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Abstract: Gaussian processes are popular and flexible models for spatial, tempo-

ral, and functional data, but they are computationally infeasible for large data

sets. We discuss Gaussian-process approximations that use basis functions at

multiple resolutions to achieve fast inference and that can (approximately) rep-

resent any spatial covariance structure. We consider two special cases of this

multi-resolution approximation framework, namely a taper version and a domain-

partitioning (block) version. We describe theoretical properties and inference

procedures, and study the computational complexity of the methods. Numerical

comparisons and an application to satellite data are also provided.

Key words and phrases: Basis functions; Gaussian process; predictive process;

kriging; satellite data; sparsity.

1. Introduction

Gaussian processes (GPs) are popular models for spatial data, time series,

and functions. They are flexible and allow natural uncertainty quantifica-

tion, but their computational complexity is cubic in the data size. This
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prohibits GPs from being used directly for analyses of many modern data

sets consisting of a large number of observations, such as satellite remote-

sensing data.

As a result, numerous approximations and assumptions have been pro-

posed that allow the application of GPs to large spatial data sets. Some

of these approaches are most appropriate for capturing fine-scale structure

(e.g., Furrer et al., 2006; Kaufman et al., 2008), while others are more suit-

able for capturing large-scale structure (e.g., Higdon, 1998; Mardia et al.,

1998; Wikle and Cressie, 1999; Cressie and Johannesson, 2008; Katzfuss

and Cressie, 2009, 2011, 2012). Lindgren et al. (2011) proposed an approx-

imation based on viewing a GP with a Matérn covariance as the solution to

the corresponding stochastic partial differential equation. Vecchia’s method

and its extensions (e.g., Vecchia, 1988; Stein et al., 2004; Datta et al., 2016;

Katzfuss and Guinness, 2017) are discontinuous and assume the so-called

screening effect holds; in other words, they assume that any given obser-

vation is conditionally independent from other observations, given a small

subset of (typically nearby) observations.

We propose a class of multi-resolution approximations (M -RAs) for GPs

that allow us to capture spatial structure at all scales. The M -RA frame-

work is based on an orthogonal decomposition of the GP of interest into

processes at multiple resolutions by iteratively applying the predictive pro-

cess (Quiñonero-Candela and Rasmussen, 2005; Banerjee et al., 2008). The
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process at each resolution has an equivalent representation as a weighted

sum of spatial basis functions. As the resolution increases, the number of

functions increases, and their scale decreases. Unlike other multi-resolution

models or wavelets (e.g., Chui, 1992; Nychka et al., 2002; Johannesson et al.,

2007; Cressie and Johannesson, 2008; Nychka et al., 2015), our M -RA au-

tomatically specifies the basis functions (and the prior distributions of their

weights) to adapt to the given covariance function of interest, without re-

quiring restrictions on this covariance function. Thus, in contrast to other

approaches, it is clear which covariance structure is approximated by the

sum of the basis functions in the M -RA.

To achieve computational feasibility within the proposed framework,

we require an approximation of the “remainder process” at each resolution,

using so-called modulating functions. We consider two special cases. For

the M -RA-taper, the modulating functions are taken as tapering functions

(i.e., compactly supported correlation functions). For an increasing reso-

lution, the remainder process is approximated with increasingly restrictive

tapering functions, leading to increasingly sparse matrices. In contrast, the

M -RA-block iteratively splits each region at each resolution into a set of

subregions, with the remainder process assumed to be independent between

these subregions. This can lead to discontinuities at the region boundaries.

A special case of the M -RA-block (Katzfuss, 2017) performed very well in

a recent comparison of methods for large spatial data (Heaton et al., 2019).
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A further special case of the M -RA, with only one resolution, is given by

the full-scale approximation (Snelson and Ghahramani, 2007; Sang et al.,

2011; Sang and Huang, 2012).

The M -RA is suitable for inference based on large numbers of obser-

vations from a GP, which may be irregularly spaced. We will describe

inference procedures that rely on operations on sparse matrices for compu-

tational feasibility. The M -RA-block can deal with massive data sets with

tens of millions of observations or more, because it is amenable to parallel

computations on modern distributed computing systems. It can be viewed

as a Vecchia-type approximation (Katzfuss and Guinness, 2017), it can be

extended to a Kalman-filter-type analysis of spatio-temporal data (Jurek

and Katzfuss, 2018), and the approximated covariance matrix is a so-called

hierarchical off-diagonal low-rank matrix (e.g., Ambikasaran et al., 2016).

The M -RA-taper leads to more general sparse matrices, and thus requires

careful algorithms to fully exploit the sparsity structure. However, it has

the advantage of not introducing artificial discontinuities.

Relative to the M -RA-block in Katzfuss (2017), the contributions of

our study are as follows. We introduce a general framework for M -RAs

that provides a new, intuitive perspective on this approach. This allows

an extension of the M -RA-block of Katzfuss (2017) that removes the re-

quirement that knots at the finest resolution correspond to the observed

locations. Furthermore, it enables us to introduce a novel M -RA-taper ap-
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proach that extends the ideas of Sang and Huang (2012) to more than one

resolution. We provide more insights about the theoretical and computa-

tional properties of both versions of the M -RA. We also include further

implementation details and numerical comparisons.

The remainder of this paper is organized as follows. In Section 2, we first

describe an exact orthogonal multi-resolution decomposition of a GP, which

leads to the M -RA framework and the two special cases described above

after applying the appropriate modulating functions. We also study their

theoretical properties. In Section 3, we discuss the algorithms necessary

for statistical inference using the M -RA, and we provide details of their

computational complexity. Numerical comparisons on simulated and real

data are given in Sections 4 and 5, respectively. We conclude in Section

6. The online Supplementary Material contains all proofs and additional

simulation results. All code will be provided upon publication.

