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Abstract: Personalized marketing has emerged as a critical marketing strategy as

a result of the success of e-commerce and the accessibility of digital marketing

data. It is well known that different groups of customers might react differently to

the same marketing strategy, owing to their individual preferences. As such, we

propose a pairwise subgrouping approach that can be used to identify subgroups

and categorize similar marketing effects into groups. Specifically, we model cus-

tomers’ purchase decisions as binary responses under a generalized linear model

framework, while incorporating their longitudinal correlation. We penalize the

pairwise distances between heterogeneous effects to formulate subgroups, where a

subgroup is associated with a unique marketing effect. We establish the theoreti-

cal consistency of the subgroup identification in the sense that the true underlying

segmentation structure can be recovered successfully. Here, we also establish the

parameter estimation consistency. We conduct numerical studies and apply the

proposed approach to IRI marketing data on in-store display marketing effects.

The results show that the proposed method outperforms competing methods in

terms of identifying subgroups and estimating marketing effects.

1

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0298



2

Key words and phrases: Alternating direction and method of multipliers, Individ-

ualized modeling, Marketing segmentation, Minimax concave penalty, Subgroup

identification.

1. Introduction

Personalized marketing has emerged as a critical marketing strategy as a

result of the success of e-commerce and the accessibility of digital mar-

keting data. Understanding customers’ shopping behaviors and preferences

enables effective individualized marketing strategies that accommodate con-

sumers’ specific needs and better serve business entities. Machine learning

techniques facilitate the acquisition, processing, and analysis of large vol-

umes of marketing data, thus providing effective estimates and predictions

for personalized marketing strategies.

This study employs data on consumer packaged goods purchases, devel-

oped by the IRI for research purposes (Bronnenberg et al., 2008). The IRI

recruited panelists to track their purchases on a weekly basis over 11 years

in two major markets: Eau Claire, Wisconsin, and Pittsfield, Massachusetts

(Kruger and Pagni, 2008). In this longitudinal data set, customers are ex-

posed to multiple marketing promotion strategies, such as in-store displays,

price reductions, and advertisements. We hypothesize that individuals’ het-
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erogeneous preferences lead to them having different reactions to a given

marketing strategy. Therefore, it is crucial that we identify those customers

who are more likely to purchase products under certain marketing promo-

tion strategies. This is especially useful when we cannot apply multiple

marketing strategies to the entire population of customers. Therefore, we

propose an effective customer segmentation strategy that can be used to

estimate the unobserved marketing effects of promotion strategies on the

purchasing decisions of subgroups of customers over time.

Cluster analyses are popular statistical approaches to market segmenta-

tion (Wedel and Kamakura, 2012). This approach groups customers based

on their similarities on observed features, such as demographic character-

istics, past-purchase behaviors, and other collected information. However,

a traditional cluster analysis cannot be used to distinguish and identify

subgroups based on unobserved marketing effects on individuals. Here it

is feasible to apply a two-stage procedure, which estimates individual mar-

keting effects first, and then applies a clustering approach, such as the

K-means (Hartigan and Wong, 1979) or mixture model (Dempster et al.,

1977). However, in order to achieve consistent clustering, the two-stage

procedure requires that estimations of individual effects in the first step be

accurate. Alternatively, we can use the mixture regression model (Wedel
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and Kamakura, 2012) with dependent variables to cluster subjects into seg-

ments and estimate the effects of each component simultaneously using the

expectation-maximization (EM) algorithm. However, this requires assum-

ing an underlying distribution assumption of the mixture regression model,

which may be restrictive in practice. In addition, the joint likelihood of

correlated binary data under the mixture model assumption becomes com-

plicated, making implementation infeasible. Moreover, the aforementioned

methods all require a prespecified number of clusters.

More recent clustering methods based on the penalized regression model

make it feasible to model heterogeneous effects and select the number of

subgroups for clustering subjects. For example, Pan et al. (2013) proposed

a center-based subgrouping method for multivariate vectors using group-

ing pursuit, and Chi and Lange (2015) formulated clustering as a splitting

problem using convex optimization. Then Ma and Huang (2017) clustered

subjects by modeling subject-specific intercepts, and Ma and Huang (2016)

incorporated subject-specific coefficients for treatment variables. Austin

et al. (2016) proposed a pairwise penalized regression model with a trun-

cated L1-penalty. However, the above methods target responses under lin-

ear regression model frameworks for independent data, which cannot be

applied to longitudinal binary responses.
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Moreover, the model-based approach is a common strategy for cluster

analyses involving longitudinal data, especially for longitudinal trajecto-

ries. Coffey et al. (2014), Ng et al. (2006), and Luan and Li (2003) used

a mixture of mixed-effects models to identify the underlying membership

of time-course gene expression data. McNicholas and Murphy (2010) pro-

posed a family of mixture models with a covariance structure specifically

designed for longitudinal data to account for dependent relationships be-

tween measurements at different time points. However, the aforementioned

longitudinal clustering problems are only feasible for continuous responses.

Here, researchers assume a Gaussian mixture model framework and employ

the EM algorithm to identify appropriate clusters.

