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Abstract: This study considers multivariate analysis of variance for normal sam-

ples in a high-dimensional medium sample size setting. When the sample dimen-

sion is larger than the sample size, the classical likelihood ratio test is not defined,

because the likelihood function is unbounded. Based on this unboundedness, we

propose a new test called the least favorable direction test. The asymptotic

distributions of the test statistic are derived under both nonspiked and spiked

covariances. The local asymptotic power function of the test is also given. The

results for the asymptotic power function and simulations show that the proposed

test is particularly powerful under the spiked covariance.

Key words and phrases: High-dimensional data, least favorable direction test,

multivariate analysis of variance, principal component analysis, spiked covariance.

1. Introduction

Suppose there are k (k ≥ 2) independent samples of p-dimensional
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data. Within the ith sample (1 ≤ i ≤ k), the observations {Xij}ni
j=1 are

independent and identically distributed (i.i.d.) as Np(θi,Σ), which is a p-

dimensional normal distribution with mean vector θi and common variance

matrix Σ. We test the following hypotheses:

H0 : θ1 = θ2 = · · · = θk vs. H1 : θi 6= θj, for some i 6= j. (1.1)

This testing problem is known as the one-way multivariate analysis of vari-

ance (MANOVA), and has been well studied when p is small relative to N ,

where N =
∑k

i=1 ni is the total sample size.

Let H =
∑k

i=1 ni(X̄i − X̄)(X̄i − X̄)> be the sum-of-squares between

groups, and let G =
∑k

i=1

∑ni

j=1(Xij − X̄i)(Xij − X̄i)
> be the sum-of-

squares within groups, where X̄i = n−1i

∑ni

j=1Xij is the sample mean of

group i, and X̄ = N−1
∑k

i=1

∑ni

j=1Xij is the pooled sample mean. There

are four classical test statistics for hypotheses (1.1), all of which are based

on the eigenvalues of HG−1.

Wilks’ Lambda: |G + H|/|G|

Pillai trace: tr[H(G + H)−1]

Hotelling–Lawley trace: tr[HG−1]

Roy’s maximum root: λ1(HG−1)

In some modern scientific applications, researchers would like to test

hypotheses (1.1) in the high-dimensional setting, that is, where p is greater
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than N ; see, for example, Verstynen et al. (2005) and Tsai and Chen (2009).

However, none of the four classical test statistics are defined when p ≥ N .

As a result, extensive research has been done on the testing problem (1.1)

in high-dimensional settings. Thus far, numerous tests have been proposed

for the case k = 2; see, for example, Bai and Saranadasa (1996), Srivastava

(2007), Chen and Qin (2010), Cai et al. (2014), and Feng et al. (2015).

Tests have also been proposed for the general case of k ≥ 2. Schott (2007)

modified the Hotelling–Lawley trace and proposed the following test statis-

tic:

TSc =
1√

N − 1

( 1

k − 1
tr
(
H
)
− 1

N − k
tr
(
G
))
.

Here, TSc is a member of the so-called sum-of-squares statistics, because it

is based on an estimation of the squared Euclidean norm
∑k

i=1 ni‖θi− θ̄‖2,

where θ̄ = N−1
∑k

i=1 niθi. See Srivastava and Kubokawa (2013), Yamada

and Himeno (2015), Hu et al. (2017), Zhang et al. (2017), Zhou et al. (2017),

and Cao et al. (2019) for other sum-of-squares test statistics for k ≥ 2.

Sum-of-squares tests are known to be particularly powerful in the case of

dense alternatives. In another work, Cai and Xia (2014) proposed the test

statistic

TCX = max
1≤i≤p

∑
1≤j<l≤k

njnl

nj + nl

(Ω(X̄j − X̄l))
2
i

ωii

,

where Ω = (ω)ij = Σ−1 is the precision matrix. When Ω is unknown, it
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is substituted by an estimator. Unlike TSc, TCX is an extreme-value test

statistic, and is powerful in the case of sparse alternatives.

Most existing sum-of-squares test procedures require the condition tr(Σ4)/ tr2(Σ2)→

0, which is equivalent to

λ1√
tr(Σ2)

→ 0, (1.2)

where λi is the ith largest eigenvalue of Σ, for i = 1, . . . , p. In fact, the

equivalence of these two conditions can be seen from the following inequal-

ities:

λ4
1

tr2(Σ2)
≤ tr(Σ4)

tr2(Σ2)
≤ λ2

1 tr(Σ2)

tr2(Σ2)
=

λ2
1

tr(Σ2)
.

Condition (1.2) is reasonable if Σ is nonspiked, in the sense that it does

not have significantly large eigenvalues. However, in practice, variables may

be heavily correlated with common factors, in which case, the covariance

matrix Σ is spiked, in the sense that a few eigenvalues of Σ are significantly

larger than the others (Fan et al., 2013; Cai et al., 2015; Wang and Fan,

2017). In such cases, condition (1.2) can be violated and, consequently,

existing sum-of-squares tests may not have the correct level. Adjusted

sum-of-squares test procedures have been proposed to solve this problem;

see, for example, Katayama et al. (2013), Ma et al. (2015), Zhang et al.

(2017), and Wang and Xu (2019). However, the power behavior of these

corrected tests may not be satisfactory.
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Recently, Aoshima and Yata (2018) and Wang and Xu (2018) consid-

ered a two-sample mean testing problem under the spiked covariance model.

