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Abstract: We propose a unified approach to maximum likelihood estimation, clas-

sification, and statistical learning in the context of finite mixture models, based

on observations that can be considered a collection of order statistics. We con-

sider both supervised and unsupervised learning approaches. New missing-data

mechanisms and expectation-maximization (EM) algorithms are developed to

exploit the structure of the observed data in the estimation process under each

learning strategy. In addition, we present model-based classification criteria, and

show how they can be used to conduct better inferences about rarely observed

components in finite mixture models. Using simulation studies, we evaluate the

performance of the estimation and classification methodologies. Finally the pro-

posed methods are applied to data from a fishery study to estimate the age

structure of Spot, a short-lived fish species.
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Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0266



2

pling; classification, latent variables; EM algorithm.

1. Introduction

Consider a population of M subpopulations, and suppose we are interested

in a random phenomenon, X, with a probability density function (pdf) that

can be written as a finite mixture model (FMM). Lastly, we randomly select

n sampling units from the population. In many situations, some observa-

tions may be missing, possibly at random, but not necessarily; however,

we can easily assign ranks to the observed values, and thus retain order

statistics. A typical situation occurs in life testing. Here, an experiment

is terminated after the first r out of n items under the test have failed,

where each item is composed of M components, each with its own lifetime

distribution. Observations of this kind are called censored samples, and can

lead to the selection of various types of order statistics from samples of size

n. A collection of order statistics may also be available when finding the

final measurements on all the sampling units is expensive, perhaps owing to

budgetary and/or other constraints. In such a case, an experiment can be

scaled back to select a subset of the sampled units for the final study. For

example, in studies that need to determine the age of a fish population, it

is common practice to first catch a large number of fish, and then to use a
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subsample to determine the age. In this case, researchers might use system-

atic sampling to generate the subsample after the larger sample has been

ordered by length of fish. For example, they may opt to use every third

fish in the ordered sample, which is easy to explain and for field workers to

follow. We use the term selected order statistics when observations are ob-

tained from specific designs that lead to specific choices of order statistics,

for example:

• single-censored samples from FMMs, where either the r1 smallest (left-

censored) X values or the r2 largest (right-censored) X values are not

observed, with r1 and r2 fixed by design (Miyata, 2011; Mendenhall

and Hader, 1958).

• doubly censored samples from FMMs, where the r1 smallest and r2

largest X values are not observed, with fixed values of r1 and r2

(Sindhu et al., 2016; Saleem et al., 2010).

• compressed data from FMMs, where a large number of data points

are replaced by a small number of selected order statistics (Bishop,

2006).

• systematic subsamples, with auxiliary information enabling the or-

dering of sampled units, as in the fish example described above.
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We also use the term induced order statistics when, after observing

a simple random sample with missing observations, auxiliary information

is used to assign a rank to each observation. In all of these examples,

observations can be considered collections of order statistics for a sample

of size n from an FMM, whether labeled or unlabeled. In other words,

we might or might not know the subpopulation from which the data are

observed. Then, we can estimate the unknown parameters of the underlying

FMM using these data.

Several variations of rank-based sampling (RBS) designs lead to inde-

pendent order statistics. Inferences for FMMs in these settings are discussed

in Hatefi et al. (2014, 2015). In this study, the order statistics are correlated

and finite mixture modeling is a more challenging problem. Thus, we pro-

vide a unified approach to statistical inferences for FMMs based on various

collections of order statistics. We consider the problem under both super-

vised and unsupervised learning methods. To obtain maximum likelihood

(ML) estimates of the parameters, we introduce new missing-data mecha-

nisms and expectation-maximization (EM) algorithms that accommodate

the dependence structure among the order statistics. This imposes several

difficulties in the estimation process, because the log-likelihood function

contains terms that are convex combinations of survival functions, which
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typically do not have a closed form for many statistical distributions. More-

over, we develop new model-based classification criteria for an FMM with

rarely observed components.

