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Abstract: We propose a new measure for stationarity in functional time series that is

based on an explicit representation of the L2-distance between the spectral density op-

erator of a nonstationary process and its best (L2-)approximation by a spectral density

operator corresponding to a stationary process. This distance can be estimated by the

sum of the Hilbert–Schmidt inner products of the periodogram operators (evaluated at

different frequencies). Furthermore, the asymptotic normality of an appropriately stan-

dardized version of the estimator can be established for the corresponding estimator

under the null and alternative hypotheses. As a result, we obtain a simple asymptotic

frequency-domain levelα-test (using the quantiles of the normal distribution) to test for

the hypothesis of stationarity of a functional time series. We also briefly discuss other

applications, such as asymptotic confidence intervals for the measure of stationarity, or

the construction of tests for “relevant deviations from stationarity”. We demonstrate in

a small simulation study that the new method has very good finite-sample properties.

Moreover, we apply our test to annual temperature curves.

Key words and phrases: time series, functional data, spectral analysis, local stationarity,

measuring stationarity, relevant hypotheses
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1. Introduction

In many applications of functional data analysis (FDA), data are recorded

sequentially over time and naturally exhibit dependence. As a result, researchers

are increasingly analyzing functional data from time series; we refer to the

monographs of Bosq (2000) and Horváth and Kokoszka (2012), among others.

An important assumption in most of the literature is that of stationarity, which

allows us to develop a unified statistical theory. For example, stationary pro-

cesses with a linear representation have been investigated by, among others,

Mas (2000), Bosq (2002), and Dehling and Sharipov (2005). Prediction meth-

ods (e.g., Antoniadis and Sapatinas, 2003; Aue et al., 2015; Bosq, 2000) and

violations of the independent and identically distributed (i.i.d.) assumption

in the context of change point detection are also relatively well documented

in the literature (e.g., Aue et al., 2009; Berkes et al., 2009; Horváth et al., 2010).

Hörmann and Kokoszka (2010) provide a general framework within which to

examine temporal dependence between the functional observations of sta-

tionary processes. Frequency domain analysis of stationary functional time

series are considered by Panaretos and Tavakoli (2013) under the assumption

of functional generalizations of cumulant-mixing conditions.
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In practice, however, it is not clear that the temporal dependence struc-

ture is constant and, hence, that stationarity is satisfied. It is therefore de-

sirable to have tests for second-order stationarity or measures for deviations

from stationarity for data analyses of functional time series. In the context

of Euclidean data (univariate and multivariate), there exists a considerable

amount of literature on this problem. Early work can be found in Priestley

and Subba Rao (1969), who proposed testing the “homogeneity” of a set of

evolutionary spectra. Von Sachs and Neumann (2000) used coefficients with

respect to a Haar wavelet series expansion of time-varying periodograms for

this purpose; see also Nason (2013), who provided an important extension of

their approach and, Cardinali and Nason (2010) and Taylor et al. (2014) for

further applications of wavelets to the problem of testing for stationarity. Pa-

paroditis (2009, 2010) proposed rejecting the null hypothesis of second-order

stationarity if there is a large L2-distance between a local spectral density es-

timate and an estimate derived under the assumption of stationarity. Dette

et al. (2011) suggested estimating this distance directly using sums of peri-

odograms evaluated at the Fourier frequencies in order to avoid the problem

of choosing additional bandwidths (see also Preuß et al. (2013), for an empir-

ical process approach). An alternative method for investigating second-order

stationarity can be found in Dwivedi and Subba Rao (2011) and Jentsch and
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Subba Rao (2015), who use the fact that the discrete Fourier transform (DFT)

is asymptotically uncorrelated at the canonical frequencies if and only if the

time series is second-order stationary. Recently, Jin et al. (2015) proposed

a double-order selection test for checking the second-order stationarity of a

univariate time series. Furthermore, Das and Nason (2016) investigated an ex-

perimental empirical measure of nonstationarity based on the mathematical

roughness of the time evolution of the fitted parameters of a dynamic linear

model.

On the other hand, despite the frequent assumption of second-order sta-

tionarity in functional data analysis, much less work has been done investigat-

ing the stationarity of functional data. A rigorous mathematical framework for

locally stationary functional time series was recently developed by van Delft

and Eichler (2018), who extended the concept of local stationarity introduced

by Dahlhaus (1996, 1997) from univariate time series to functional data. To

the best of our knowledge, Aue and van Delft (2019) is the only work that ap-

plies this framework to test for the second-order stationarity of a functional

time series against smooth alternatives. These authors follow the approach of

Dwivedi and Subba Rao (2011), showing that the functional discrete Fourier

transform (fDFT) is asymptotically uncorrelated at distinct Fourier frequen-

cies if and only if the process is functional weakly stationary. This result is then

Statistica Sinica: Preprint 
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used to construct a test statistic based on an empirical covariance operator

of the fDFTs, which is subsequently projected onto a finite-dimensional sub-

space. The asymptotic properties of the resulting quadratic form are shown

to follow a chi-square distribution, both under the null and under the alterna-

tive of functional local stationarity. Although the authors thereby provide an

explicit expression for the degree of departure from weak stationarity, the test

requires the specification of the parameter M , the number of included lagged

fDFTs. This can be viewed as a disadvantage, because it affects the power of

the test.