These tests have better power behavior than that of sum-of-squares tests.

However, both studies imposed strong conditions on the magnitude of p.

For example, under the approximate factor model in Fan et al. (2013), the

test in Aoshima and Yata (2018) requires p/N → 0, whereas the test in

Wang and Xu (2018) requires that p/N2 → 0 and that the small eigenval-

ues of Σ are all equal.

The likelihood ratio test (LRT) method has been very successful in

leading to satisfactory procedures in many specific problems. However,

the LRT statistic for hypotheses (1.1), that is, Wilks’ Lambda statistic, is

not defined for p > N − k. In the high-dimensional setting, neither the

sum-of-squares nor the extreme-value statistics are based on the likelihood

function. This motivates us to construct a likelihood-based test in the

high-dimensional setting. In a recent work, Zhao and Xu (2016) proposed

a generalized likelihood ratio test in the context of the one-sample mean

vector test. They used a least favorable argument to construct a generalized

likelihood ratio test statistic. Their simulation results showed that their

test exhibits good power performance, especially when the variables are

correlated. However, they do not provide a theoretical proof.
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We propose a generalized likelihood ratio test statistic for hypothe-

ses (1.1), called the least favorable direction (LFD) test statistic, which is

a generalization of the test in Zhao and Xu (2016). We give the asymp-

totic distributions of the test statistic under both nonspiked and spiked co-

variances. An adaptive LFD test procedure is constructed by consistently

detecting the unknown covariance structure and estimating the unknown

parameters. The asymptotic local power function of the LFD test is also

given. Our theoretical results show that the LFD test is particularly power-

ful under the spiked covariance. This explains the simulation results of Zhao

and Xu (2016). Extending the work of Zhao and Xu (2016), our main con-

tribution is that we provide a thorough theoretical analysis of the LFD test.

This analysis falls within the high-dimensional medium sample size setting,

where both N, p → ∞, but p/N → ∞ (see Aoshima et al. (2018), Section

5). To prove our main results, we carefully study the high-order asymp-

totic behavior of the eigenvalues and eigenspaces of the sample covariance

matrix. These results are also of independent interest. We further compare

the proposed test procedure with existing tests using simulations. Here, we

show that the LFD test exhibits behavior comparable with that of exist-

ing sum-of-squares tests under the nonspiked covariance, while significantly

outperforming competing tests under the spiked covariance.
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The rest of the paper is organized as follows. In Section 2, we propose

the LFD test statistic and derive its explicit forms. The asymptotic distri-

butions of the LFD test statistic under nonspiked and spiked covariances

are given in Section 3. Based on these theoretical results, an adaptive LFD

test procedure is proposed. Section 4 complements our study with numer-

ical simulations. Section 5 concludes the paper. Finally, the proofs are

gathered in the Supplementary Material.

2. Least favorable direction test

We first introduce some necessary notation. Define the p×N pooled sample

matrix X as

X = (X11, X12, . . . , X1n1 , X21, X22, . . . , X2n2 , . . . , Xk1, Xk2, . . . , Xknk
).

The sum-of-squares within groups G can be written as G = X(IN −

JJ>)X>, where

J =



1√
n1

1n1 0 0

0 1√
n2

1n2 0

...
...

...

0 0 1√
nk

1nk


is an N × k matrix, and 1ni

is an ni-dimensional vector with all elements

equal to one, for i = 1, . . . , k. Let n = N − k be the degrees of freedom of
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G. Construct an N × n matrix J̃ as

J̃ =



J̃1 0 0

0 J̃2 0

...
...

...

0 0 J̃k


,

where J̃i is an ni × (ni − 1) matrix defined as

J̃i =



1√
2

1√
6
· · · 1√

(ni−2)(ni−1)
1√

(ni−1)ni

− 1√
2

1√
6
· · · 1√

(ni−2)(ni−1)
1√

(ni−1)ni

0 − 2√
6
· · · ...

...

...
... · · · − ni−2√

(ni−2)(ni−1)
1√

(ni−1)ni

0 0 · · · 0 − ni−1√
(ni−1)ni


.

The matrix J̃ is a column orthogonal matrix satisfying J̃>J̃ = In and J̃J̃> =

IN − JJ>. Define Y = XJ̃. Then, G can be written as

G = YY>.

The sum-of-squares between groups H can be written as

H = X(JJ> − 1

N
1N1>N)X> = XJ(Ik −

1

N
J>1N1>NJ)J>X>.

By some matrix algebra, we have Ik − N−1J>1N1>NJ = CC>, where C is
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a k × (k − 1) matrix defined as C = C1C2, and

C1 =



√
n1

√
n1 · · · √

n1
√
n1

− n1√
n2

√
n2 · · · √

n2
√
n2

0 −n1+n2√
n3

· · · ...
...

...
... · · · −

∑k−2
i=1 ni√
nk−1

√
nk−1

0 0 · · · 0 −
∑k−1

i=1 ni√
nk


,

C2 =



n1(n1+n2)
n2

0 · · · 0

0
(
∑2

i=1 ni)(
∑3

i=1 ni)

n3
· · · 0

...
... · · · ...

0 0 · · · (
∑k−1

i=1 ni)(
∑k

i=1 ni)

nk



− 1
2

.

