

component, and (d) the lowest score on the second Y -component.
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with n would be more appropriate, although the rate of convergence would

be lower than
p
n. This is still an open problem.

The model in Section 3 uses latent variables with distributions that are

assumed normal. Of course, this is always going to be an approximation,

at best. While mild departures from normality may not a¤ect the validity

of the results, more serious deviations, such as gross outliers or very heavy-

tailed distributions, most likely will. For the sake of brevity, we do not

include a thorough robustness analysis in this paper. However, the model

and the proposed maximum likelihood estimators can be modi�ed easily to

accommodate heavier-tailed distributions, such as Student�s t distributions,

for the latent variables. This is left to future research.

Supplementary Material

The online supplementary material contains proofs, technical derivations,

and additional simulation results.
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