We propose a different test, based on an explicit representation of the L2-

distance between the spectral density operator of a nonstationary process and

its best (L2-)approximation by a spectral density operator corresponding to

a stationary process. This measure vanishes if and only if the time series is

second-order stationary. Consequently, a test can be obtained by rejecting

the hypothesis of stationarity for large values of a corresponding estimate.

The L2-distance is estimated using a functional of sums of integrated peri-

odogram operators for which, after appropriate standardization, asymptotic

normality can be established under the null hypothesis and any fixed alterna-

tive. The resulting test for the hypothesis of stationarity is extremely simple

and, therefore, attractive to practitioners. The test uses the quantiles of the
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standard normal distribution, and does not require choosing a bandwidth in

order to estimate the time-varying spectral density operators, or using boot-

strap methods to obtain critical values. Therefore, the proposed methodology

is very efficient, from a computational point of view.

Although a similar concept has been investigated for univariate time se-

ries (see Dette et al., 2011), the mathematical derivation of the asymptotic

normality requires several sophisticated and new tools for spectral analysis of

locally stationary functional time series. In particular, in contrast to the cited

reference, our approach does not require a linear representation of the time

series using an independent sequence, and we derive several new properties

of the periodogram operator, which are of independent interest. Owing to

space constraints, these results, together with the more technical arguments

(which are rather complicated), are relegated to the Supplementary Material

van Delft et al. (2019b). We specifically mention Theorem S3.1 in Section S3

of the Supplementary Material, which provides a representation of the cu-

mulants of the Hilbert–Schmidt inner products of local periodogram tensors

(evaluated at different time points and different frequencies) using the trace

of cumulants of simple tensors of the local functional discrete Fourier trans-

forms. The Supplementary Material also contains a brief discussion of several

other applications of the asymptotic theory.

Statistica Sinica: Preprint 
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2. A MEASURE OF STATIONARITY ON THE FUNCTION SPACE 7

The rest of the paper is organized as follows. In Section 2, we introduce the

main concept of locally stationary functional time series, define a measure of

stationarity for these processes, and introduce its corresponding estimators.

Section 3 is devoted to the asymptotic properties of the proposed estimators.

In Section 4, we report a small simulation study to demonstrate that the new

test has very good finite-sample properties. In this section, we also apply our

test to annual temperature curves recorded at several measuring stations in

Australia over the past 135 years.

2. A measure of stationarity on the function space

2.1 Notation and the functional setup

Suppose H is a separable Hilbert space with the inner product 〈·, ·〉 and in-

duced norm ‖ · ‖. Let L (H ) be the space of bounded linear operators from

H to H , and let {en}n≥1 be some orthonormal basis of H . An operator A ∈

L (H ) is Hilbert–Schmidt if �A�2
2 =

∑
n≥1 ‖Aen‖2 <∞, in which case, we write

A ∈ S2(H ). The space S2(H ) is a Hilbert space with the inner product given

by 〈A,B〉HS = ∑
n≥1〈Aen ,Ben〉 for A,B ∈ S2(H ). An operator A ∈ L (H ) is a

trace-class operator, that is, A ∈ S1(H ), if �A�1 = ∑
n≥1〈(A† A)1/2en ,en〉 < ∞,

where A† denotes the adjoint of A. The trace of A ∈ L (H ) is defined by

Tr A = ∑
n≥1〈Aen ,en〉, which converges if A ∈ S1(H ). We commonly use the

Statistica Sinica: Preprint 
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2. A MEASURE OF STATIONARITY ON THE FUNCTION SPACE 8

rank-one operator x⊗y ∈L (H ), with x, y ∈H , defined by (x⊗y)(z) = 〈z, y〉x,

for z ∈H .

Suppose that X is an H -valued random element. If E‖X ‖ < ∞, the ex-

pected value EX can be defined as the unique element µ ∈ H that satisfies

E〈X , x〉 = 〈µ, x〉, for all x ∈H . Provided that E‖X ‖2 <∞, the covariance oper-

ator of X is defined as E((X −µ)⊗ (X −µ)). An H -valued sequence {X t }t∈Z is

second-order (or weakly) stationary if E‖X t‖2 <∞, EX t = µ, and E((Xs −µ)⊗

(X t −µ)) = E((Xs−t −µ)⊗ (X0 −µ)), for all s, t ∈Z. We say that {X t }t∈Z is strictly

stationary if the joint distribution of {X t1 , . . . , X tn } and the joint distribution of

{X t1+h , . . . , X tn+h} coincide, for all t1, . . . , tn ∈Z, n ≥ 1, and h ≥ 1.

In this paper, we focus on the space H := L2
C

([0,1]k ), for k ≥ 1, the space of

(the equivalence classes of) square integrable functions f : [0,1]k → C, where

we denote the norm of L2
C

([0,1]k ) by ‖ · ‖2. The corresponding space of real

functions is denoted by L2
R

([0,1]k ), for k ≥ 1.