As such we propose a pairwise subgrouping approach to identify sub-

groups of similar marketing effects for longitudinal binary outcomes. Specif-

ically, we model customers’ purchase decisions as binary responses under

a generalized linear model framework that also considers the longitudinal

correlations of these responses. We formulate subgroups by penalizing the

pairwise distances between individual effects, where a subgroup is associ-

ated with a marketing effect. We establish the theoretical consistency of

the subgroup identification in the sense that the true underlying segmen-

tation structure can be recovered successfully. Here we also establish the
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parameter estimation consistency.

The proposed method has several advantages. First, we can simultane-

ously identify and estimate unique marketing effects for different subgroups,

which allows us to borrow information from subjects within the same sub-

group to estimate the marketing effects more efficiently. This circumvents

the restriction of the two-stage procedure in classical clustering methods,

which requires an accurate estimation of the individual effects. In addition,

we can select the optimal number of clusters automatically, in contrast to

the traditional cluster analysis, which requires prespecifying the number of

clusters. In general, our method is less restrictive, because we do not need

to specify a full likelihood, as mixture models do. Another advantage is

that we can incorporate the serial correlation arising from the longitudinal

data to improve the estimation efficiency.

The rest of the paper is organized as follows. Section 2 introduces the

subject-wise model formulation. In Section 3, we propose a pairwise sub-

grouping approach and the corresponding implementation algorithm. Here

we also establish the theoretical properties of the identification and esti-

mation consistency of the segmented subgroups. In section 4, we perform

numerical simulations and compare the proposed approach with existing

approaches. We illustrate our method using IRI data in Section 5. Section
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6 concludes the paper.

2. A Subject-wise Model Framework

In this section, we discuss the general framework of the subject-wise model.

Rather than assuming the traditional homogeneous model, where all sub-

jects have a common coefficient for each covariate, we consider the hetero-

geneity effect for some covariates of interest from some subjects. LetX ij be

the covariates corresponding to the individual effects βi with dimension p,

and let Zij be the covariates corresponding to a homogeneous effect α with

dimension q across subjects. Specifically, the mean function of the binary

responses for the subject-wise model incorporating individual effects βi is

µij(βi,α) = E(yij) = h(X ijβi +Zijα), i = 1, · · · , N ; j = 1, · · · , ni, (2.1)

and the corresponding variance is a function of the mean:

σij(βi,α) = µij(βi,α)(1− µij(βi,α)),

where h(·) is the inverse logit link function and yij denotes a binary. To

simplify the notation, we assume that the number of repeated measurements

from each subject is the same, such that ni = n, for all i, although our

method is not restricted to balanced data.
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Let θ = (β′,α′)′ be the coefficient vector defined on Θ = {θ : θ ∈

RNp+q}, where β = (β′1, · · · ,β′N)′ is an Np-dimensional individual pa-

rameter vector associated with covariates X = diag(X i), where X i =

(X ′i1, · · · ,X ′in)′. We denoteZ = (Z ′1, · · · ,Z ′N)′, whereZi = (Z ′i1, · · · ,Z ′in)′,

and µ(θ) = (µ1(θ)′, · · · ,µN(θ)′)′, where µi(θ) = (µi1(θ), · · · , µin(θ))′.

The matrix representation of the model in (2.1) is µ(θ) = h(Uθ), with

U = (X,Z).

Our goal is to estimate the coefficients of interest, where we assume that

the individual parameters exhibit a certain subgrouping structure. Specif-

ically, let G = (G(1), · · · , G(N)) be the subgrouping membership, where

G(i) ∈ {1, · · · , K} is a subgrouping mapping for subject i, and K(K ≤ N)

is the number of distinct group effects. Consequently, the corresponding

subspace of θ under the subgrouping partition is ΘG = {θ : βi = βj ∈

Rp for any G(i) = G(j) = k, 1 ≤ k ≤ K; and α ∈ Rq}. Let η = (γ ′,α′)′

be the coefficient vector under subgrouping partition G, where γ is the

Kp-dimensional subgrouping effect. That is, βi = γk if G(i) = k.

8
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3. Methodology and Theory

3.1 A Pairwise Grouping Approach

In this section, we propose a pairwise grouping (PG) approach to simulta-

neously identify the subgrouping structure G and estimate the subgrouping

and homogeneous effects in θ. Here, we only require that the first two mo-

ments of the binary responses exist; therefore, we apply a quasi-likelihood

with the following objective function:

QNn(θ) = lNn(θ) +
∑

1≤i<j≤N

P (βi − βj, λf ), (3.1)

where lNn(θ) is a negative quasi-loglikelihood, P (·, λf ) is a penalty func-

tion of the pairwise distance between individual effects βi’s, and a tuning

parameter λf determines the closeness of the pairwise differences.

The quasi-likelihood score corresponding to the derivative of lNn(θ) is

gNn(θ) =
N∑
i=1

Di(θ)TV i(θ)−1(Y i − µi(θ)),

where Di(θ) = ∂µi(θ)/∂θT , and V i(θ) is the covariance matrix for each

subject. We incorporate the correlation information between repeated mea-

surements using a common working correlation structure in V i(θ) = V i(θ, ρ) =

Ai(θ)1/2R(ρ)Ai(θ)1/2, where Ai(θ) = diag(σij(θ)) is the diagonal ma-

trix of the variances, and R(ρ) is a working correlation matrix with a

9
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3.1 A Pairwise Grouping Approach 10

correlation coefficient ρ. Liang and Zeger (1986) introduce several com-

monly used working correlation matrices, such as the exchangeable and

the first-order autoregressive correlation structures. Note that lNn(θ) =

−
∑N

i=1

∑n
j=1 {yij log (µij(θ)) + (1− yij) log (1− µij(θ))} if an independence

structure is assumed.