2. M-RAs

2.1 The true GP

Let {y0(s) : s ∈ D}, or y0(·), be the true spatial field or process of interest on

a continuous (non-gridded) domain D ⊂ Rd, for d ∈ N+. We assume that

y0(·) ∼ GP (0, C0) is a zero-mean GP with covariance function C0. We place

no restrictions on C0, other than assuming it is a positive-definite function
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2.2 Preliminaries

that is known up to a vector of parameters, θ. In real applications, y0(·)

will often not have a zero mean; however, estimating and subtracting the

mean is usually not computationally difficult. Once y0(·) has been observed

at a set of n spatial locations S, the primary goal of spatial statistics is to

make (likelihood-based) inference on the parameters θ, and to obtain spa-

tial predictions of y0(·) at a set of locations SP (i.e., to obtain the posterior

distribution of y0(SP )). Direct computation using the Cholesky decom-

position of the resulting covariance matrix requires O(n3) time and O(n2)

memory complexity, which is computationally infeasible when n� 104.

2.2 Preliminaries

A multi-resolution approximation with M resolutions (M -RA) requires two

main inputs: knots and modulating functions. The multi-resolutional set

of knots, Q := {Q0, . . . ,QM}, is chosen such that, for all m = 0, 1, . . . ,M ,

Qm = {qm,1, . . . ,qm,rm} is a set of rm knots, with qm,i ∈ D. We assume that

the number of knots increases with the resolution (i.e., r0 < r1 < . . . < rM).

For example, we could choose each Qm to be a regular grid over D, as

illustrated for a simple toy example in Figure 1. Alternatively, the knot set

could be a partition of the set of observed spatial locations: S = ∪̇Mm=0Qm.

The second imput is a set of modulating functions (Sang et al., 2011),

T := {T0, T1, . . . , TM}, where Tm : D×D → [0, 1] is a symmetric, nonnegative-

definite function. In Section 2.5 we consider two specific examples; for now,
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2.2 Preliminaries

we merely require that Tm(s1, s2) is equal to one when s1 = s2, and is (ex-

actly) equal to zero when s1 and s2 are far apart. Here, the meaning of

“far” depends on the resolution m, in that, with increasing m, the modu-

lating function should be equal to zero for increasingly large sets of pairs of

locations in D.

Based on these two inputs, we can now provide two definitions.

Definition 1 (Predictive process). For a generic GP x(·) ∼ GP (0, C),

define x(m)(·) as the predictive-process approximation (Quiñonero-Candela

and Rasmussen, 2005; Banerjee et al., 2008) of x(·), based on the knots

Qm:

x(m)(s) := E
(
x(s)|x(Qm)

)
= b(s)′η, s ∈ D,

where b(s)′ = C(s,Qm) and η ∼ Nrm(0,Λ−1), with Λ = C(Qm,Qm).

That is, the predictive process is a conditional expectation, and hence

is a smooth, low-rank approximation of y(·), which can also be written as a

linear combination of basis functions (cf., Katzfuss, 2013). Furthermore, the

remainder x(·)− x(m)(·) ∼ GP (0, CR) is independent of x(·), with positive-

definite covariance function CR(s1, s2) = C(s1, s2) − b(s1)
′Λ−1b(s2) (Sang

and Huang, 2012).

Definition 2 (Modulated process). For a GP x(·) ∼ GP (0, C), define
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2.3 Exact multi-resolution decompositions of GPs
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Figure 1: For y0(·) ∼ GP (0, C0) with exponential covariance function C0 on D = [0, 1], a

set of multi-resolution knots (black dots) and their corresponding basis functions, based

on the orthogonal decomposition in (2.1) (black lines) and on two versions of the M -RA

(red lines), with r0 = 1, J = 2, and M = 3. The M -RA-block is exact in this setting

(see Proposition 6) and, hence, the red and black lines overlap.

[x][m](·) to be the “modulated” process corresponding to x(·):

[x][m](·) ∼ GP (0, [C][m]), where [C][m](s1, s2) = C(s1, s2)·Tm(s1, s2), s1, s2 ∈ D.

We find that x(·) and [x][m](·) have the same variance structure (because

Tm(s, s) = 1), but that [x][m](·) has a compactly supported covariance func-

tion that is an increasingly bad approximation of C as m and the distance

between s1 and s2 increase.

2.3 Exact multi-resolution decompositions of GPs

For any GP y0(·) ∼ GP (0, C0) (as specified in Section 2.1), using Definition

1, we can write y0(·) = τ0(·) + δ1(·), where τ0(·) := y
(0)
0 (·) is the predictive

process of y0(·) based on the knotsQ0, and δ1(·) := y0(·)−τ0(·) ∼ GP (0, w1)
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2.3 Exact multi-resolution decompositions of GPs

is independent of τ0, and is itself a GP with a (positive-definite) covariance

function w1. Thus, we can again apply the predictive process to δ1(·) (this

time based on the knotsQ1) to obtain the decomposition δ1(·) = τ1(·)+δ2(·),

and so forth, up to some resolution M ∈ N.

This procedure enables us to exactly decompose any y0(·) ∼ GP (0, C0)

into orthogonal (i.e., independent) components at multiple resolutions:

y0(·)
d
= τ0(·) + . . .+ τM−1(·) + δM(·), (2.1)

where τm(·) := δ
(m)
m (·) is the predictive process of δm(·) based on knots

Qm, δ0(·) := y0(·), and δm(·) := δm−1(·) − τm−1(·) ∼ GP (0, wm), for

m = 1, . . . ,M . Furthermore, using the basis-function representation from

Definition 1, we can write each component of the decomposition as τm(·) =

am(·)′γm, where γm
ind.∼ Nrm(0,Ω−1), and starting with w0 = C0, we have

for m = 1, . . . ,M − 1:

am(s)′ := wm(s,Qm), s ∈ D

Ωm := wm(Qm,Qm)

wm+1(s1, s2) := wm(s1, s2)− am(s1)
′Ω−1m am(s2), s1, s2 ∈ D.