Then, H can be written as

H = XJCC>J>X>.

Define Θ = (
√
n1θ1, . . . ,

√
nkθk). Then, the null hypothesis H0 is equivalent

to ΘC = Op×(k−1), where Op×(k−1) is a p× (k − 1) matrix with all entries

zero. Thus, the hypotheses (1.1) are equivalent to

H0 : ΘC = Op×(k−1) vs. H1 : ΘC 6= Op×(k−1).

The testing problem (1.1) is well studied for low-dimensional settings.

A classical test statistic is Roy’s maximum root, constructed by Roy (1953)
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using his well-known union intersection principle. The key idea is to decom-

pose X into a set of univariate data {Xa = a>X : a ∈ Rp, a>a = 1}. This

induces the following decompositions of the null and alternative hypotheses:

H0 =
⋂

a∈Rp,a>a=1

H0a vs. H1 =
⋃

a∈Rp,a>a=1

H1a,

where H0a : a>ΘC = O1×(k−1) and H1a : a>ΘC 6= O1×(k−1). Let L0(a) and

L1(a) be the maximum likelihood of Xa under H0a and H1a, respectively.

For each a satisfying a>a = 1, the component LRT statistic

L1(a)

L0(a)
=
(a>(G + H)a

a>Ga

)N/2

can be used to test H0a versus H1a. Using the union intersection principle,

Roy proposed the test statistic maxa>a=1 L1(a)/L0(a) = (1+λ1(HG−1))N/2,

where λi(·) denotes the ith largest eigenvalue. This statistic is an increasing

function of Roy’s maximum root.

From a likelihood point of view, the log likelihood ratio is an estimator

of the Kullback–Leibler divergence between the true distribution and the

null distribution. Hence, the component LRT statistic L1(a)/L0(a) charac-

terizes the discrepancy between the true and the null distribution along the

direction a. This motivates us to consider the direction

a∗ = arg max
a>a=1

L1(a)

L0(a)
, (2.1)
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which hopefully yields the largest discrepancy between the true and the null

distribution. Thus, H0a∗ is the component null hypothesis least likely to be

true. We call a∗ the least favorable direction. Note that Roy’s maximum

root is the component LRT statistic along the least favorable direction.

Unfortunately, Roy’s maximum root can only be defined when n ≥ p,

and hence cannot be used in the high-dimensional setting. In what follows,

we assume p > n. In this case, the set

A def
= {a : L1(a) = +∞, a>a = 1} = {a : a>Ga = 0, a>a = 1}

is not empty because G is singular. Consequently, the right-hand side

of (2.1) is not well defined because the ratio involves infinity. Hence, we

need a new definition for the LFD in the high-dimensional setting. Define

B = {a : L0(a) = +∞, a>a = 1} = {a : a>(G + H)a = 0, a>a = 1}.

Note that B ⊂ A. Moreover, by the independence of G and H, with

probability one, we have A ∩ Bc 6= ∅. Then, for any direction a, there are

three possible scenarios: L1(a) < +∞ and L0(a) < +∞; L1(a) = +∞

and L0(a) < +∞; and L1(a) = +∞ and L0(a) = +∞. To maximize the

discrepancy between L1(a) and L0(a), one may consider the direction a such

that L1(a) = +∞ and L0(a) < +∞. This suggests that the least favorable

direction a∗, which hopefully maximizes the discrepancy between L1(a) and
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L0(a), should be defined as a∗ = arg mina∈A∩Bc L0(a). Equivalently,

a∗ = arg min
a∈A∩Bc

L0(a) = arg max
a>a=1,a>Ga=0

a>Ha.

Based on a∗ and the likelihood L0(a), we propose a new test statistic,

T (X) = a∗THa∗ = max
a>a=1,a>Ga=0

a>Ha.

The null hypothesis is rejected when T (X) is sufficiently large. We call

T (X) the LFD test statistic. Because the least favorable direction a∗ is

obtained from the component likelihood function, the statistic T (X) is also

a generalized likelihood ratio test statistic.

Now, we derive the explicit forms of the LFD test statistic. Let Y =

UYDYV>Y be the singular value decomposition of Y, where UY and VY

are p×min(n, p) and n×min(n, p) column orthogonal matrices, respectively,

and DY is a min(n, p)×min(n, p) diagonal matrix, with diagonal elements

comprising the non-increasingly ordered singular values of Y. If p > n, let

PY = UYU>Y be the projection matrix onto the column space of Y. Then,

Lemma 1 in the Supplementary Material implies that, for p > n,

T (X) = λ1
(
C>J>X>(Ip −PY)XJC

)
. (2.2)

Although (2.2) is convenient for the theoretical analysis, it is not con-

venient for computation. When p > N , another simple form of T (X) can
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be used for computation. If p > N , then X>X is invertible. By the rela-

tionshipJ>X>XJ J>X>XJ̃

J̃>X>XJ J̃>X>XJ̃


−1

=
(J>

J̃>

X>X

(
J J̃

))−1

=

J>(X>X)
−1

J J>(X>X)
−1

J̃

J̃>(X>X)
−1

J J̃>(X>X)
−1

J̃


and the matrix inverse formula, we have that

(
J>(X>X)

−1
J
)−1

=J>X>XJ− J>X>XJ̃(J̃>X>XJ̃)
−1

J̃>X>XJ

=J>X>(Ip −PY)XJ.