One advantage of the proposed approach is its ability to balance model

parsimony and model complexity by grouping subjects with similar individ-

ual parameters. To ensure the sparseness of the pairwise differences between

individual effects and to achieve nearly unbiased parameter estimations, we

apply the minimax concave penalty (MCP, Zhang, 2010) using

P (βi − βj, λf ) = Pτ (‖βi − βj‖, λf ), Pτ (t, λf ) = λf

∫ t

0

(1− x

τλf
) + dx,

where the parameter τ controls the concavity of the penalization, and ‖ · ‖

is denoted as the L2-norm of the vectors. In addition, we only require the

first two moments of the responses under the quasi-likelihood framework, as

opposed to specifying the full likelihood function. This allows us to incor-

porate the correlation information between repeated observations without

needing a complex joint distribution for the correlated longitudinal binary

data.

10
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3.2 Implementation 11

3.2 Implementation

To achieve computational feasibility, we propose an alternating direction

and method of multipliers (ADMM) algorithm (Boyd et al., 2011) to min-

imize the objective function (3.1). Note that the MCP penalty introduces

nonconvexity to the objective function. Furthermore the penalization term

leads to nonseparable parameters of βi in the estimation. To overcome

these problems, rather than solving the original optimization directly, we

introduce a set of constraints with vij = βi − βj, for 1 ≤ i < j ≤ N . Then

we consider a new constraint optimization problem

min
θ,v

lNn(θ) + P (v), s.t. vij = βi − βj, 1 ≤ i < j ≤ N, (3.2)

where v = (vij)
′
1≤i<j≤N and P (v) =

∑
i<j Pτ (‖vij‖, λf ). To solve (3.2), we

use the ADMM algorithm with the augmented Lagrangian function

Lκ(θ,v,λ) = lNn(θ)+
∑
i<j

Pτ (‖vij‖, λf )+
κ

2

∑
i<j

‖βi−βj−vij‖2+
∑
i<j

λTij(βi−βj−vij),

(3.3)
where κ is a fixed augmented parameter, and λ = (λ′ij)

′
1≤i<j≤N is the La-

grangian multiplier. The ADMM algorithm has the advantage of decom-

posing (3.2) into several small pieces, which can be solved more easily.

Specifically, we update the estimations of θ, v, and λ sequentially at the

(s+ 1)th iteration step, as follows:

11
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θ(s+1) = arg min
θ
QNn(θ,v(s),λ(s)), (3.4)

v(s+1) = arg min
v
QNn(θ(s+1),v,λ(s)), (3.5)

λ
(s+1)
ij = λ

(s)
ij + κ(β

(s+1)
i − β(s+1)

j − v(s+1)
ij ).

For the first minimization problem in (3.4), we apply the Newton-

Raphson algorithm to solve the quasi-likelihood estimating equations and,

thus, obtain the global minimizer. That is, we minimize

QNn(θ,v(s),λ(s)) = lNn(θ) +
κ

2
‖Dβ − ṽ(s)‖2,

where ṽ = v + 1
κ
λ, D = (D′ij)

′
1≤i<j≤N , Dij = (ei − ej)′ ⊗ Ip, ⊗ is the

Kronecker product, and ei is an N -dimensional vector with one at the

ith component, and zeros elsewhere. An advantage of this approach is

that we do not need to specify a likelihood function explicitly. Instead,

the minimization of QNn(θ,v(s),λ(s)) under the quasi-likelihood framework

yields the following estimating equations with respect to β and α:

∂QNn(θ,v(s),λ(s))

∂βT
= −XTA(θ)V (θ, ρ)−1(Y − µ(θ)) + κDT (Dβ − ṽ(s)),

∂QNn(θ,v(s),λ(s))

∂αT
= −ZTA(θ)V (θ, ρ)−1(Y − µ(θ)),

where V (θ, ρ) = diag(V i(θ, ρ)) and A(θ) = diag(Ai(θ)).

The Newton-Raphson algorithm updates the estimation of θ at the mth

12
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inner step iteratively using

β(s+1,m+1) = β(s+1,m) −
(
XTMX + κDTD

)−1(
XTM 0(µ(θ(s+1,m))− Y )

+ κDT (Dβ(s+1,m) − ṽ(s))
)
,

and
α(s+1,m+1) = α(s+1,m) −

(
ZTMZ

)−1
ZTM 0(µ(θ(s+1,m))− Y ),

whereM = A(θ)V (θ, ρ)−1A(θ) andM 0 = A(θ)V (θ, ρ)−1. Consequently,

we obtain θ(s+1) once the Newton-Raphson algorithm converges. In addi-

tion, we can estimate the correlation coefficient ρ using moment estimations

based on the residuals from the generalized linear model (Liang and Zeger,

1986). Note that M becomesA(θ), andM 0 becomes the identity matrix if

an independence structure is assumed. Under independence, the minimizer

from the Newton-Raphson algorithm is identical to the ordinary logistic

regression estimation.