2.2 Locally stationary functional time series

The second-order dynamics of weakly stationary time series of functional data

{Xh}h∈Z can be described completely by the Fourier transform of the sequence

of covariance operators, acting on L2
C

([0,1]); that is,

Fω = 1

2π

∑
h∈Z

E
(
(Xh −µ)⊗ (X0 −µ)

)
e−iωh ω ∈ [−π,π], (2.1)

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0320
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where µ= EX0 denotes the mean function. Following most of the literature on

testing for second-order stationarity (see, i.a., Paparoditis, 2009; Dwivedi and

Subba Rao, 2011), we assume that our data are centered and, hence, µ = 0.

This is without loss of generality, because the mean can be estimated with-

out affecting the properties of our test; see Remark 3.1. If second-order sta-

tionarity is violated, we can no longer speak of a frequency distribution over

all time and, hence, if it exists, (2.1) must become time-dependent. To allow

for a meaningful definition of this object if stationarity is violated, we con-

sider a triangular array {X t ,T : 1 ≤ t ≤ T }T∈N as a doubly indexed functional

time series, where X t ,T is a random element with values in L2
R

([0,1]), for each

1 ≤ t ≤ T and T ∈ N. The processes {X t ,T : 1 ≤ t ≤ T } are extended on Z by

setting X t ,T = X1,T for t < 1, and X t ,T = XT,T for t > T . Following van Delft and

Eichler (2018), the sequence of stochastic processes {X t ,T : t ∈ Z} indexed by

T ∈N is called locally stationary if, for all rescaled times u ∈ [0,1], there exists

a L2
R

([0,1])-valued strictly stationary process {X (u)
t : t ∈Z}, such that

∥∥∥X t ,T −X (u)
t

∥∥∥
2
≤ (∣∣ t

T −u
∣∣+ 1

T

)
P (u)

t ,T a.s., (2.2)

for all 1 ≤ t ≤ T , where P (u)
t ,T is a positive real-valued process, such that for

some ρ > 0 and C <∞, the process satisfies E
(∣∣P (u)

t ,T

∣∣ρ)<C for all t and T , uni-

formly in u ∈ [0,1]. If the second-order dynamics are changing gradually over

time, the second-order dynamics of the stochastic process {X t ,T : t ∈Z}T∈N are

Statistica Sinica: Preprint 
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completely described by the time-varying spectral density operator given by

Fu,ω = 1

2π

∑
h∈Z

E
(
X (u)

t+h ⊗X (u)
t

)
e−iωh , (2.3)

for each u ∈ [0,1] and {X (u)
t : t ∈Z}. Under the technical assumptions stated in

Section 3, this object is a Hilbert–Schmidt operator. Note that if the process

is, in fact, second-order stationary, then (2.3) reduces to the form (2.1). This

framework thus lends itself in a natural way to testing for changing dynamics

in the second-order structure.

2.3 Minimum distance and its estimation

In this study, we are interested in testing the hypothesis

H0 : Fu,ω ≡Fω a.e. on [−π,π]× [0,1] (2.4)

versus

Ha : Fu,ω 6=Fω,on a subset of [−π,π]× [0,1] of positive Lebesgue measure,

(2.5)

where Fω is an unknown nonnegative definite Hilbert–Schmidt operator for

each ω ∈ [−π,π] that does not depend on rescaled time u ∈ [0,1]. We mea-

sure deviations from stationarity using the minimum distance principle. To

explain the main idea of this approach, consider a square integrable function

Statistica Sinica: Preprint 
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g : [0,1] →R. Note that for any constant a ∈R, we have

d 2(a) =
∫ 1

0
|g (u)−a|2du =

∫ 1

0
|g (u)− ḡ |2du +

∫ 1

0
|ḡ −a|2du,

where ḡ = ∫ 1
0 g (u)du. Therefore, minimizing d 2(a) with respect to a ∈R gives

the best approximation of the function g by a constant function. The mini-

mum is attained for the choice a = ḡ and d 2(ḡ ) = ∫ 1
0 |g (u)|2du−(∫ 1

0 g (u)du
)2.

In particular, the function g is constant if and only if mina∈Rd 2(a) vanishes.

We now transfer this idea to the setting of functional times series, and

define a measure for the deviation from second-order stationarity by

m2 = min
G

∫ π

−π

∫ 1

0
�Fu,ω−Gω�2

2dudω, (2.6)

where the minimum is taken over all mappings G : [−π,π] → S2(L2
C

([0,1])).

Note that the hypotheses in (2.4) and (2.5) can be rewritten as

H0 : m2 = 0 versus Ha : m2 > 0, (2.7)

and a statistical test can be obtained by rejecting the null hypothesis H0 for

large values of an appropriate estimator of m2. In order to construct such

an estimator, we first derive an alternative representation of the minimum

distance m2.

Lemma 2.1. The minimum distance m2, defined in (2.6), can be expressed as

m2 =
∫ π

−π

∫ 1

0
�Fu,ω−F̃ω�2

2dudω, (2.8)

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0320



2. A MEASURE OF STATIONARITY ON THE FUNCTION SPACE 12

where the operators F̃ω are defined by

F̃ω :=
∫ 1

0
Fu,ωdu, (2.9)

for each ω ∈ [−π,π]. We refer to this operator F̃ω as the time-integrated local

spectral density operator, because it acts on L2
C

([0,1]), such that F̃ω no longer

depends on u ∈ [0,1], for each ω ∈ [−π,π].