Thus,

T (X) = λ1

(
C>
(
J>(X>X)−1J

)−1
C
)
. (2.3)

Compared with (2.2), the expression in (2.3) does not involve PY and, thus,

is more convenient for computation.

In the case of k = 2, it can be seen that the least favorable direction

is proportional to (Ip − PY)(X̄1 − X̄2), and the LFD test statistic has

expression

T (X) =
n1n2

n1 + n2

‖(Ip −PY)(X̄1 − X̄2)‖2.

In this case, the least favorable direction coincides with the maximal data

piling direction proposed by Ahn and Marron (2010).
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3. Theoretical analysis

We now analyze the asymptotic distributions of the LFD test statistic. The

normality of the observations is an important assumption for our results,

and is assumed throughout this section. We present theoretical results

under both nonspiked and spiked covariances. Based on these results, we

construct an adaptive test with an asymptotically correct level. In addition,

these results allow us to derive the local asymptotic power function of the

LFD test.

3.1 Nonspiked covariance

In this subsection, we establish the asymptotic distribution of T (X) under

the nonspiked covariance. Let Wk−1 be a (k−1)×(k−1) symmetric random

matrix in which the entries above the main diagonal are i.i.d. N (0, 1)

random variables, and the entries on the diagonal are i.i.d. N (0, 2) random

variables. The following theorem establishes the asymptotic distribution of

the LFD test statistic.

Theorem 1. Suppose as n, p → ∞, condition (1.2) holds. Furthermore,

suppose nλ1/ tr(Σ) → 0 and λ1 − λp = O(n−1
√

tr(Σ2)). Then, under the

Statistica Sinica: Preprint 
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3.1 Nonspiked covariance

local alternative hypothesis ‖C>Θ>ΘC‖ = O(
√

tr(Σ2)),

T (X)− (tr(Σ)− n tr(Σ2)/ tr(Σ))√
tr(Σ2)

∼ λ1

(
Wk−1 +

C>Θ>ΘC√
tr(Σ2)

)
+ oP (1),

where ∼ means having the same distribution.

Remark 1. The condition nλ1/ tr(Σ) → 0 implies p/n → ∞. Hence,

T (X) is well defined for large n. The condition λ1 − λp = O(n−1
√

tr(Σ2))

requires that the range of the eigenvalues of Σ not be too large.

To centralize T (X) under the conditions of Theorem 1, we need to

estimate the parameters tr(Σ) and tr(Σ2). Let Σ̂ = n−1G = n−1YY> be

the sample covariance matrix. We use the following simple estimators:

t̂r(Σ) = tr(Σ̂), t̂r(Σ2) = tr(Σ̂2)− n−1 tr2(Σ̂).

Define

Q1 =
T (X)−

(
t̂r(Σ)− nt̂r(Σ2)/t̂r(Σ)

)
√

t̂r(Σ2)

.

Let F1(x) be the cumulative distribution function of λ1(Wk−1). Then, we

reject the null hypothesis if Q1 > F−11 (1 − α). The following corollary

gives the asymptotic local power function of the proposed test under the

nonspiked covariance.
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3.2 Spiked covariance

Corollary 1. Under the conditions of Theorem 1,

Pr
(
Q1 > F−11 (1− α)

)
= Pr

(
λ1

(
Wk−1 +

C>Θ>ΘC√
tr(Σ2)

)
> F−11 (1− α)

)
+ o(1).

Corollary 1 shows that under the nonspiked covariance, the LFD test

exhibits power behavior similar to that of existing sum-of-squares tests.

In fact, if k = 2, the asymptotic local power function given by Corollary

1 is equal to the asymptotic local power function of the tests in Bai and

Saranadasa (1996) and Chen and Qin (2010).

3.2 Spiked covariance

Now, we derive the asymptotic results under the spiked covariance, which

is more involved than the nonspiked case. Let Σ = UΛU> denote the

eigenvalue decomposition of Σ, where Λ = diag(λ1, . . . ,λp) and U is an

orthogonal matrix. Suppose that Σ has r spiked eigenvalues, where 1 ≤

r ≤ p can also vary as n, p → ∞. We first assume the spiked number

r is known. We latter consider the adaptation to unknown r. Denote

Λ1 = diag(λ1, . . . ,λr) and Λ2 = diag(λr+1, . . . ,λp). Correspondingly, we

denote U = (U1,U2), where U1 and U2 are the first r columns and the

last p− r columns, respectively, of U. Then, Σ = U1Λ1U
>
1 + U2Λ2U

>
2 .

First, we derive the asymptotic properties of the eigenvalues and eigenspaces
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3.2 Spiked covariance

of the sample covariance matrix Σ̂, because these play a key role in our

later analysis. The following proposition gives the asymptotic behavior of

λ1(Σ̂), . . . , λr(Σ̂) and
∑n

i=r+1 λi(Σ̂).

Proposition 1. Suppose r ≤ n. Then, uniformly for i = 1, . . . , r,

λi(Σ̂) = λi + n−1 tr(Λ2) +OP

(
λi

√
r

n
+

√
tr(Λ2

2)

n
+ λr+1

)

and

n∑
i=r+1

λi(Σ̂) =
(

1− r

n

)
tr(Λ2) +OP

(
r

√
tr(Λ2

2)

n
+ rλr+1

)
.