For the second minimization function in (3.5), because it is a convex

function with respect to each vl, for τ > 1/κ, v
(s+1)
ij can be updated using

the following explicit solution:

v
(s+1)
ij =


u

(s+1)
ij if ‖u(s+1)

ij ‖ ≥ τλf ,

τκ
τκ−1

(1− σ

‖u(s+1)
ij ‖

)+u
(s+1)
ij if ‖u(s+1)

ij ‖ < τλf ,

13
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3.2 Implementation 14

where σ = λf/κ and u
(s+1)
ij = β

(s+1)
i − β(s+1)

j − λ(s)
ij /κ. This allows us to

implement parallel computing for each (i, j), which speeds up the compu-

tation.

The convergence of the proposed ADMM algorithm is not trivial, owing

to the nonconvexity of the primal objective function in (3.2); see Wang et al.

(2015), Hong et al. (2016), and Li and Pong (2015) for further information.

For the pairwise penalization problem considered in this study, without

imposing additional conditions on the estimated sequence, we establish a

general convergence property for a family of objective functions and penalty

functions that have the following regularity properties: (1) (boundedness)

the primal objective function lNn(θ) +P (v) is lower bounded and coercive;

that is, it “grows rapidly” when the values of the parameters diverge on

the feasible set; (2) (smoothness) both lNn(θ) and P (v) are Lipschitz dif-

ferentiable, yielding a sufficient descent on Lκ and a convergent gradient,

along with the iteration process. More detailed conditions are summarized

as Conditions R1-R3 in the Supplementary Material.

Proposition 1. Suppose the regularity conditions R1-R3 in the Supplemen-

tary Material hold for the objective function in (3.2). Then for a sufficiently

large κ, the proposed ADMM algorithm satisfies:

(i) (Primal residual convergence) lim
s→∞
‖r(s)‖2 = 0, r(s) = Dβ(s) − v(s);

14
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(ii) (Dual residual convergence) lims→∞ ‖v(s) − v(s+1)‖ = 0;

(iii) (Estimation convergence) the estimated sequence (θ(s),v(s),λ(s)) is bounded,

and has at least one limit point (θ∗,v∗,λ∗), where each limit point is a sta-

tionary point of the augmented Lagrangian function Lκ in (3.3).

Primal residual convergence implies that the primal feasibility is achieved;

that is, β∗i − β∗j − v∗ij = 0 (1 ≤ i < j ≤ N). Therefore, this limit point

satisfies the optimality conditions. For the proposed model, we check that

the conditions in Proposition 1 are satisfied, yielding the following corollary.

Corollary 1. For the objective function in (3.1) with the MCP penalty,

for a sufficiently large κ, the estimation sequence generated by the ADMM

algorithm converges to a stationary point of (3.1) subsequently.

In fact, in addition to the MCP penalty adopted in this study, the

proof of Corollary 1 can be applied to show the convergence of the ADMM

for other penalty functions, including the SCAD, Lp-norm (p > 1) and

truncated L1-penalty (TLP). As a result of the nonconvexity, the obtained

solution could be a local optimum of the objective function in (3.1). In

practice, we can search through multiple initial values or select appropriate

“warm-start” initial values to obtain the global optimal solution. We outline

the detailed ADMM algorithm as follows.

15
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3.2 Implementation 16

Algorithm 1 ADMM algorithm

Initialize: α(0), β(0), λ(0) and v(0), κ and τ > 1
κ

are fixed.

For s = 0, 1, 2, · · ·

Step1: update α(s+1) and β(s+1)

Initialize: α(s+1,0) = α(s), β(s+1,0) = β(s)

Newton-Raphson iteration for α(s+1,m+1) and β(s+1,m+1) until

‖β(s+1,m+1) − β(s+1,m)‖+ ‖α(s+1,m+1) −α(s+1,m)‖ < ε0.

Step2: update v
(s+1)
ij , for all 1 ≤ i < j ≤ N

Step3: update λ
(s+1)
ij , for all 1 ≤ i < j ≤ N

Step4: Iterate Steps 1-3 until ‖r(s+1)‖ ≤ ε1 and ‖v(s+1) − v(s)‖ ≤ ε2.

In nonconvex optimization, it is critical to choose an appropriate ini-

tialization of the parameters, because this will yield an ideal solution and

significantly fewer iterations. Here, instead of setting the initial values of

λ(0) and v(0) to zero, we start with all observations in one cluster, and then

split subjects into several groups. The initial value is set as

θ(0) = arg min
θ∈Θ

lNn(θ) + λ
(0)
f Dβ,

where λ
(0)
f is a small number, such that each subject forms its own subgroup.

In addition, we provide a modified BIC-type model-selection criterion

to select the tuning parameter λ that determines the complexity of the

model by fusing similar βi. The BIC-type criterion is defined as

16
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BICλf = −
N∑
i=1

n∑
j=1

2
(
yij log(p̂λij) + (1− yij) log(1− p̂λij)

)
+ dN log(Nn)df,

(3.6)
where df = K̂p+q is the effective degrees of freedom, and K̂ is the estimated

number of subgroups of heterogeneous effects. For each λf , p̂
λ
ij = h(X ijβ̂

λ

i +

Zijα̂
λ) is the corresponding estimated probability. Here, the first term of

BICλ in (3.6) is the quasi-likelihood for binary data under the independence

model criterion (Pan, 2001), and the second term depends on N through dN

to allow for greater penalization in more complex models (Wang et al., 2009;

Ma and Huang, 2017). This is because the parameter space in our setting

diverges as the sample size grows. In our analysis, we let dN = c log(Np+q),

where c is a positive constant.