The proof is given in Section S2 of the Supplementary Material. Using the

definition of the Hilbert–Schmidt norm, we can rewrite expression (2.8) as

m2 =
∫ π

−π

∫ 1

0
|||Fu,ω|||22dudω−

∫ π

−π
|||F̃ω|||22dω, (2.10)

where F̃ω is given by (2.9). The two terms in (2.10) can now be easily estimated

from the available data {X t ,T : 1 ≤ t ≤ T } using sums of periodogram operators.

In order to estimate the two integrals in (2.10), we split the sample into

M blocks, with N elements inside each block such that T = M N = M(T )N (T )

for each T ∈ N, where M , N ∈ N, and N is an even number. Here, M and N

correspond to the number of terms used in a Riemann sum that approximates

the integrals in (2.10) with respect to du and dω and, therefore, they have to

be reasonably large. The number of elements in the blocks must grow faster

than the number of blocks, but more slowly than the cube number of blocks.

The choice of the number of blocks is discussed in Subsection 3.1, and an

Statistica Sinica: Preprint 
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empirical investigation can be found in Section 4. Throughout this paper, we

make the following assumption for the asymptotic analysis.

Assumption 2.1. M →∞, N →∞ as T →∞, such that

N /M →∞ and N /M 3 → 0.

For u ∈ [0,1], ω ∈ [−π,π], and N ≥ 1, the fDFT evaluated around time u is

defined as a random function with values in L2
C

([0,1]) given by

Du,ω
N := 1p

2πN

N−1∑
s=0

XbuT c−N /2+s+1,T e−iωs . (2.11)

The periodogram tensor is then defined by

I u,ω
N := Du,ω

N ⊗Du,ω
N . (2.12)

Letωk = 2πk/N , for k = 1, . . . , N , and u j = (N ( j−1)+N /2)/T for j = 1,2, . . . , M ,

be the midpoint of each block. Observe that only the j th block of the sample

determines the value of I
u j ,ωk

N , for each k = 1, . . . , N . We estimate the two terms

in (2.10) by

F̂1,T := 1

T

bN /2c∑
k=1

M∑
j=1

〈I
u j ,ωk

N , I
u j ,ωk−1

N 〉HS , (2.13)

(note that F̂1,T is real-valued for each T ∈N, because 〈I u,λ
N , I u,ω

N 〉HS = |〈Du,λ
N ,Du,ω

N 〉|2)

and

F̂2,T := 1

N

bN /2c∑
k=1

∣∣∣∣∣∣∣∣∣ 1

M

M∑
j=1

I
u j ,ωk

N

∣∣∣∣∣∣∣∣∣2

2
, (2.14)
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respectively. We show that the estimation of
∫ π
−π|||F̃ω|||22dω using (2.14) intro-

duces a bias term

BN ,T = N

T

∫ π

−π

∫ 1

0
[Tr(Fu,ω)]2dudω. (2.15)

Because this term is nonvanishing in a
p

T -consistent estimator under As-

sumption 2.1, it has to be taken into account. We therefore define the estima-

tor of the minimum distance m2 in (2.10) as

m̂T = 4π(F̂1,T − F̂2,T + B̂N ,T ) , (2.16)

where

B̂N ,T = 1

T

bN /2c∑
k=1

M∑
j=1

Tr(I u j ,ωk )Tr(I u j ,ωk−1 ) = 1

T

bN /2c∑
k=1

M∑
j=1

‖D
u j ,ωk

N ‖2
2‖D

u j ,ωk−1

N ‖2
2.

(2.17)

We prove in Section S3 (Corollary S3.1) of the Supplementary Material that,

under the conditions of Theorem 3.1,

p
T

(
B̂N ,T −BN ,T

) p→ 0 as T →∞.

Therefore, the bias correction does not affect the asymptotic distribution of

the test statistic.

As is the case with the periodogram of a real-valued time series, the pe-

riodogram tensor defined by (2.12) is not a consistent estimator. However,

the estimators F̂1,T and F̂2,T are consistent for the quantities appearing in the

Statistica Sinica: Preprint 
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measure of stationarity defined in (2.10), because they are obtained by averag-

ing periodogram tensors with respect to different Fourier frequencies. These

heuristic arguments will be made more precise in the following section, where

we state our main asymptotic results.

3. Asymptotic normality and statistical applications

In this section, we establish the asymptotic normality of an appropriately stan-

dardized version of the statistic m̂T defined in (2.16) and, as a by-product, its

consistency for estimating the measure of stationarity m2. We denote the joint

cumulant of X1, . . . , Xk by Cum(X1, . . . , Xk ), where X1, . . . , Xk are H -valued ran-

dom elements, such that E‖X t‖k < ∞, for each t = 1, . . . ,k. The definition

of the joint cumulant of H -valued random variables is intricate and, hence,

postponed to Section S1 of the Supplementary Material. The functional pro-

cess { X t ,T : t ∈Z}T∈N is assumed to satisfy the following set of conditions.