Remark 2. Recent works have examined the asymptotic behavior of the

spiked eigenvalues of the sample covariance matrix; see, for example, Yata

and Aoshima (2013), Shen et al. (2016), Wang and Fan (2017), and Cai et al.

(2019). An important improvement of Proposition 1 over existing results is

that Proposition 1 does not impose any conditions on the structure of Σ,

but still gives the correct convergence rate.

Based on Proposition 1, we propose the following estimators of tr(Λ2)

and λ1, . . . ,λr:

t̂r(Λ2) =
(

1− r

n

)−1 n∑
i=r+1

λi(Σ̂), λ̂i = λi(Σ̂)− n−1t̂r(Λ2), i = 1, . . . , r.

Moreover, we propose the following estimator of tr(Λ2
2), which we use in
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our later analysis:

t̂r(Λ2
2) =

n∑
i=r+1

(
λi(Σ̂)− n−1t̂r(Λ2)

)2
.

The following proposition gives the convergence rate of these estimators.

Proposition 2. Suppose r = o(n). Then, uniformly for i = 1, . . . , r,

λ̂i = λi +OP

(
λi

√
r

n
+

√
tr(Λ2

2)

n
+ λr+1

)

and

t̂r(Λ2) = tr(Λ2) +OP

(
r

√
tr(Λ2

2)

n
+ rλr+1

)
,

t̂r(Λ2
2) = tr(Λ2

2) +OP

(
r tr(Λ2

2)

n
+ rλ2

r+1

)
.

Remark 3. Our estimators of λ1, . . . ,λr and tr(Λ2) are similar to some

existing estimators, including the noise-reduction estimators of Yata and

Aoshima (2012) and the estimators of Wang and Fan (2017). However,

their theoretical results require that r is fixed, p is not large, and Σ satisfies

certain spiked covariance models.

Remark 4. The estimation of tr(Λ2
2) is relatively unexplored. Recently,

Aoshima and Yata (2018) proposed an estimator of tr(Λ2
2) based on the

cross-data-matrix methodology. They also proved the consistency of their

estimator. However, their method relies on an arbitrary split of the data

into two samples of equal size.
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Next, we consider the asymptotic behavior of the eigenspaces of Σ̂. Let

UY,1 denote the first r columns of UY. Then, the columns of UY,1 are

the principal eigenvectors of Σ̂, and PY,1 = UY,1U
>
Y,1 is the projection

matrix onto the rank r principal subspace of Σ̂. The properties of PY,1 and

the individual principal eigenvectors have been studied extensively. See

Cai et al. (2015), Shen et al. (2016), and Wang and Fan (2017), and the

references therein. Existing results include the consistency of the principal

subspace and the high-order asymptotic behavior of the individual principal

eigenvectors. However, these results are not sufficient for our analysis. The

following proposition gives the high-order asymptotic behavior of PY,1. To

the best of our knowledge, this is a novel result in the literature.

Write Y = UΛ1/2Z, where Z is a p × n random matrix with i.i.d.

N (0, 1) entries. Then, Y = U1Λ
1/2
1 Z1 + U2Λ

1/2
2 Z2, where Z1 and Z2 are

the first r rows and the last p− r rows, respectively, of Z.

Proposition 3. Suppose r = o(n), tr(Λ2)/(nλr)→ 0, and rλr+1/ tr(Λ2)→

0. Then, ∥∥∥PY,1 −P†Y,1

∥∥∥ = OP

(
tr(Λ2)

nλr

+
λr+1

λr

)
,

where ‖ · ‖ is the spectral norm, P†Y,1 = U1U
>
1 + U1Q

>U>2 + U2QU>1 , and

Q = Λ
1/2
2 Z2Z

>
1 (Z1Z

>
1 )−1Λ

−1/2
1 .

Remark 5. The condition tr(Λ2)/(nλr) → 0 is commonly adopted in
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studies on principal subspaces. In fact, when this condition is violated,

the principal subspace loses its relation to the rank-r eigenspace of Σ; see,

for example, Nadler (2008).

Remark 6. Several high-order Davis–Kahan theorems have been estab-

lished, for example, Lemma 2 in Koltchinskii and Lounici (2016) and Lemma

2 in Fan et al. (2019). These general results explicitly characterize the lin-

ear term and the high-order error on the rank-r eigenspace due to matrix

perturbation. Applying these results to Σ̂ and Σ, we can obtain similar re-

sults to that given in Proposition 3; however, the above results are slightly

weaker and require stronger conditions.

If p > n, let UY,2 be the r + 1 to nth columns of UY. Then, PY,2 =

UY,2U
>
Y,2 is the projection matrix onto the eigenspace spanned by the r+1

to nth eigenvectors of Σ̂. Our later analysis also requires the asymptotic

properties of PY,2, which have not been considered in the literature. Let

VZ1 = Z>1 (Z1Z
>
1 )−1/2. Then, VZ1V

>
Z1

= Z>1 (Z1Z
>
1 )−1Z1 is the projection

matrix onto the row space of Z1. Let ṼZ1 be an n × (n − r) column

orthogonal matrix that satisfies ṼZ1Ṽ
>
Z1

= In − VZ1V
>
Z1

. The following

proposition gives the asymptotic behavior of PY,2.