(2.2)

An important feature of this decomposition is that components τm(·) with

low resolution m capture mostly smooth, long-range dependence, whereas

high-resolution components capture mostly the fine-scale, local structure.

This is because the predictive process at each resolution m is an approxima-

tion of the first rm terms in the Karhunen Loéve expansion of δm(·) (Sang
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2.4 The M -RA

and Huang, 2012). Figure 1 illustrates the resulting basis functions in our

toy example.

It is straightforward to show that the decomposition of the process

y0(·) ∼ GP (0, C0) in (2.1) also implies an equivalent decomposition of the

covariance function C0:

C0(s1, s2) =
M−1∑
m=0

wm(s1,Qm)wm(Qm,Qm)−1wm(Qm, s2)+wM(s1, s2), s1, s2 ∈ D.

(2.3)

2.4 The M-RA

The M -RA is a “modulated” version of the exact decomposition in (2.1),

which at each resolution m, modulates the remainder using the function Tm

from Section 2.2. The key idea is that the predictive processes at low reso-

lutions capture the low-frequency variation in y0(·), resulting in remainder

terms that exhibit variability on increasingly smaller scales as m increases.

Thus, approximating the remainder using increasingly restrictive modulat-

ing functions causes little approximation error.

Definition 3 (M -RA). For a given M ∈ N, the M-RA of a process

y0(·) ∼ GP (0, C0), based on a set of knots Q = {Q0, . . . ,QM} and a set of

modulating functions T = {T0, . . . , TM}, is given by

yM(·) =
M∑
m=0

τ̃m(·) =
M∑
m=0

bm(s)′ηm, (2.4)

where τ̃m(·) := δ̃
(m)
m (·) and ηm

ind.∼ Nrm(0,Λ−1m ), for m = 0, . . . ,M ; δ̃0(·) :=
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2.4 The M -RA

[y0][0](·) ∼ GP (0, v0), with v0 = [C0][0]; δ̃m(·) = [δ̃m−1 − τ̃m−1][m](·) ∼

GP (0, vm), for m = 1, . . . ,M ; and

bm(s)′ := vm(s,Qm), s ∈ D, m = 0, . . . ,M,

Λm := vm(Qm,Qm), m = 0, . . . ,M,

vm+1(s1, s2) :=
(
vm(s1, s2)− bm(s1)

′Λ−1m bm(s2)
)
· Tm+1(s1, s2), s1, s2 ∈ D, m = 0, . . . ,M − 1.

(2.5)

Figure 1 shows the M -RA basis functions for our toy example. As

shown, the M -RA is similar to a wavelet model, in that for increasing reso-

lution m, we have an increasing number of basis functions with increasingly

compact support. However, in contrast to wavelets, the basis functions b(·)

and the precision matrix Λ of the corresponding weights in the M -RA adapt

to the covariance function C0. Defining the basis functions recursively al-

lows the M -RA to approximate C0. In other approaches (e.g., wavelets, or

that of Nychka et al., 2015) with explicit expressions for the basis functions,

the resulting covariance is less clear.

For ease of notation, we often stack the basis functions as b(·) :=(
b0(·)′, . . . ,bM(·)′

)′
, and the corresponding coefficients as η :=

(
η′0, . . . ,η

′
M

)′
,

such that

yM(·) = b(·)′η, where η ∼ Nr(0,Λ−1), (2.6)

with Λ := blockdiag(Λ0, . . . ,ΛM) and r =
∑M

m=0 rm.
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2.5 Examples

2.5 Examples

As described in Section 2.2, the M -RA requires two inputs: knots and

modulating functions. In light of the computational complexities discussed

in Sections 3.2–3.3 below, we introduce a factor J , which is often set equal

to 2 or 4. Then, starting with some (small) number of knots r0 at resolution

m = 0, we henceforth assume rm = Jrm−1, for m = 1, . . . ,M .

For the modulating functions, the two choices discussed next lead to

important versions of the M -RA.

2.5.1 M-RA-block

To define the M -RA-block, we need a recursive partitioning of the spatial

domain D, in which each of J regions, D1, . . . ,DJ , is again divided into J

smaller subregions, and so forth, up to level M :

Dj1,...,jm−1 =
⋃̇
jm=1,...,J Dj1,...,jm , j1, . . . , jm−1 = 1, . . . , J ; m = 1, . . . ,M.

We then assume, for each resolution m, that the modulated remainder

δm(·) is independent across partitions at the mth resolution. That is, the

modulating function is defined as

Tm(si, sj) =


1, (i1, . . . , im) = (j1, . . . , jm),

0, otherwise,

si ∈ Di1,...,im , sj ∈ Dj1,...,jm .

(2.7)
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2.5 Examples

Essentially, we have Tm(s1, s2) = 1 if s1 and s2 are in the same region

Dj1,...,jm , and Tm(s1, s2) = 0 otherwise. At resolution m, D is split into

Jm subregions. Typically, we assume that the knots at each resolution

are roughly equally spread throughout the domain; as a result, there are

roughly the same number rm/J
m = r0 of knots in every such region.

The M -RA-block and the corresponding domain partitions are illus-

trated in the toy example shown in Figure 1b. The M -RA-block was first

proposed in Katzfuss (2017), with the restriction that QM = S. Another

special case for M = 1 is the block-full-scale approximation (Snelson and

Ghahramani, 2007; Sang et al., 2011). Further discussion on the knot choice

and partitioning schemes for the M -RA-block can be found in Katzfuss

(2017, Sect. 2.5).