Assumption 3.1. Assume that { X t ,T : t ∈ Z}T∈N is a locally stationary zero-

mean stochastic process, as introduced in Section 2, and, for even k ∈ N, let

κk;t1,...,tk−1 : L2([0,1]k/2) → L2([0,1]k/2) be a positive operator independent of

T , such that, for all j = 1, . . . ,k −1 and some ` ∈N,

∑
t1,...,tk−1∈Z

(1+|t j |`)|||κk;t1,...,tk−1 |||1 <∞. (3.1)

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0320



3. ASYMPTOTIC NORMALITY AND STATISTICAL APPLICATIONS 16

Denote

Y (T )
t = X t ,T −X (t/T )

t and Y (u,v)
t = X (u)

t −X (v)
t

(u − v)
, (3.2)

for T ∈ N, 1 ≤ t ≤ T , and u, v ∈ [0,1], such that u 6= v . Suppose, furthermore,

that the kth order joint cumulants satisfy

(i) |||Cum(X t1,T , . . . , X tk−1,T ,Y (T )
tk

)|||1 ≤ 1
T |||κk;t1−tk ,...,tk−1−tk |||1,

(ii) |||Cum(X (u1)
t1

, . . . , X (uk−1)
tk−1

,Y (uk ,v)
tk

)|||1 ≤|||κk;t1−tk ,...,tk−1−tk |||1,

(iii) supu |||Cum(X (u)
t1

, . . . , X (u)
tk−1

, X (u)
tk

)|||1 ≤|||κk;t1−tk ,...,tk−1−tk |||1,

(iv) supu ||| ∂
`

∂u`
Cum(X (u)

t1
, . . . , X (u)

tk−1
, X (u)

tk
)|||1 ≤|||κk;t1−tk ,...,tk−1−tk |||1.

Note that these assumptions allow for a meaningful definition of local cu-

mulant spectral operators of order k, from which we can obtain a closed-form

expression of the variance of m̂T . For further detail, we refer to Section S1 and

Section S5 of the Supplementary Material. In addition note that, using the

Cauchy–Schwarz inequality, we can bound the 2k + 1th joint cumulant and

moment tensors in terms of the 2k+2th joint cumulant and moment tensors.

The following result establishes the asymptotic normality of m̂T (appro-

priately standardized). The proof is given in Section S3 of the Supplementary

Material.
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Theorem 3.1. Suppose that Assumption 2.1 and Assumption 3.1 hold. Then,

p
T (m̂T −m2)

d−→ N (0,ν2) as T →∞,

where the expression for the asymptotic variance ν2 can be found in Section S3

of the Supplementary Material.

Remark 3.1. The assumption of a zero or constant mean function is common

in the context of testing for stationarity in the frequency domain (see, i.a., Pa-

paroditis, 2009; Dwivedi and Subba Rao, 2011; Jentsch and Subba Rao, 2015).

Note that Theorem 3.1 remains true if µ = 0 does not hold. For example, to

address this problem, we define µ̂T = T −1 ∑T
t=1 X t ,T , replace Du,ω

N by

D̃u,ω
N = (2πN )−1/2

N−1∑
s=0

(XbuT c−N /2+s+1,T − µ̂T )e−iωs ,

and replace I u,ω
N with Ĩ u,ω

N = D̃u,ω
N ⊗ D̃u,ω

N in the quantities (2.13), (2.14), and

(2.15), which define the statistic (2.16). A proof of our claim can be found

in Subsection S5.6 of the Supplementary Material. In the general case, where

the mean functions vary smoothly in time, a local-window estimator has to

be subtracted (see e.g., Dette et al., 2017, who considered this scenario for one-

dimensional locally stationary long-range dependent time series).

Under the null hypothesis, the statistic has a very succinct form.
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Corollary 3.1. Suppose that Assumption 2.1 and Assumption 3.1 hold. Then,

under the null hypothesis H0, we have

p
T m̂T

d−→ N (0,ν2
H0

) as T →∞,

where the asymptotic variance v2
H0

is given by

ν2
H0

= 4π
∫ π

−π
|||F̃ω|||42dω. (3.3)

Observing the equivalent representation of the hypotheses in (2.7), it is rea-

sonable to reject the null hypotheses (2.4) of a stationary functional process

whenever

m̂T > v̂H0p
T

u1−α, (3.4)

where u1−α denotes the (1−α)-quantile of the standard normal distribution,

and v̂2
H0

is an appropriate estimator of the asymptotic variance under the null

hypothesis given in (3.3). The asymptotic variance v2
H0

can be estimated using

the statistic

v̂2
H0

= 16π2

N

bN /2c∑
k=1

[
1

M

M∑
j=1

〈I
u j ,ωk

N , I
u j ,ωk−1

N 〉HS

]2

. (3.5)

Corollary 3.1 and the following result show that the test defined by (3.4) is an

asymptotic level α-test. The proof is given in Section S5.5 of the Supplemen-

tary Material.