Proposition 4. Suppose r = o(n), tr(Λ2)λ1/(nλ
2
r)→ 0, and nλr+1/ tr(Λ2)→
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0. Then, ∥∥∥PY,2 −P†Y,2

∥∥∥ = OP

(√
tr(Λ2)λ1

nλ2
r

+

√
nλr+1

tr(Λ2)

)
,

where P†Y,2 = (tr(Λ2))
−1 U2Λ

1/2
2 Z2ṼZ1Ṽ

>
Z1

Z>2 Λ
1/2
2 U>2 .

Remark 7. The condition tr(Λ2)λ1/(nλ
2
r) → 0 is stronger than the con-

dition tr(Λ2)/(nλr)→ 0 in Proposition 3. These two conditions are equiv-

alent if λ1 and λr are of the same order.

Now, we are ready to derive the asymptotic properties of T (X) under

the spiked covariance. Let W∗
k−1 be a (k− 1)× (k− 1) symmetric random

matrix, distributed as Wishart(r, Ik−1) and independent of Wk−1, where

Wishart(m,Ψ) is the Wishart distribution with parameter Ψ and m degrees

of freedom. The following theorem gives the asymptotic distribution of

T (X) under the null and local alternative hypotheses.

Theorem 2. Suppose r = o(
√
n), r tr(Λ2)λ1/(nλ

2
r)→ 0, rnλr+1/ tr(Λ2)→

0, rλr+1/
√

tr(Λ2
2)→ 0, and λr+1 − λp = O(n−1

√
tr(Λ2

2)). Then,

(i) under the null hypothesis ΘC = Op×(k−1),

T (X)− ((1 + r/n) tr(Λ2)− n tr(Λ2
2)/ tr(Λ2))√

rn−2 tr2(Λ2) + tr(Λ2
2)

∼λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)

+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1

)
+ oP (1);
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(ii) if r →∞ or tr(Λ2)/(n
√

tr(Λ2
2))→ 0, then under the local alternative

hypothesis ‖C>Θ>ΘC‖ = O(
√
rn−2 tr2(Λ2) + tr(Λ2

2)),

T (X)− ((1 + r/n) tr(Λ2)− n tr(Λ2
2)/ tr(Λ2))√

rn−2 tr2(Λ2) + tr(Λ2
2)

∼λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)

+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1

+
C>Θ>U2U

>
2 ΘC√

rn−2 tr2(Λ2) + tr(Λ2
2)

)
+ oP (1).

Remark 8. Suppose the approximate factor model in Fan et al. (2013)

holds. That is, r is fixed, λ1, . . . ,λr diverge at rate O(p), and λr+1, . . . ,λp

are bounded. Then, the conditions of Theorem 2 become p/n → ∞ and

λr+1 − λp = O(
√
p/n). Hence, Theorem 2 holds for ultrahigh-dimensional

data. In contrast, recent tests under the spiked covariance model can only

be used for lower-dimensional data. In fact, under the approximate factor

model in Fan et al. (2013), Aoshima and Yata (2018) requires p/n→ 0, and

Wang and Xu (2018) requires p/n2 → 0 and λr+1 = · · · = λp. Note that if

k = 2 and p/n2 → 0, then the coefficient of W∗
k−1−rIk−1 is negligible, and,

as a result, T (X) is asymptotically normally distributed. Thus, Theorem 2

gives the high-order behavior of T (X).

Now, we formulate a test procedure with an asymptotically correct level.
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Define the standardized statistic as

Q2 =
T (X)−

(
(1 + r/n)t̂r(Λ2)− nt̂r(Λ2

2)/t̂r(Λ2)
)

√
rn−2(t̂r(Λ2))2 + t̂r(Λ2

2)

.

Let F2(x; tr(Λ2), tr(Λ
2
2)) be the cumulative distribution function of

λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)

+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1

)
.

Then, we reject the null hypothesis if

Q2 > F−12

(
1− α; t̂r(Λ2), t̂r(Λ2

2)
)
.

The following corollary shows that this test procedure has an asymptotically

correct level, as well as giving the asymptotic local power function.

Corollary 2. Suppose the conditions of Theorem 2 hold. Then,

(i) under the null hypothesis ΘC = Op×(k−1),

Pr
(
Q2 > F−12

(
1− α; t̂r(Λ2), t̂r(Λ2

2)
))

= α + o(1);

(ii) if r →∞ or tr(Λ2)/(n
√

tr(Λ2
2))→ 0, then under the local alternative
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hypothesis ‖C>Θ>ΘC‖ = O(
√
rn−2 tr2(Λ2) + tr(Λ2

2)),

Pr
(
Q2 > F−12

(
1− α; t̂r(Λ2), t̂r(Λ2

2)
))

= Pr

(
λ1

(
n−1 tr(Λ2)√

rn−2 tr2(Λ2) + tr(Λ2
2)

(W∗
k−1 − rIk−1)

+

√
tr(Λ2

2)√
rn−2 tr2(Λ2) + tr(Λ2

2)
Wk−1

+
C>Θ>U2U

>
2 ΘC√

rn−2 tr2(Λ2) + tr(Λ2
2)

)

> F−12

(
1− α; tr(Λ2), tr(Λ

2
2)
))

+ o(1).