2.5.2 M-RA-taper

We can also specify the modulating functions as compactly supported cor-

relation functions, often refered to as tapering functions. For simplicity, we

assume here that the modulating functions are of the form

Tm(s1, s2) = T∗(‖s1 − s2‖/dm),

with dm+1 = dm/J
1/d, where d is the dimension of D, ‖ · ‖ is some norm on

D, and T∗ is a compactly supported correlation function, scaled such that

T ∗(x) = 0, for all x ≥ 1. For simplicity, we use Kanter’s function (Kanter,
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2.6 Properties of the M -RA process

1997) in all data examples:

T∗(x) :=



1, x = 0,

(1− x) sin(2πx)
2πx

+ 1−cos(2πx)
2π2x

, x ∈ (0, 1),

0, x ≥ 1.

For other possible choices of tapering functions, see Gneiting (2002). The

M -RA-taper is illustrated in Figure 1a. A special case of the M -RA-taper

for M = 1 is the taper-full-scale approximation (Sang and Huang, 2012;

Katzfuss, 2013).

2.6 Properties of the M-RA process

Throughout this subsection, let yM(·) be the M -RA (as described in Defini-

tion 3) of y0(·) ∼ GP (0, C0) on domainD, based on knotsQ = {Q0, . . . ,QM}

and modulating functions T = {T0, . . . , TM}. All proofs are given in the

Supplementary Material.

Proposition 1 (Distribution of the M -RA). The M-RA is a GP, yM(·) ∼

GP (0, CM), with covariance function

CM(s1, s2) =
M∑
m=0

vm(s1,Qm)vm(Qm,Qm)−1vm(Qm, s2), s1, s2 ∈ D, (2.8)

where vm is defined in (2.5). We call CM the M-RA of the covariance

function C0.
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2.6 Properties of the M -RA process

Proposition 2 (Duplication of knots). If q ∈ Qm, then vm+l(q, s) = 0,

for any s ∈ D and l ≥ 1.

This proposition implies that there is no benefit to designating the same

locations as knots at different resolutions; that is, the knot locations in Q

should not be too close together. In addition, although CM in (2.8) is

not a strictly positive function, we can ensure that the matrix CM(S,S) is

positive definite, for any set of unique locations S, by setting Q = S.

Proposition 3 (Exact variance). If s ∈ Q, then the M-RA variance at

location s is exact; that is, CM(s, s) = C0(s, s).

This proposition implies that, in contrast to other recent basis-function

approaches (e.g., Lindgren et al., 2011; Nychka et al., 2015), no variance

or “edge” correction is needed for the M -RA if we place a knot location at

each observed and prediction location.

Smoothness (i.e., differentiability) is an important concept in spatial

statistics, and has led to the popularity of the Matérn covariance class with

a parameter that flexibly regulates differentiability (e.g., Stein, 1999). The

following proposition shows that any desired smoothness can be preserved

when applying the M -RA.

Proposition 4 (Smoothness). If y0(·) is exactly p-times (mean-square)

differentiable at s ∈ Q, where p ∈ Z≥0, then yM(·) is also exactly p-times

differentiable at s, provided that C0(·,q) and Tm(·,q) are at least 2p-times
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2.6 Properties of the M -RA process

differentiable at s, for any q ∈ Q and m = 1, . . . ,M .

Many commonly used covariance functions (e.g., Matérn) are infinitely

differentiable away from the origin. If C0 is such a function, the M -RA-

block will have the same smoothness as the original process y0(·) at any

s not located on the boundary between subregions, at any resolution (cf.,

Katzfuss, 2017). Tapering functions are often smooth away from the origin,

except at the distance at which they become exactly zero. Thus, the M -RA-

taper will typically have the same smoothness at s as y0(·) if T is at least

2p-times differentiable at the origin, and s is not exactly at distance dm from

any q ∈ Qm, for all m = 1, . . . ,M . Note that this result does not require

that the smoothness of y0 be the same at all locations s; if the smoothness

(or other local characteristics) of the covariance function C0 varies over

space, the M -RA will automatically adapt to this nonstationarity, and vary

over space accordingly.

There is, however, an issue with the continuity of the M -RA-block pro-

cess at the region boundaries, which can be highly undesirable in prediction

maps.

Proposition 5 (Continuity). Assume that C0 is a continuous function.

Then, for the M-RA-taper, the realizations of the corresponding process

yM(·) and the posterior mean (i.e., kriging prediction) surface µM(s) :=

E(yM(s)|z) based on observations z, as in (3.9), are both continuous, as-
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2.6 Properties of the M -RA process

suming that Tm is continuous for all m = 0, 1, . . . ,M . In contrast, for the

M-RA-block, yM(·) and µM(·) are both discontinuous, in general, at any s

on the boundary between any two subregions.

Proposition 6 (Exactness of M -RA-block). Let C0 be a (stationary) ex-

ponential covariance function on the real line, D = R. In addition, let CM

be the covariance function of the corresponding M-RA-block (see Section

2.5.1), with rm = (J − 1)Jm knots, for m = 0, . . . ,M − 1, placed such that

at each resolution m, a knot is located on each boundary between two subre-

gions at resolution m+ 1. Then, the M-RA is exact at every knot location;

that is, CM(s1, s2) = C0(s1, s2), for any s1, s2 ∈ Q.

This proposition is illustrated in Figure 1b. As discussed in Section 3.2,

this result allows us to exactly decompose an n× n exponential covariance

matrix into a sparse matrix with n rows, but with only about log2 n nonzero

elements per row, where r0 = 1 and J = 2. This leads to tremendous

computational savings (e.g., log2(n) < 30 for n = 1 billion).