The computation cost of the proposed method could increase quickly

as the sample size increases, owing to the pairwise fusion. Nevertheless,

these obstacles can be overcome through implementing parallel computing.

In addition, by adopting the MCP penalty in the proposed model, the

pairwise coefficients with large differences are no longer penalized, which

can significantly reduce the computational cost.

17
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3.3 Theoretical Properties 18

3.3 Theoretical Properties

In this section, we establish the theoretical properties of the proposed

method. In particular, we investigate the subgroup identification consis-

tency, and show the estimation consistency of the oracle estimators when

the true subgrouping membership is known. We denote λmax(·) and λmin(·)

as the maximum and minimum eigenvalues, respectively, of a specific ma-

trix, and ‖x‖ as the L2-norm of the vector x. Let τn = λmax(R(ρ)−1R0),

where R0 is the true correlation matrix and R(ρ) corresponds to the work-

ing correlation matrix. We denote the true parameters of interest as θ0,

β0, α0, and η0. We require the following conditions and assumptions to

establish the Theorem 1:

(C1): τ−1
n λmin(Cn(θ0))→∞, where

Cn(θ0) =
N∑
i=1

Di(θ
0)TAi(θ

0)−1/2R(ρ)−1Ai(θ
0)−1/2Di(θ

0).

(C2): min
G(i)6=G(j)

‖β0
i −β0

j‖ ≥ τλf , and λf � τ
1/2
n λmin(Cn(θ0))−1/2r, for

a constant r > 0.

Theorem 1. If conditions (C1-C2) and regularity conditions (A1-A2) pro-

vided in the Supplementary Material are satisfied, for any fixed N , there

exists a local minimizer θ̂ = arg minQNn(θ), with θ̂ ∈ Bn(r) = {θ :

τ
−1/2
n ‖Cn(θ0)1/2(θ − θ0)‖ ≤ r}, for some constant r > 0, such that as

18
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3.3 Theoretical Properties 19

n→∞, we have

P (Ĝ = G0)→ 1,

where Ĝ is the estimated subgrouping membership, and G0 is the true sub-

grouping membership.

Theorem 1 indicates that the proposed method can identify the true

subgrouping structure with probability tending to one, when we have a suf-

ficient number of repeated measurements for each subject. Note that condi-

tion (C1) depends on both the true and the working correlation structures

when the responses are correlated. When R0 and R(ρ) are independent,

(C1) requires the marginal information matrix Cn(θ0) only. Furthermore,

condition (C1) reduces to λmin(C̃)→∞, with

C̃ = diag{
∑

jXij
TXij ,

∑
iZi

TZi}, if the variances of the binary responses

are bounded away from zero and XTZ = 0 is satisfied. This condition

is typical in classical regression problems. In the extreme case when R0

is exchangeable, we require the specification of R(ρ) to be close to the

true correlation matrix. Otherwise, if we use an independent working cor-

relation, then we need a stronger condition on the covariates, such that

λmin(C̃)/n → ∞. See Fahrmeir and Kaufmann (1986) for a detailed dis-

cussion on the increase in the magnitude of the coefficients associated with

19
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3.3 Theoretical Properties 20

relevant predictors when the number of repeated measurements increases.

Remark 1. Because the true parameter value (θ0) is unknown, there could

be a gap between the computational optimum solution (θ̂Nn) of the sample

objective function and the theoretical optimum solution stated in Theorem

1, which enjoys the statistical property. However, the location of the com-

putational global minimizer is determined by the consistent unpenalized

estimator (θ̃Nn), which minimizes the objective function lNn(θ) and con-

verges to θ0. As the number of repeated measurements increases (n→∞),

under certain regularity conditions, it is standard to show that, for any

r > 0, we have P (‖θ̃Nn − θ0‖ ≤ r) → 1. This indicates that the unpenal-

ized estimator lies in the neighborhood of the true parameter values. This

implies that the global minimizer θ̂Nn also lies in the neighborhood of the

true parameter values with probability tending to one, yielding an oracle

property.

With a known underlying subgrouping membership, the oracle model

has a mean function

µ∗(η) = h(Wη),W = (X̃,Z), (3.7)

where X̃ = X∆ is obtained from a a subgrouping mapping transformation

∆Np×Kp. That is, ∆ = δ ⊗ IP , where the ith row of δ is a K-dimensional
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3.3 Theoretical Properties 21

vector, with one at the kth component and zeros elsewhere, for the kth

subgroup subjects. Consequently, we obtain the oracle estimators η̂or =

arg minη∈RKp+q l∗Nn(η), where l∗Nn(η) is the negative quasi-likelihood, the

corresponding quasi-likelihood score is

g∗Nn(η) =
N∑
i=1

D∗
i (η)TV i(η, ρ)−1(Y i − µ∗i (η)),

and Di
∗(η) = ∂µ∗i (η)/∂ηT .

In the following, we define the cluster size of the total number of subjects

in subgroup k as Sk =
∑N

i=1 I(G(i) = k), and impose the condition (C3) to

establish Theorem 2.

(C3): τ−1
n λmin(C∗n(η0))→∞, where

C∗n(η0) =
N∑
i=1

D∗
i (η0)TAi(η

0)−1/2R(ρ)−1Ai(η
0)−1/2D∗

i (η0).