Lemma 3.1. Under the assumptions of Theorem 3.1, the estimator defined in

(3.5) is consistent; that is, v̂2
H0

→ v2
H0

in probability as T →∞.
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3.1 The choice of M and N

Here, we provide heuristic arguments on how to choose the number of blocks

M and the number of elements in the blocks N . Because we assume that T =

M N , the choice of M determines the value of N , and vice versa. Our test is

based on the estimator of the distance m2 defined by (2.6). One way to choose

the values of M and N is to choose those values that minimize the leading

terms in the asymptotic expansion of the mean squared error (MSE) of the

estimator of m2. We have that

MSE(m̂T ) = Varm̂T +|Em̂T −m2|2, (3.6)

with Varm̂T = (4π)2{Var F̂1,T+Var F̂2,T−2Cov[F̂1,T , F̂2,T ]} and Em̂T = 4π(E F̂1,T−

E F̂2,T ). Note that we ignore the estimator B̂N ,T of the bias defined in (2.17) be-

cause it is of lower order in (3.6). The asymptotic expressions of E F̂1,T , E F̂2,T ,

Var F̂1,T , Var F̂2,T , and Cov[F̂1,T , F̂2,T ] are given in Section S5 of the Supplemen-

tary Material. Here, we assume Gaussianity in order to avoid dealing with

the fourth-order terms. The leading terms of the asymptotic expression of

the MSE are double Riemann sums. In addition, M and N determine the er-

ror that we make by approximating double integrals using double Riemann

sums. Suppose that g : [0,1]× [0,π] → R is a Riemann integrable function,

twice differentiable in its first argument, and once in its second. Using the
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error bounds for the midpoint and the right endpoint approximations of the

integrals, we obtain

∣∣∣ 1

N

bN /2c∑
k=1

1

M

M∑
j=1

g (u j ,ωk )− 1

2π

∫ π

0

∫ 1

0
g (u,ω)dudω

∣∣∣
≤ 1

24M 2
· 1

N

bN /2c∑
k=1

max
u∈[0,1]

|g ′′
u(u,ωk )|+ π2

2N

∫ 1

0
max
ω∈[0,π]

|g ′
ω(u,ω)|du, (3.7)

where u j = (N ( j − 1)+ N /2)/T for 1 ≤ j ≤ M , and ωk = 2πk/N for 1 ≤ k ≤

bN /2c. Rather than give the complete bound of the MSE, we only explain the

idea behind the bound. One of the terms in the expression of T Var F̂1,T is

given by

RN M = 1

T

bN /2c∑
k=1

M∑
j=1

〈Fu j ,ωk ,Fu j ,ωk−1〉HS〈Fu j ,−ωk ,Fu j ,−ωk−1〉HS .

We have that

RN M ≤
∣∣∣RN M − 1

2π

∫ π

0

∫ 1

0
|||Fu,ω|||42dudω

∣∣∣+ 1

2π

∫ π

0

∫ 1

0
|||Fu,ω|||42dudω. (3.8)

The second term in (3.8) does not depend on the choice of M and N . We

use the inequality (3.7) to bound the first term in (3.8). Provided that the in-

tegral is finite and the Riemann sum in (3.7) converges, similar arguments

applied to the other terms in the MSE show that we need to minimize the ex-

pression C1/M 2 +C2/N over all possible values of M and N , where C1 and C2

are two positive constants that are unknown, because these depend on the
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time-varying spectral density operator. The right-hand side of (3.7) is mini-

mized for

M = (2C1/C2)1/3 ·T 1/3 and N = (2C1/C2)−1/3 ·T 2/3.

Unfortunately, because C1 and C2 are unknown, we cannot determine the op-

timal values of M and N . However, this suggests M ≈ T 1/3 and N ≈ T 2/3 might

be a reasonable choice, given that (2C1/C2)1/3 ≈ 1. We provide empirical evi-

dence of this rule in Section 4.

4. Finite-sample properties

In this section, we investigate the finite-sample properties of the proposed

methods proposed using a simulation study, and illustrate potential applica-

tions by analyzing annual temperature curves.

4.1 Simulation study

In order to investigate the finite-sample performance of the test (3.4) for the

hypothesis H0 : m2 = 0 using simulated data, we consider a similar setup to

that in Aue and van Delft (2019), who used a Fourier basis representation on

the interval [0,1] to generate functional data. Specifically, let {ψl }∞l=1 be the

Fourier basis functions. Consider the pth-order time-varying functional au-
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toregressive process (tvFAR(p)), {X t }t∈Z, defined as

X t (τ) =
p∑

t ′=1

At ,t ′(X t−t ′)(τ)+εt (τ), τ ∈ [0,1], (4.1)

where At ,1, . . . , At ,p are time-varying auto-covariance operators, and {εt (τ)}t∈Z

is a sequence of mean zero innovations. We have

〈X t ,ψl 〉 =
∞∑

l ′=1

p∑
t ′=1

〈X t−t ′ ,ψl 〉〈At ,t ′(ψl ),ψl ′〉+〈εt ,ψl 〉

≈
Lmax∑
l ′=1

p∑
t ′=1

〈X t−t ′ ,ψl 〉〈At ,t ′(ψl ),ψl ′〉+〈εt ,ψl 〉. (4.2)

Therefore, the first Lmax Fourier coefficients of the process X t are generated

using the pth-order vector autoregressive process

X̃ t =
p∑

t ′=1

Ãt ,t ′ X̃ t−t ′ + ε̃t ,

where X̃ t := (〈X t ,ψ1〉, . . . ,〈X t ,ψLmax 〉
)> is the vector of Fourier coefficients, the

(l , l ′)th entry of Ãt , j is given by 〈At , j (ψl ),ψl ′〉, and ε̃t := (〈εt ,ψ1〉, . . . ,〈εt ,ψLmax 〉
)>.