The exact result in Proposition 6 relies on the Markov property and

the exact screening effect of the exponential covariance function (which

is a Matérn covariance with smoothness parameter ν = 0.5). However,

similar, albeit approximate results are expected to hold for larger smooth-

ness parameters in one dimension. Specifically, Stein (2011) shows that an

asymptotic screening effect holds for ν = 1.5 when using conditioning sets
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of size 2. He conjectures that an asymptotic screening effect holds for any

ν when using conditioning sets of size greater than ν. This conjecture is

also explored numerically in Katzfuss and Guinness (2017). To exploit this

screening effect for the M -RA-block, we can simply place c > ν knots near

every subregion boundary (i.e., r0 = c(J − 1)).

3. Inference

In this section, we describe inference for the M -RA based on a set of n mea-

surements at locations S. We assume additive, independent measurement

error, such that

z = yM(S) + ε, ε ∼ Nn(0,Vε), (3.9)

where Vε is a diagonal matrix. We assume that C0 and Vε are fully deter-

mined by the parameter vector θ, which is assumed fixed at a particular

value, unless noted otherwise. For the sparsity and complexity calculations,

we assume rm = r0J
m and n = O(rM).

3.1 General inference results

3.1.1 Prior matrices

For a given set of parameters, the covariance function C0 and, hence,

the basis functions b(·) and the precision matrix Λ in (2.6), are fixed.

The prerequisite for inference is to calculate the prior matrices Λ and
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3.1 General inference results

B := [B0, . . . ,BM ] := [b0(S), . . . ,bM(S)]. Define Wk
m,l := vk(Qm,Ql)

and Wk
S,m := vk(S,Qm), such that Λm = Wm

m,m and Bm = Wm
S,m. For

m = 0, . . . ,M , starting with W0
m,l = v0(Qm,Ql) and W0

S,m = v0(S,Qm),

it is straightforward to verify that

Wk+1
m,l =

(
Wk

m,l−Wk
m,kΛ

−1
k Wk

l,k
′)◦Tk+1(Qm,Ql), k = 0, . . . , l−1; l = 0, . . . ,m;

(3.10)

and

Wk+1
S,m =

(
Wk
S,m −Wk

S,kΛ
−1
k Wk

m,k
′) ◦ Tk+1(S,Qm), k = 0, . . . ,m− 1.

(3.11)

Here, ◦ denotes the Hadamard or element-wise product. Note that Λm and

Bm both grow in dimension and become increasingly sparse with increasing

resolution m. We have (Λm)i,j = 0 if Tm(qm,i,qm,j) = 0, and (Bm)i,j = 0 if

Tm(si,qm,j) = 0.

3.1.2 Posterior inference

Once Λ and B have been obtained, the posterior distribution of the un-

known weight vector, η, is given by well-known formulae for conjugate

normal-normal Bayesian models:

η | z ∼ Nr(ν̃, Λ̃−1), (3.12)

where Λ̃ = Λ + B′V−1ε B, ν̃ = Λ̃−1z̃, and z̃ = B′V−1ε z.
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3.1 General inference results

Based on this posterior distribution of η, the likelihood can be written

as follows (e.g., Katzfuss and Hammerling, 2017):

−2 logL(θ) = − log |Λ|+ log |Λ̃|+ log |Vε|+ z′V−1ε z− z̃′Λ̃−1z̃. (3.13)

Using this expression, the likelihood can be evaluated quickly for any given

value of the parameter vector θ. This allows us to conduct likelihood-

based inference (e.g., maximum likelihood or Metropolis–Hastings) on the

parameters in C0 and Vε by computing the quantities in (3.10)–(3.13) for

each parameter value.

To obtain spatial predictions for fixed parameters θ, note that yM(SP ) =

BPη, where BP := b(SP ). Defining Wk
SP ,l := vk(SP ,Ql), BP = [BP

0 , . . . ,B
P
M ]

can be obtained based on the quantities from Section 3.1.1 by calculating

W0
SP ,m = v0(SP ,Qm) and

Wk+1
SP ,m =

(
Wk
SP ,m−Wk

SP ,kΛ
−1
k Wk

m,k
′)◦Tk+1(SP ,Qm), k = 0, . . . ,m−1,

and setting BP
m = Wm

SP ,m, for m = 0, . . . ,M . The posterior predictive

distribution is given by

yM(SP ) | z ∼ NnP
(BP ν̃,BP Λ̃−1BP ′). (3.14)

Hence, the main computational effort required for inference lies in the

Cholesky decomposition of Λ̃, the posterior precision matrix of the basis-

function weights in (3.12). Because Λ and B are both sparse, Λ̃ is a sparse

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0285



3.1 General inference results

(a) B for M -RA-taper
(b) Λ for M -RA-taper (c) Λ̃ for M -RA-taper

(d) B for M -RA-block
(e) Λ for M -RA-block (f) Λ̃ for M -RA-block

Figure 2: Illustration of the sparsity in the matrices B, Λ, and Λ̃ for the toy example in

Figure 1. Resolutions are separated by solid black lines. Top row: M -RA-taper. Bottom

row: M -RA-block.

matrix that can be decomposed quickly. Specifically, Λ̃ has the block struc-

ture Λ̃ = (Λ̃m,l)m,l=0,...,M , where Λ̃m,l = Λm1{m=l}+B′mV−1ε Bl is an rm×rl

matrix with (i, j)th element zero if 6 ∃s ∈ D such that Tm(qm,i, s) 6= 0

and Tl(ql,j, s) 6= 0. Figure 2 shows the sparsity structures of B, Λ, and Λ̃

corresponding to the toy example in Figure 1.

3.1.3 Inference in the absence of measurement error

If there is no measurement error (i.e., Vε = 0), we have

z = y ∼ Nn(0,Σ),
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3.2 Inference details for the M -RA-block

where Σ = BΛ−1B′. To ensure that B (and hence Σ) has full rank, we

assume for this case that S = Q (and, thus, n = r) and (in light of Propo-

sition 2) that the knots are unique. The likelihood can then be calcu-

lated as −2 logL(θ) = − log |Σ|−y′Σ−1y, where log |Σ| = log |BΛ−1B′| =

log |B|2 − log |Λ|, and y′Σ−1y = ỹ′Λỹ, with ỹ = B−1y.