To gain some insight into the asymptotic behavior of T (X), we con-

sider k = 2 and compare the power of the LFD test with that of Bai and

Saranadasa (1996) and Chen and Qin (2010). Corollary 2 implies that if

lim inf
n→∞

C>Θ>U2U
>
2 ΘC√

rn−2 tr2(Λ2) + tr(Λ2
2)
> 0,

then the LFD test has nontrivial power, asymptotically. In contrast, if

lim sup
n→∞

C>Θ>ΘC√
tr(Σ2)

= 0,

then the tests in Bai and Saranadasa (1996) and Chen and Qin (2010)

exhibit trivial power, asymptotically. To compare C>Θ>U2U
>
2 ΘC and

C>Θ>ΘC, we temporarily place a prior on Θ. Suppose
√
niθi has prior dis-

tribution Np(0p, ψIp), for i = 1, 2. Then, ψ−1C>Θ>ΘC follows a χ2 distri-

bution with p degrees of freedom. On the other hand, ψ−1C>Θ>U2U
>
2 ΘC
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follows a χ2 distribution with p− r degrees of freedom. Thus, we have

C>Θ>U2U
>
2 ΘC

C>Θ>ΘC

P−→ 1.

Therefore, on average, the signal contained in C>Θ>U2U
>
2 ΘC is roughly

the same as that in C>Θ>ΘC. Now, we compare the asymptotic variance.

It is not hard to see that under the conditions of Theorem 2, we have

rn−2 tr2(Λ2)/tr(Σ
2) → 0. Also, if λ1, . . . ,λr are sufficiently large, then

tr(Λ2
2)/ tr(Σ2)→ 0. Hence, it can be expected that

rn−2 tr2(Λ2) + tr(Λ2
2)

tr(Σ2)
→ 0.

That is, the asymptotic variance of T (X) is typically much smaller than

those of the tests in Bai and Saranadasa (1996) and Chen and Qin (2010).

To appreciate this, note that in the expression (2.2), (Ip −PY)XJC|PY ∼

Np(0p, (Ip−PY)Σ(Ip−PY)). However, Ip−PY tends to be orthogonal to

U1U
>
1 , which is the projection matrix onto the eigenspace corresponding

to the leading eigenvalues of Σ. Hence, the projection by Ip − PY helps

reduce the variance of XJC.

Thus, if Θ satisfies

lim inf
n→∞

C>Θ>ΘC√
rn−2 tr2(Λ2) + tr(Λ2

2)
> 0, lim sup

n→∞

C>Θ>ΘC√
tr(Σ2)

= 0,

then the LFD test has nontrivial power, whereas the tests in Bai and

Saranadasa (1996) and Chen and Qin (2010) exhibit trivial power. Hence,
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the LFD test tends to be more powerful than those of Bai and Saranadasa

(1996) and Chen and Qin (2010).

In practice, we may not know whether the covariance matrix is spiked.

Furthermore, even if we know that it is spiked, the spike number r may

be unknown. Therefore, we propose an adaptive test procedure. Note that

Theorem 1 requires nλ1/ tr(Σ)→ 0, and Theorem 2 requires tr(Λ2)/nλr →

0 and nλr+1/ tr(Λ2) → 0. This motivates us to consider the following

adaptive test procedure. Let τ > 1 be a hyperparameter. If

nλ1(Σ̂)

tr(Σ̂)
< τ,

then we reject the null hypothesis if Q1 > F−1(1−α). Otherwise, we reject

the null hypothesis if Q2 > F−12 (1−α; ̂tr(Λ2, ), t̂r(Λ2
2)), where the unknown

r is substituted by the estimator

r̂ = min

{
1 ≤ i < n :

nλi+1(Σ̂)∑n
j=i+1 λj(Σ̂)

< τ

}
.

We have the following proposition.

Proposition 5. Let τ > 1 be a constant.

(i) Under the conditions of Theorem 1,

Pr

(
nλ1(Σ̂)

tr(Σ̂)
< τ

)
→ 1;
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(ii) Under the conditions of Theorem 2,

Pr

(
nλ1(Σ̂)

tr(Σ̂)
< τ

)
→ 0, Pr(r̂ = r)→ 1.

Proposition 5 implies that the spiked covariance structure can be de-

tected consistently. Therefore, the proposed adaptive LFD test procedure

can indeed adapt to the unknown covariance structure.

4. Numerical study

In this section, we compare the numerical performance of the adaptive LFD

test procedure with that of the MANOVA tests in Schott (2007), Cai and

Xia (2014), Hu et al. (2017), and Zhang et al. (2017). These competing tests

are denoted by Sc, CX, HBWW, and ZGZ, respectively. Throughout the

simulations, we take the nominal test level α = 0.05 and the group number

k = 3. For the adaptive LFD test, we take τ = 5. For CX, we use their

oracle procedure. All simulation results are based on 5000 replications.

First, we simulate the empirical level and power under various models of

Σ and Θ. To characterize the signal strength, we define the signal-to-noise

ratio (SNR) as

SNR =
C>Θ>ΘC√

tr(Σ2)
.

We consider four models for Σ, where the first two are nonspiked, and the
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last two are spiked.

• Model I: Σ = Ip.

• Model II: Σ = (σij), where σij = 0.6|i−j|.

• Model III: Σ = UΛU>, where U is a p× p orthogonal matrix gener-

ated from the Haar distribution and Λ = diag(3p, 2p, p, 1, . . . , 1).