Theorem 2. Under condition (C3) and regularity conditions (A3-A4) in

the Supplementary Material, the oracle estimators are consistent, such that

τ
−1/2
n ‖C∗n(η0)1/2(η̂or − η0)‖ = Op(1). Furthermore, if (A5-A7) are satisfied

andXTZ = 0, we have C∗n(η0) = diag{O(nS1)Ip, · · · , O(nSK)Ip, O(nN)Iq}.

Theorem 2 provides the convergence rate for the oracle estimators. The

subgroup identification consistency from Theorem 1 indicates that we can

recover the underlying subgroup membership of the heterogeneous effects
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Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0298



22

with probability approaching one. Therefore, the proposed estimator θ̂ has

the same convergence rate as the oracle estimators. When conditions (A5-

A7) are satisfied, the information accumulated from the subjects within the

same subgroup enables us to achieve a convergence rate that depends on

the cluster size.

4. Simulation Study

In this section, we conduct simulation studies to investigate the estima-

tion performance on both the subgrouping and population parameters, as

well as the identification accuracy on the subgrouping membership. We

compare our method with the oracle, K-means, homogeneous, and subject-

wise models. The oracle model uses the generalized estimating equations

(GEE) approach assuming the group membership is known, which, in gen-

eral, performs best in terms of estimation accuracy. The K-means model

is implemented in two steps. That is, we perform the K-means clustering

using the same initial values as those in the proposed approach. Then, we

fit a GEE model based on the K-means clustering result. The aforemen-

tioned models all consider the subgrouping information. We also compare

two misspecified models that ignore the subgrouping structure of the co-

variate effects: a homogeneous model, in which we assume a common βi
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4.1 Example 1: Two Subgroups 23

for all subjects, and the subject-wise model in (2.1), in which we assume

that each subject has its own group.

We calculate the squared errors (SE) of the estimations for the sub-

grouping and population parameters in order to evaluate the estimation

accuracy. We define SE = ‖α̂−α0‖2 for the population parameter estima-

tion, and SE =
∑N

i=1 ‖β̂i−β
0
i ‖2/N = ‖β̂−β0‖2/N for the subgrouping pa-

rameter estimations. Consequently, the root mean squared error (RMSE) is

calculated based on 100 simulations, where RMSE = (
∑100

s=1 SEs/100)1/2,

and SEs is the squared error in each simulation. In order to evaluate

the performance of subgrouping identification by the proposed method, we

calculate the agreement between the true and estimated membership using

several well-known external indices: the Rand index (Rand, 1971), adjusted

Rand index (Hubert and Arabie, 1985), and Jaccard index (Jaccard, 1912).

A larger value, closer to one, indicates better subgrouping performance.

4.1 Example 1: Two Subgroups

This simulation considers two subgroups, where the mean response µij =

h(Xijβi +Zijα), for i = 1, · · · , 100 and j = 1, · · · , 10; the two-group effects

βi = ±1.2, with equal group size 50; and the population parameter α =

0.35. The covariates Xij are generated from a mixture of two uniform
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4.1 Example 1: Two Subgroups 24

distributions aU(0.5, 1.5) + (1− a)U(−1.5,−0.5), with a ∼ Bernoulli(0.5),

and Zij generated fromN(0, 0.52). In addition, the serial correlations within

subjects are generated from either independence, AR(1), or exchangeable

(EX), with a correlation coefficient ρ = 0.3.

We fix the augmented penalty parameter as κ = 1 and the concavity

parameter as τ = 3 in the MCP penalty, because the choice of values for

these two fixed parameters is not critical to be subgrouping identification

in our numerical studies. In the modified BIC-type criterion in (3.6), the

constant c is set to 5 or 10, which lead to similar results. In Table 1, we

compare the methods’ estimations using the RMSE, and show that the

proposed PG approach has an RMSE closest to that of the oracle approach

for the subgrouping parameters. The homogeneous model and the subject-

wise model tend to exhibit poor performance, with a large discrepancy

between the estimated and true subgrouping parameters, because these

two models are misspecified. The subject-wise model performs especially

poorly because the logistic regression is unstable when the data presents

“perfect separation.”

The K-means approach outperforms the two misspecified models be-

cause it incorporates a subgrouping structure. In addition, it is important

to incorporate any serial correlation in the parameter estimations, because
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True model Independence AR(1) EX
Methods α β α β α β
Oracleind 0.1537 0.1063 0.1462 0.1317 0.1674 0.2821
Oraclear 0.1544 0.1064 0.1394 0.1284 0.1742 0.2807
Oracleex 0.1541 0.1064 0.1439 0.1299 0.1528 0.2765
Kmeans 0.1513 0.5941 0.1514 0.8007 0.1947 1.0726

Homogeneous 0.1624 1.2010 0.1576 1.2023 0.1397 1.2023
Subjectwise 0.1782 6.6705 0.1960 10.0688 0.2828 13.7400

PGind 0.1498 0.4152 0.1575 0.7029 0.1853 0.9223
PGar 0.1511 0.4312 0.1488 0.6611 0.1823 0.8827
PGex 0.1531 0.4197 0.1528 0.6907 0.1584 0.8155

Table 1: RMSEs of the pairwise-grouping (PG) method and oracle model (Oracle)
under each working correlation specification, the K-means (Kmeans) model with a cor-
rectly specified correlation structure, the homogeneous model (Homogeneous), and the
subject-wise model (Subjectwise).

correctly specifying the correlation structure improves the accuracy of both

types of parameter estimations. For example, the PG approach that uses

an exchangeable correlation has an RMSE of 0.8155 for the subgrouping pa-

rameter estimation when the true serial correlation is exchangeable. This

improves the PG method under the independence structure by almost 12%.