Note that this form of M -RA inference can also be used when the M -

RA is applied directly to data whose covariance, say C∗0(si, sj) = C0(si, sj)+

τ 2I(si = sj), includes noise with variance τ 2.

3.2 Inference details for the M-RA-block

For the M -RA-block from Section 2.5.1, B, Λ, and Λ̃ are block-sparse

matrices, with each block roughly of size r0 × r0 and corresponding to (the

knots at) a pair of regions.

As noted in Section 3.1.1, we have (Λm)i,j = 0 if Tm(qm,i,qm,j) = 0;

thus, Λm is a block-diagonal matrix with diagonal blocks {vm(Qj1,...,jm ,Qj1,...,jm) :

j1, . . . , jm = 1, . . . , J}, where Qj1,...,jm = {qm,i : qm,i ∈ Qm ∩ Dj1,...,jm} is

the set of roughly r0 knots at resolution m that lie in Dj1,...,jm . It is well

known that the inverse Λ−1k of a block-diagonal matrix Λk has the same

block-diagonal structure as Λk. Therefore, the prior calculations in Section

3.1.1 involving Λ−1k can be carried out at low computational cost.

For the posterior covariance matrix, we have from Section 3.1.2 that

(Λ̃m,l)i,j = 0 if 6 ∃s ∈ D such that Tm(qm,i, s) 6= 0 and Tl(ql,j, s) 6= 0. There-
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3.3 Inference details for the M -RA-taper

fore, the block in Λ̃ corresponding to regions Di1,...,im and Dj1,...,jm is zero if

the regions do not overlap (i.e., if Di1,...,im∩Dj1,...,jm = ∅). The Cholesky fac-

tor of a (appropriately reordered) matrix with this particular block-sparse

structure has zero fill-in, and can thus be calculated very rapidly.

Katzfuss (2017) describes an algorithm for inference for a special case

of an M -RA-block that can be extended to the more general M -RA-block

considered here. This algorithm is well suited to parallel and distributed

computations for massive data sets, and it leads to efficient storage of the

full posterior predictive distribution in (3.14). The time and memory com-

plexity are shown to be O(nM2r20) and O(nMr0), respectively.

3.3 Inference details for the M-RA-taper

The M -RA-taper from Section 2.5.2 results in sparse matrices, but care

must be taken to ensure computational feasibility. A crucial observation

for the computational results below is that, for any location s ∈ D and

any resolution m, only O(r0) knots from Qm are within a distance of dm

from s (i.e., all sets of the form {qm,i ∈ Qm : ‖s − qm,i‖ ≤ dm} contain

only O(r0) elements). This is because we assume that the rm = r0J
m knots

at resolution m are roughly equally spread over the domain D, and that

dm = d0/J
m/d.

First, consider the calculation of the prior matrices described in Section

3.1.1. The matrices Λ and B have O(nr0) and O(nMr0) nonzero elements,
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3.3 Inference details for the M -RA-taper

respectively, because (Λm)i,j = 0 if Tm(qm,i,qm,j) = 0, and (Bm)i,j = 0 if

Tm(si,qm,j) = 0. Before performing the inference procedures, it is helpful to

pre-calculate Im,l := {(i, j) : Tl(qm,i,ql,j) 6= 0}, the set of nonzero indices of

the matrix Wl
m,l, for l = 0, . . . ,m and m = 0, . . . ,M . This can typically be

done in O(n log n) time (e.g., Vaidya, 1989). In the inference procedure, we

then need only calculate the Im,l-elements of the matrices Wk
m,l in (3.10).

Here, the main difficulty is that although Λk is sparse, its inverse Λ−1k is

not. However, we need only compute certain elements of Λ−1k .

Proposition 7. For l = 0, . . . ,m and m = 0, . . . ,M , the matrix Wl
m,l can

be obtained by computing

Wk+1
m,l =

(
Wk

m,l −Wk
m,kSkW

k
l,k
′) ◦ Tk+1(Qm,Ql), k = 0, . . . , l − 1,

(3.15)

where Sk = Λ−1k ◦Gk and (Gk)i,j = 1{‖qm,i−qm,j‖<(2+2/J)dm}. Thus, the (i, j)

element of Λ−1m is not required in order to calculate the prior matrices in

(3.10) if ‖qm,i − qm,j‖ ≥ (2 + 2/J) dm.

The total time complexity for computing all prior matrices in (3.10) is

O(nM2r30), ignoring the cost of computing the Sk from the Λk.

To calculate Sk from Λk, we use a selected-inversion algorithm (Erisman

and Tinney, 1975; Li et al., 2008; Lin et al., 2011) in which we regard

element (i, j) as a structural zero only if ‖qk,i − qk,j‖ ≥ (2 + 2/J)dm.

This algorithm has the same computational complexity as the Cholesky
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3.3 Inference details for the M -RA-taper

decomposition of the same matrix. For one-dimensional domains (d = 1),

Λk is a banded matrix with bandwidth O(r0); thus, the time complexity

to compute its Cholesky decomposition (and selected inverse) is O(rkr
2
0)

(e.g., Gelfand et al., 2010, p. 187). For d ≥ 2, the rows and columns

of Λ should be ordered such that the Cholesky decomposition leads to

a (near) minimal fill-in and, hence, fast computations. Functions for this

reordering are readily available in most statistical or linear-algebra software.

The discussion in Furrer et al. (2006) indicates that the resulting time

complexity for the Cholesky decomposition is roughly linear in the matrix

dimension for d = 2. Moreover, our numerical experiments showed that

the selected inversions account for only a small fraction of the total time

required to compute the prior matrices. Therefore, this computation time

scales roughly as O(nM2r30).