• Model IV: Σ = UΛU>+AA>, where U is a p×p orthogonal matrix

generated from the Haar distribution, Λ = diag(p, p, 1, . . . , 1), and A

is a p× p matrix, the elements of which are independently generated

from the Bernoulli distribution with success probability 0.01.

Under the null hypothesis, we always take θ1 = · · · = θk = 0p. We con-

sider two structures for the alternative hypotheses: the nonsparse alterna-

tive, and the sparse alternative. In the nonsparse case, we take θ1 = κ1p,

θ2 = −κ1p, and θ3 = 0p, where κ is selected to make the SNR equal

to specific values. In the sparse case, we take θ1 = κ(1>p/5,0
>
4p/5)

>, θ2 =

κ(0>p/5,1
>
p/5,0

>
3p/5)

>, and θ3 = 0p. Again, κ is selected to make the SNR

equal to specific values. The simulation results are summarized in Figures

1–4, and show that in all scenarios, the empirical sizes of the LFD test

are reasonably close to the nominal level 0.05. Under model I and model

II, where the covariance matrices are nonspiked, the empirical power of

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0279



the LFD test is slightly lower than that of the sum-of-squares tests, but is

higher than that of the CX test. Under model III and model IV, where

the covariance matrices are spiked, the empirical power of the LFD test is

significantly higher than that of the sum-of-squares tests. In addition, the

LFD test exhibits higher empirical power than that of the CX test in most

cases, except for model IV with sparse means. These simulation results ver-

ify our theoretical results that the LFD test is particularly powerful under

the spiked covariance.

In our second simulation study, we investigate the effect of correlations

between the variables. We consider the compound symmetry structure; that

is, the diagonal elements of Σ are one, and the off-diagonal elements are ρ,

with 0 ≤ ρ < 1. The parameter ρ characterizes the correlations between the

variables. We take θ1 = κ(1>p/5,0
>
4p/5)

>, θ2 = κ(0>p/5,1
>
p/5,0

>
3p/5)

>, and θ3 =

0p, where κ is selected such that C>Θ>ΘC/(
∑p

i=2 λ
2
i )

1/2 = 5. Figure 5

plots the empirical power for various tests versus ρ. We can see that the

empirical power of the LFD test remains nearly constant as ρ varies, whereas

the empirical power of the competing sum-of-squares tests decreases rapidly

as ρ increases. When ρ is nonzero, the LFD test outperforms the competing

tests significantly.
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(a) Model I, nonsparse case
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(b) Model II, nonsparse case
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(c) Model I, sparse case
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(d) Model II, sparse case
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Figure 1: Empirical size and power of tests under model I and model II;

n1 = n2 = n3 = 20, p = 300.
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(a) Model I, nonsparse case
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(b) Model II, nonsparse case
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(c) Model I, sparse case
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(d) Model II, sparse case
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Figure 2: Empirical size and power of tests under model I and model II;

n1 = n2 = n3 = 25, p = 800.
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(a) Model III, nonsparse case
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(b) Model IV, nonsparse case
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(c) Model III, sparse case
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(d) Model IV, sparse case

0.00

0.20

0.40

0.60

0.80

1.00

0.05

0 1 2 3 4

SNR

E
m

p
ir

ic
a
l 
p
o
w

e
r

Figure 3: Empirical size and power of tests under model III and model IV;

n1 = n2 = n3 = 20, p = 300.
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(a) Model III, nonsparse case
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(b) Model IV, nonsparse case
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(c) Model III, sparse case
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(d) Model IV, sparse case
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Figure 4: Empirical size and power of tests under model III and model IV;

n1 = n2 = n3 = 25, p = 800.
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Figure 5: Empirical power of tests; n1 = n2 = n3 = 35, p = 1000.

5. Concluding remarks

Using the idea of the least favorable direction, we have proposed an LFD

test for MANOVA in the high-dimensional setting. We have derived the

asymptotic distribution of the LFD test statistic under both nonspiked

and spiked covariances. The asymptotic local power functions are also

given. Our theoretical results and simulation studies show that the LFD

test exhibits power behavior comparable with that of existing tests when

the covariance matrix is nonspiked, and tends to be much more powerful

than existing tests when the covariance matrix is spiked.
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Several interesting, but challenging problems remain. First, for the

case of an unknown covariance structure, we proposed an adaptive LFD

test procedure by consistently detecting the unknown covariance structure

and estimating the unknown r. However, this procedure relies on a hyper-

parameter τ . Determining an optimal τ remains an interesting problem.

Second, our theoretical results rely on the normality of the observations. In

fact, our proofs use the independence of XJC and Y. Note that XJC and

Y = XJ̃ are both linear combinations of independent random vectors Xij.

It is known that the independence of linear combinations of independent

random variables essentially characterizes the normality of the variables;

see, for example, Kagan et al. (1973), Section 3.1. Hence our strategy is

not feasible without the normality assumption. It is unclear whether the

conclusions of our theorems hold without this assumption. Third, our the-

oretical results require p/n→∞. In fact, the asymptotic behavior of T (X)

will be different in the regime where p/n→ constant. Random matrix the-

ory may be useful to investigate the asymptotic behavior of T (X) in this

regime. We leave these topics for future research.

Supplementary Material

The online Supplementary Material presents proofs of the propositions

and theorems.
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