In terms of estimating the shared parameter α, the methods all exhibit

similar performance, with an exception of the subject-wise model.

To visualize the performance of the estimation precision and efficiency,

we present box plots of the squared errors in Figure 1 in which the true cor-

relation is exchangeable. We do not provide the results for the subject-wise

model, because it produces extremely large squared errors and large varia-

tions. Figure 1 shows that the proposed approach has smaller squared er-

rors and variations than those of the K-means model. In addition, correctly
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Figure 1: Box plots of the squared errors of the methods in Example 1 when
the true correlation is exchangeable.

specifying the correlation structure leads to a more efficient estimation.

Figure 2 illustrates a solution path for the subgrouping selection with

different values of the tuning parameter λ. As the tuning parameter λ in-

creases, the PG approach merges subjects into subgroups. Then the BIC

selects the optimal model when λ ∈ [0.15, 0.27], where the estimated pa-

rameters for the two groups are quite close to the true parameters. We

also investigate the performance of the subgrouping identification by the

PG approach and the K-means method, because both partition subjects

into subgroups. The three indices in Table 2 show that the PG method

outperforms the K-means method for larger index values, indicating better

membership recovery. Here, the proposed PG approach achieves effective
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Figure 2: A typical solution path for β̂i in Example 1.

estimation and subgrouping identification simultaneously, because it can

automatically borrow within-group information to boost its estimation pre-

cision and efficiency. As a result, it is able to recover the subgrouping

structure. In contrast, the K-means method is implemented in two steps.

Here, the clustering in the second step relies heavily on the accuracy of

the parameter estimations in the first step, which does not use subgroup-

ing information. In addition, the proposed PG approach with a correct

specification of the correlation structure improves the identification of the

subgrouping structure.
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True model Methods Rand Adj-Rand Jaccard

Independence

PGind 0.9466 0.8931 0.8995
PGar 0.9390 0.8780 0.8835
PGex 0.9408 0.8816 0.8869

Kmeans 0.8830 0.7670 0.8460

AR(1)

PGind 0.8588 0.7176 0.7537
PGar 0.8714 0.7428 0.7728
PGex 0.8617 0.7233 0.7582

Kmeans 0.8030 0.6070 0.7130

EX

PGind 0.8389 0.6777 0.7183
PGar 0.8454 0.6907 0.7306
PGex 0.8499 0.6997 0.7389

Kmeans 0.7970 0.5940 0.6230

Table 2: Evaluation of membership identifiability in Example 1.

4.2 Example 2: A Homogenous Model

In this section, we investigate the performance of the proposed approach

when the model is misspecified. Here, we assume there is a subgrouping

structure, and that the true setting has no subgrouping, but does have

homogeneous effects. The model is generated similarly to that in Example

1, except that the true parameter βi = 0.75, for all subjects, and Xij are

generated from N(0, 0.52). In this case, the homogeneous model is the same

as the oracle model and, thus, is omitted from the comparison.

Table 3 displays the estimation comparisons. The proposed method

performs almost identically to the oracle method. In addition, correctly

specifying the correlation structure produces the smallest squared errors

for the parameter estimation. The K-means method is not included here

because it also identifies one cluster, and therefore is identical to the oracle
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approach. However, the subject-wise model tends to overfit the model,

leading to larger squares errors. In addition, the RMSEs for β̂ in the

subject-wise model are almost 20 times those of the PG method with the

exchangeable working correlation. Furthermore, the PG approach with

a correctly specified correlation structure leads to a 60% improvement of

the RMSE, over that of the PG approach with an independence working

correlation when the true correlation is exchangeable.

True model Independence AR(1) EX
Methods α β α β α β
Oracleind 0.1363 0.1352 0.1793 0.3062 0.2668 0.5147
Oraclear 0.1367 0.1361 0.1411 0.2058 0.1654 0.2524
Oracleex 0.1358 0.1348 0.1624 0.2539 0.1441 0.2097

Subjectwise 0.1681 3.0709 0.2313 4.6983 0.3332 4.4588
PGind 0.1363 0.1352 0.1793 0.3062 0.2668 0.5147
PGar 0.1368 0.1361 0.1403 0.2029 0.1654 0.2524
PGex 0.1358 0.1348 0.1626 0.2547 0.1451 0.2125

Table 3: RMSEs of the pairwise-grouping (PG) method and oracle model (Oracle),
under each working correlation specification, and the subject-wise model (Subjectwise).

Figure 3 provides a solution path when the true model is homogeneous,

which shows a quite different pattern to that of Example 1 when there

is subgroup structure. Figure 3 shows that individual parameters merge

as λ increases. Furthermore, there are no obvious subgrouping patterns

among the estimates. The estimated number of clusters is one for all 100

simulations, indicating that the proposed method is able to identify the

correct grouping structure.
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Figure 3: A typical solution path for β̂i in Example 2.