Once the prior matrices, including B and Λ, have been obtained, the

posterior inference requires computing and decomposing the posterior pre-

cision matrix Λ̃ = Λ + B′V−1ε B in (3.12), with (m, l)th block Λ̃m,l =

Λm1{m=l} + B′mV−1ε Bl. The (j, k)th element of this block is given by

(Λ̃m,l)j,k = (Λm)j,k1{m=l} +
∑n

i=1 vm(si,qm,j)vl(si,ql,k)(Vε)
−1
i,i .

Because each of the n si is within distances dm and dl of O(r0) elements

of Qm and Ql, respectively, the time complexity to compute (B′B)m,l is

O(nr20); hence, computing Λ̃ requires O(nM2r20) time.
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3.3 Inference details for the M -RA-taper

Proposition 8. The number of nonzero elements in Λ̃ is O(nMr0).

The time complexity for obtaining the Cholesky decomposition of Λ̃

is difficult to quantify, because it depends on its sparsity structure and

the chosen ordering. However, our numerical experiments showed that the

contribution of the Cholesky decomposition to the overall computation time

is relatively small when appropriate reordering algorithms are used.

For predictions, the posterior covariance BP Λ̃−1BP ′ in (3.14) is dense

and, hence, cannot be obtained explicitly for a large number of prediction

locations. However, the posterior covariance matrix of a moderate number

of linear combinations Ly(SP ) can be obtained as (LBP )Λ̃−1(LBP )′, also

based on a Cholesky decomposition of Λ̃.

In summary, the time and memory complexity of the M -RA-taper

are O(nM2r30) and O(nMr0), respectively, plus the cost of computing the

Cholesky decompositions of Λ and Λ̃. However, these decompositions ac-

counted for only a relatively small amount of the overall computation time

in our numerical experiments. Thus, the time complexity of the M -RA-

taper is roughly cubic in r0, and it is square in r0 for the M -RA-block.

Note that the computational cost for the M -RA-taper can be reduced fur-

ther if the covariance function C0 has a small effective range relative to the

size of D, in which case, C0 can be tapered at resolution 0 without causing

a large approximation error. In contrast, for the M -RA-block, we always
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have T0(s1, s2) ≡ 1. As explained in Katzfuss (2017), it is often appropriate

to expect a good approximation for M = O(log n) (and, hence, r0 = O(1)),

which results in quasi-linear complexity as a function of n for the M -RA.

4. Simulation study

For this section, we used data simulated from a true GP to compare the

M -RA-block and M -RA-taper with full-scale approximations, FSA-block

(Sang et al., 2011) and FSA-taper (Sang and Huang, 2012), which corre-

spond to the 1-RA-block and 1-RA-taper, respectively. An implementation

of the methods in Julia (http://julialang.org) version 0.4.5 was run on a

16-core machine with 64GB RAM.

The true GP was assumed to have mean zero and an exponential co-

variance function,

C0(s1, s2) = σ2 exp(−‖s1 − s2‖/κ), s1, s2 ∈ D, (4.16)

with σ2 = 0.95 and κ = 0.05 on a one-dimensional (D = [0, 1]) or two-

dimensional (D = [0, 1]2) domain. We assumed a nugget or measurement-

error variance of τ 2 = 0.05 (i.e., Vε = 0.05 I). The results for Matérn

covariances with different range, smoothness, and variance parameters (see

Supplementary Material) showed similar patterns to those presented below.

All comparisons are based on the log-score (i.e., the log-likelihood at

the true parameter values), which is a strictly proper scoring rule that is
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Figure 3: Summary of results from the simulation study. Top row: D = [0, 1]. Bottom

row: D = [0, 1]2. Left column: Log-score versus computation time for different versions

of the M -RA for fixed n. Right column: Computation time required to get a “close”

approximation to the truth (or best approximation) for different n; lines connect the

means of the three times for each model and each n. Note that all time axes are on a

log scale. Additional results can be found in the Supplementary Material.

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0285



uniquely maximized in expectation by the true model (e.g., Gneiting and

Katzfuss, 2014). All results were averaged over five replications.

For M -RA-taper, some experimentation showed that there are general

guidelines to follow in order to get a close approximation to a true GP. For

a true covariance function C0 with effective range ρ, we recommend setting

the M -RA-taper range at resolution 0 to d0 = 2ρ, and the distance between

two adjacent knots at resolution 0 to be at most 2
3

of ρ. For example, the

covariance in (4.16) has an effective range of ρ ≈ 0.15, and so we set d0 = 0.3

and the distance between adjacent knots at resolution 0 to 0.1.

First, we simulated data sets of different sizes on an equidistant grid in

one dimension with D = [0, 1], which permitted fast simulation using the

Davies–Harte algorithm, and evaluation of the exact likelihood using the

Durbin–Levinson algorithm for comparison (McLeod et al., 2007). For each

data set, we recorded the computation times and log-scores for different ver-

sions of the M -RA (i.e., with different r0, J , and M). We also considered

the computation times required to achieve particular levels of approxima-

tion accuracy, specifically, the time required to obtain an average log-score

within a difference of 0.003n, 0.005n, and 0.007n of the log-score of the

true model. We then repeated the simulation study in two dimensions,

D = [0, 1]2. Because it was infeasible to compute the true log-likelihood

for large n, we use the best approximation (i.e., the largest approximated

log-likelihood) as the basis on which to compare the relative performance
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of the various methods, with cutoff values of 0.008n, 0.01n, and 0.012n.

The results are summarized in Figure 3. The computation times scaled

roughly as expected. The M -RA-block was consistently better than the

other methods, while M -RA-taper and 1-RA-block performed similarly.