The entries of the matrix Ãt , j are generated as N
(
0,ν(t , j )

l ,l ′
)
, with ν

(t , j )
l ,l ′ speci-

fied below. To ensure stationarity or the existence of a causal solution, the

norms κt , j of At , j are required to satisfy certain conditions (see Bosq (2000)

for stationary and van Delft and Eichler (2018) for locally stationary functional

time series). If At , j ≡ A j , for all t in (4.1), and the error sequence (εt , t ∈ Z) is

an i.i.d. sequence, we obtain the stationary functional autoregressive (FAR)

model of order p. In that case, we generate the entries of the operator ma-

trix from N
(
0,ν( j )

l ,l ′
)

distributions. Functional white noise can be thought of
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as a FAR model of order zero. Throughout this section, the number of Monte

Carlo replications is always 1000. We use the fda package from R to generate

the functional data, where Lmax is taken to be 15. The periodogram kernels

are evaluated on a 100×100 grid on the square [0,1]2, and their integrals are

calculated by averaging the functional values at the grid points. The asymp-

totic variance under the null hypothesis is estimated using (3.5). In Table 1,

we report the simulated nominal levels of the test (3.4) for the hypotheses in

(2.7) for the sample sizes T = 128, 256, 512, and 1024, where we consider the

following three (stationary) data-generating processes:

(I) The functional white noise variables ε1, . . . ,εT are i.i.d., with coefficient

variances Var(〈εt ,ψl 〉) = exp((l −1)/10).

(II) The FAR(2) variables X1, . . . , XT , with operators specified by variances

ν(1)
l ,l ′ = exp(−l − l ′) and ν(2)

l ,l ′ = 1/(l + l ′3/2), with norms κ1 = 0.75 and κ2 =

−0.4 and with innovations ε1, . . . ,εT , as in (I).

(III) The FAR(2) variables X1, . . . , XT , as in (II), but withκ1 = 0.4 andκ2 = 0.45.

Recall that the test requires that we choose the number M of blocks, which

determines the number N of observations in each block via the equation T =

M N . As mentioned before, the quantities M and N have to be reasonably

large, because they correspond to the number of terms used in the Riemann
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Table 1: Empirical rejection probabilities (percentage) of the test (3.4) for the
hypotheses in (2.7) under the null hypothesis.

I II III

T N M 10% 5% 1% 10% 5% 1% 10% 5% 1%
128 32 4 6.0 2.8 0.7 7.4 3.7 0.7 6.4 2.5 0.3
128 16 8 5.9 2.7 0.4 7.3 2.8 0.8 5.2 2.5 0.5

256 32 8 7.0 3.2 0.5 7.1 4.1 0.7 6.8 3.5 0.7
256 16 16 7.5 2.9 0.5 7.4 3.6 0.7 7.0 3.0 0.5

512 64 8 7.5 3.1 0.5 8.6 4.2 0.3 7.9 3.5 0.6
512 32 16 6.7 2.4 0.4 7.1 3.3 0.7 6.4 2.4 0.2

1024 128 8 8.8 4.2 1.0 9.6 4.1 1.0 8.9 3.9 0.9
1024 64 16 9.7 4.7 1.1 10.0 5.3 1.4 9.8 4.6 0.9
1024 32 32 8.0 3.3 0.5 9.3 5.2 1.3 8.0 3.6 0.5

sum that approximates the integral with respect to du and dω in (2.10). We

investigate the effect of this choice in more detail in the next section. Here,

we consider those combinations for which Assumption 2.1 is satisfied. Inter-

estingly, the results reported in Table 1 are rather robust with respect to this

choice, and we observe a reasonable approximation of the nominal level in

nearly all cases under consideration, albeit the test being slightly undersized

for the small samples sizes.

Next, we investigate the performance of the test (3.4) under the alterna-

tive, where we consider the following (nonstationary) data-generating pro-

cesses:
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(IV) The tvFAR(1) variables X1, . . . , XT , with the operator specified by the vari-

ances ν(t ,1)
l ,l ′ = ν(1)

l ,l ′ = exp(−l − l ′) and the norm κ1 = 0.8, and with innova-

tions as in (I), with a multiplicative time-varying variance

σ2(t ) = cos
(1

2
+cos

( 2πt

1024

)+0.3sin
( 2πt

1024

))
.

(V) The tvFAR(2) variables X1, . . . , XT , with operators as in (IV), but with the

time-varying norm

κ1,t = 1.8cos

(
1.5−cos

(
4πt

T

))
,

constant norm κ2 =−0.81, and innovations as in (I).

(VI) The structural break FAR(2) variables X1, . . . , XT , generated as follows:

– for t ≤ 3T /8, the operators are as in (II), with norms κ1 = 0.7 and

κ2 = 0.2, and innovations as in (I).

– for t > 3T /8, the operators are as in (II), with norms κ1 = 0 and

κ2 =−0.2, and innovations as in (I), but with coefficient variances

Var(〈εt ,ψl 〉) = 2exp((l −1)/10).

The results of the test (3.4) under the alternative are displayed in Table 2. We

observe that the test has very good power for models IV and VI, even for small

sample sizes. For model V, the power is lower than that of the other two mod-

els, but is still very good, and not completely unintuitive, because it can be
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explained by its data-generating mechanism. Depending on the draw of the

operators, the resulting process in finite samples can be highly dependent, or

may show barely any dependence at all.