5. Application to IRI Marketing Data

In this section, we analyze IRI marketing data. Specifically, we divide cus-

tomers into subgroups to investigate the effects of certain marketing promo-

tion strategies on their buying decisions. The IRI created an academic-use

data set containing sales data on 30 consumer packaged-goods categories

from 47 markets in the United States. To better understand customers’ pur-

chasing behaviors, the IRI recruited panelists to track their purchases on a

weekly basis over 11 years for two major markets: Eau Claire, Wisconsin,

and Pittsfield, Massachusetts (Kruger and Pagni, 2008). This longitudinal

marketing data recorded the purchases made by each panelist on a weekly

basis, including data on the product category, quantity, and total price, as
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well as on ongoing marketing promotion strategies, such as price reductions,

in-store displays, and advertisements related to the products.

In this application, we focus on coffee consumption. Specifically, we

examine whether customers purchase more units of coffee if there is an on-

going in-store display event. Our response of interest is one if the customer

buys more than one unit of coffee and zero otherwise. In all, 6140 panelists

purchased coffee during the 11-year window. However, the frequencies of

their store visits are highly skewed, with almost 80% of customers purchas-

ing coffee fewer than 50 times, and the most frequent shoppers purchasing

coffee up to 396 times. Here, we analyze a data subset containing 174

customers who purchased coffee products between 25 and 50 times. To

compare the prediction power of the methods, we divide the data into a

training data set containing the first 20 repeated measurements, with the

remaining longitudinal measurements treated as the testing data set. In

addition to estimating the subgrouping effect of the in-store displays, we

also include a time lag variable (Weeklag) in the model from the previous

purchase, corresponding to the population parameter:

logit(µij) = α0 + α1 log(Weeklag) + βiIDisplay.

Here, α0 and α1 are population parameters, βi denotes an individual effect
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that might present a subgrouping pattern, and IDisplay is an indicator vari-

able denoting whether there an in-store display event was present when the

customer made the purchase.

We identify three subgroups of display effects among these panelists

using the PG method with exchangeable correlation. Specifically, 83 cus-

tomers show a moderate negative display effect on purchasing more than

one unit of coffee, with a coefficient of -0.243, 64 customers share a subgroup

of a mild positive effect of 0.935, and the remaining 27 customers exhibit

a larger positive effect of 2.190. Note that the correlation structures have

no effect on the subgroup membership, but show different prediction accu-

racies as measured by the area under the curve (AUC), in Figure 4. In

particular, the PG method with the exchangeable correlation produces the

largest prediction power, with an AUC of 0.6372, of the three working

correlation structures. On the other hand, the subject-wise model has an

AUC of 0.5959, and the homogeneous model has an AUC of 0.6018. The

result for the K-means approach is not provided because it selects only one

cluster, which is essentially the same as the homogeneous model.

The above subgrouping analysis indicates that there are two groups of

customers who are more likely to buy more coffee products when in-store

displays are present. We confirm this finding by refitting the model using
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Figure 4: The AUC for prediction under various methods.

the GEE method, given the subgroups identified by the proposed method.

Table 4 illustrates the refitted “display” effects for each identified subgroup,

and the 95% confidence intervals of the corresponding odds ratios. The

“display” effect estimates are quite similar between the PG approach and

the GEE, given the identified subgroups. In addition, the odds ratios of the

GEE estimators confirm that there are two segments of customers who are

more likely to purchase more than one unit of coffee products, with odds

ratios of 2.630 and 9.155, respectively. In contrast, the first subgroup of

customers are less likely to purchase more coffee even if there is an in-store

display event.
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Subgrouping effects Odds ratio

Subgroup size PG estimation GEE estimation GEE Estimation
95% Confidence Intervals
Lower level Upper level

83 -0.243 -0.290 0.748 0.632 0.886
64 0.935 0.967 2.630 2.220 3.110
27 2.190 2.214 9.155 7.420 11.30

Table 4: Subgroup in-store display effect estimations and 95% confidence
intervals of the odds ratios for each subgroup.

6. Discussion

In this paper we propose a PG approach that simultaneously identifies

and estimates the subgrouping effects for longitudinal binary outcomes. A

key strategy of the proposed method that is borrows information across

subjects by penalizing the pairwise differences of the coefficients. This

allows us to recover the true subgrouping memberships effectively. The

proposed method is formulated under a quasi-likelihood model framework,

which requires a specification of the first two moments only and is better

able to handle correlated binary data. In addition, we incorporate serial

correlations that arise from repeated binary responses in order to improve

the estimation efficiency. An additional advantage of the proposed approach

is that, in contrast to some classical cluster analysis methods, it does not

require prespecifying the number of clusters in advance.

In the real-data application, we identified three subgroups of customers,

among which two groups have different incentives to purchase additional
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products when in-store display events are present. The third group of cus-

tomers shows an adverse effect from in-store displays in terms of purchasing

additional products. In order to better explain the marketing effects on

each individual and recommend suitable marketing strategies for targeted

subgroups of customers, it would be worth investigating the relationship

between subgroup membership and other individual characteristics, such

as demographic information from each household. The additional informa-

tion on individuals could also be useful in designing personalized marketing

strategies for new customers whose purchasing history information is not

available.

Supplementary Material

The online Supplementary Material includes the regularity conditions

of (A1-A7), and proofs of Proposition 1 and Theorems 1-2.
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