The 1-RA-taper was not competitive.

5. Application

In this section, we applied the four methods from Section 4 to a real

satellite data set. We considered n = 44,711 Level-3 daytime sea-surface-

temperature (SST) data from August 2016 over a region in the North At-

lantic Ocean, as measured by the Moderate Resolution Imaging Spectro-

radiometer on board the Terra satellite. The data are freely available at

https://giovanni.gsfc.nasa.gov. More specifically, the data (shown in

Figure 4a) were taken to be the residuals of the SST data after remov-

ing longitudinal and latitudinal trends. The exploratory analysis showed

that an exponential covariance fit the data well, and so all methods used

were approximating the covariance in (4.16). We assumed a constant noise

variance τ 2 (i.e., Vε = τ 2I).

To compare the different approximation methods, we created five dif-

ferent data sets by randomly splitting the complete data set of residuals

into training data, areal test data, and random test data, containing 78%,
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(a) Complete set of

detrended SST residuals

(b) M -RA-block with

r0 = 121, J = 4, M = 4

(c) M -RA-taper with

r0 = 576, J = 4, M = 3

(d) Missing-area prediction

for M -RA-block

(e) Missing-area prediction

for M -RA-taper

Figure 4: Top row: Complete data set of sea-surface temperature, along with posterior

predictive means for M -RA-taper and M -RA-block based on removing three areal test

regions and additional randomly selected values. Bottom row: Zoomed-in view of the

green rectangle in the upper prediction plots. Color scales are in units of degrees Celsius.
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12%, and 10%, respectively, of the values in the full data set. The split

of the complete data into training and test sets was designed to mimic the

typical setting of Level-2 satellite data, with unobserved areas over which

the satellite did not fly in a particular time period, and observed areas

with some missing values (e.g., due to clouds). Specifically, the areal test

locations were obtained by splitting the domain into 5× 5 = 25 equal-area

rectangles, and then removing three of these rectangles at random. The

remaining test locations were obtained by simple random sampling of the

remaining locations.

Using each of the five training sets, and for a range of settings for each

of the four approximation methods, we carried out maximum-likelihood

estimation of the unknown parameters σ2, κ, and τ 2, and obtained posterior

predictive distributions at the held-out test locations. We compared the

pointwise (i.e., marginal) posterior distributions obtained by the methods

to the held-out test data in terms of the root mean squared prediction error

(RMSPE) and the continuous ranked probability score (CRPS), a strictly

proper scoring rule that quantifies the fit of the entire predictive distribution

to the data (e.g., Gneiting and Katzfuss, 2014). The scores for the random

test data were almost zero for all methods. The scores for the areal test

data are shown in Figure 5 (averaged over the five data sets). In general,

the scores for M -RA-taper and M -RA-block were better than those for the

full-scale approximations. M -RA-taper produced some RMSPEs that were
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Figure 5: For the satellite SST data, comparison of scores (lower is better) for predictions

of areal test data for different settings of the M -RA

even lower than those for M -RA-block.

Perhaps more important than the differences in the prediction scores,

are the differences in the prediction plots. Figure 4 shows an example of

the posterior means obtained by M -RA-taper and M -RA-block for versions

of the two methods that took a similar time to run (five to seven minutes)

and that resulted in similar RMSPEs in Figure 5a. Despite the good ap-

proximation accuracy and low RMSPE of M -RA-block, Figure 4d shows

clearly visible artifacts due to discontinuities of the M -RA-block at the re-

gion boundaries (see Proposition 5), which do not appear for the continuous

M -RA-taper in Figure 4e. Avoiding these kinds of nonphysical artifacts is

often of paramount importance to domain scientists.
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6. Conclusion

We have proposed and studied a general approach for obtaining multi-

resolution approximations of GPs based on an orthogonal decomposition of

the GP of interest into processes at multiple resolutions. We considered two

specific cases of this approach: The M -RA-taper, which achieves sparsity

and computational feasibility by applying increasingly compact isotropic

tapering functions as the resolution increases, and the M -RA-block, which

is based on a recursive block-partitioning of the spatial domain and assumes

conditional independence between the spatial subregions at each resolution.

We have provided algorithms for inference, along with the computational

complexity of the methods. Within our framework, one could also con-

sider other partitioning schemes or nonstationary tapering, which might be

especially useful when approximating nonstationary processes.

We have shown theoretically and numerically that both M -RA versions

have useful properties, and can outperform related existing approaches. The

M -RA-block achieves more accurate approximations to a given covariance

function for a given computation time, and its block-sparse structure al-

lows it to approximate the likelihood for truly massive data sets on modern

distributed computing systems. However, the M -RA-block process is dis-

continuous at the subregion boundaries, which can be undesirable in pre-

diction maps. The M -RA-taper can be useful for real-world applications
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in which the true covariance function is unknown anyway, and, hence, it

might be more important to have a “smooth” model that avoids the poten-

tial artifacts and discontinuities inherent to the M -RA-block, owing to its

domain partitioning. The M -RA-taper’s prediction accuracy can be highly

competitive, especially when the effective range of the covariance model is

small relative to the domain size. Note that posterior inference involving

the M -RA-taper only requires general sparse matrices, which would allow

for a relatively straightforward treatment of areal-averaged measurements

(e.g., satellite footprints).

Future work will consider multivariate, spatio-temporal, and nonGaus-

sian extensions of the methodology. Also of interest is a more precise quan-

tification of the approximation error, and a further investigation of how

to choose the number of resolutions and the knots, depending on the co-

variance to be approximated. Although our methods are, in principle, also

applicable in the context of GP regression, some additional consideration

of the choice of knots and partitions in high-dimensional covariate spaces

is warranted.

Supplementary Material

The online Supplementary Material contains all proofs, as well as ad-

ditional settings for the simulation study in Section 4.
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