Table 2: Empirical rejection probabilities (percentage) of the test (3.4) for the
hypotheses in (2.7) under the alternative hypothesis.

IV V VI

T N M 10% 5% 1% 10% 5% 1% 10% 5% 1%
128 32 4 65.8 55.8 31.8 55.2 43.1 19.1 72.8 59.7 34.2
128 16 8 66.7 57.1 36.9 46.4 37.9 24.1 41.6 30.1 12.6

256 32 8 99.9 99.8 99.7 73.1 65.2 46.3 65.1 53.6 30.2
256 16 16 99.5 99.4 99.2 54.2 48.8 37.6 70.8 59.0 34.0

512 64 8 99.9 99.9 99.9 89.3 85.1 71.6 90.6 82.5 62.2
512 32 16 100.0 100.0 100.0 80.2 75.3 66.6 92.2 87.8 70.1

1024 128 8 100.0 100.0 100.0 92.2 90.1 83.9 99.6 98.4 92.9
1024 64 16 100.0 100.0 99.9 90.2 88.2 83.5 99.7 99.1 96.5
1024 32 32 99.9 99.9 99.9 81.4 79.8 74.6 99.3 98.5 95.9

4.2 Choice of M and N

In order to examine how the choice of M and N affects the test’s performance,

we considered a simulation study with a sample size equal to T = 4096, be-

cause this allows us to vary M from M = 4,8, . . . ,1024. Note that we thus also

include choices of M for which assumption (2.1) does not hold. The study was

again performed over 1000 replications for each of the above models. Fig-

ure 1(a)–(c) provides the estimated densities for each M for model I, II, and
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III, respectively. The estimated densities for model I appear well-aligned with

the standard normal for all values of M . However, the best fit appears to be

for 16 ≤ M ≤ 128. For models II and III, we clearly observe that for M > N ,

the distribution becomes skewed and flatter. This is intuitive, because the as-

sumptions underlying Theorem 3.1 do not hold. The difference with the stan-

dard normal curve seems to become more pronounced as the dependence

increases. From these three models, the dependence is strongest for model II.

In order to quantify our observations, we computed the mean absolute error

to measure the difference between the estimated density of the test statistic

and the standard normal density (see Figure 1(d)). The results indicate that

a relatively small value of M compared to N leads to the best approximation.

However, M should not be too small. Specifically, a minimal error is attained

with M = 32 for model I and model III, and with M = 16 for model II.

Figure 2 shows the rejection probabilities for α= 0.1, 0.05, 0.01 under the

three alternatives. For model IV and model VI, we find perfect power for all

choices of M and all critical values. For model V, there is some sensitivity, and

the power seems best for 8 ≤ M ≤ 32. As previously remarked, the sensitiv-

ity for model V is due to its data-generating mechanism. To summarize, it

appears that our test is very robust to different choices of M that satisfy As-

sumption 2.1. This empirical study indicates particularly good performance
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Figure 1: (a)–(c) Estimated densities for different choices of M with T = 4096
compared to a standard normal distribution (black); (d) Natural logarithm of
the mean absolute error compared to the standard normal distribution.

for the range 16 < M < 64 for T = 4096, which corroborates our findings in

Section 3.

4.3 Data example

We illustrate the proposed methodology by analyzing annual temperature curve

data, recorded at several measuring stations across Australia. The recorded

daily minimum temperatures for each year are treated as functional data. The

locations of the measuring stations and the lengths of the time series are re-
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Figure 2: Rejection probabilities for the three alternative models for T = 4096.

(a) Sydney (b) Boulia Airport

Figure 3: Minimum temperature curves, plotted by year.

ported in Table 3. Figure 3 depicts the minimum temperature curves for Syd-

ney and Boulia Airport as three-dimensional plots, visualizing also the annual

dynamics.

We use the proposed test in (3.4) to investigate whether these temperature

curves are realizations of a stationary process. For the the number of blocks,

we use the above findings; that is, M = dT 1/3e. Given the number of curves for
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Table 3: Values of the test statistic (3.4) for the hypothesis of stationarity of the
annual temperature curve data.

Measuring Station T M = dT 1/3e M=8 M = bT 1/2c
Boulia Airport 120 3.21 2.95 4.55
Cape Otway 149 3.87 4.42 4.48
Gayndah Post Office 117 3.19 4.46 4.16
Gunnedah Pool 133 4.33 3.72 5.04
Hobart 121 4.99 4.60 5.13
Melbourne 158 2.88 3.68 4.36
Robe 129 2.88 2.91 3.65
Sydney 154 3.30 3.71 4.30

each station, this value can be rather small thus, we also consider bT 1/2c. As

a fixed comparison for all curves, we take M = 8, because the sample length

is closest to T = 128 (and often slightly larger). The data are centered, as ex-

plained in Remark 3.1. The corresponding values of the test statistic (3.4) for

the hypothesis of stationarity are reported in Table 3. It is clear that we reject

the null of stationarity in all cases at the 1% significance level. Therefore, the

test provides strong evidence against the null hypothesis of stationarity for all

measuring stations.

Supplementary Material The file online Supplementary Material con-

tains proofs and additional background information.
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