Section 2 discusses likelihood functions based on unlabeled order statis-

tics of FMMs. The associated EM algorithm and its modified version are

explained in Section 3. Section 4 presents various model-based classifica-

tion criteria. In Section 5, we study estimators of the parameters of FMMs

under the supervised learning method. Section 6 compares the performance

of several estimation procedures using numerical studies. Then, in Section

7, the proposed estimation procedures are applied to data from a fishery

study to determine the age structure of fish. Finally, Section 8 concludes

the paper. All proofs, some further remarks, and additional simulation

study are provided in the online Supplementary Material.

2. Order Statistics of the FMM

Suppose that the pdf of a random variable of interest X follows a mixture

of M component densities

f(x; Ψ) = π1f1(x; θ1) + · · ·+ πMfM(x; θM), (2.1)

where π = (π1, . . . , πM) is a vector of unknown mixing proportions, with

πj > 0 and
∑M

j=1 πj = 1, and fj(·; θj), for j = 1, . . . ,M , refers to the pdf
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of the jth component of the FMM, specified up to a vector θj of unknown

parameters, known a priori to be distinct. Let Ψ = (π1, . . . , πM−1, ξ)> de-

note a vector of all unknown parameters, where ξ = (θ>1 , . . . , θ
>
M)>, and the

superscript > refers to the vector transpose. The cumulative distribution

function (cdf) of X is given by F (x; Ψ) =
∑M

j=1 πjFj(x; θj), where Fj(·; θj)

represents the cdf of the jth component. For further information on the

theory and applications of FMMs, see McLachlan and Peel (2004).

Suppose X̃ = {X(i1), X(i2), . . . , X(ik)}, where 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n,

is a collection of k, for k = 2, . . . , n − 1, order statistics from a random

sample of size n from (2.1), where X(il) is the ilth smallest observation in

the sample.

According to the theory of order statistics, the log-likelihood function

of Ψ based on X̃ = x̃ is

l(Ψ|x̃) ∝
k∑
r=1

log f(xir ; Ψ) + (i1 − 1) logF (xi1 ; Ψ) + (n− ik) log F̄ (xik ; Ψ)

+
k∑
s=2

(is − is−1 − 1) log
[
F (xis ; Ψ)− F (xis−1 ; Ψ)

]
, (2.2)

and the maximum likelihood estimator (MLE) of Ψ, Ψ̂MLE, is obtained as

the solution to ∂
∂Ψ
l(Ψ|x̃) = 0 in Ψ. The complexity of (2.2) typically makes

this intractable, owing to the presence of convex combinations of compo-

nents of the form log f(xir ; Ψ), logF (xi1 ; Ψ), log
[
F (xis ; Ψ)− F (xis−1 ; Ψ)

]
,
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and log F̄ (xik ; Ψ). To solve this problem, we model X̃ = x̃ as incomplete

data. The likelihood and log-likelihood functions based on X̃ = x̃ are then

called incomplete likelihood and log-likelihood functions, respectively.

To obtain Ψ̂MLE, we construct a new EM algorithm, following the

work of Dempster et al. (1977). Let ∆ = {Z1, . . . ,Zk,W1, . . . ,Wk+1}

be a collection of 2k + 1 latent vectors, each of length M . For each order

statistic X(ir), for r = 1, . . . , k, we define Zr = (Zr1, . . . , ZrM), with Zr
i.i.d∼

Mult(1,π). We also introduce the following:

• W1 = (W11, . . . ,W1M), with W1∼Mult(i1 − 1,π),

• Ws = (Ws1, . . . ,WsM), with Ws∼Mult(is − is−1 − 1,π), for s =

2, . . . , k, and

• Wk+1 = (Wk+1 1, . . . ,Wk+1M), with Wk+1∼Mult(n− ik,π).

The complete likelihood function is given by the following lemma; the

proof is provided in the Supplementary Material.

Lemma 1. Let X̃ = {X(i1), X(i2), . . . , X(ik)} be a collection of k = 2, . . . , n−

1 order statistics from a random sample of size n from (2.1); and let

∆ = (Z1, . . . ,Zk,W1, . . . ,Wk+1) be a collection of latent vectors, as de-

fined above. Then the complete-data likelihood function based on (X̃,∆) is
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given by

f(x̃, δ; Ψ) ∝
M∏
j=1

{πjFj(xi1 ; θj)}
w1j
{
πjF̄j(xik ; θj)

}wk+1 j

k∏
r=1

{πjfj(xir ; θj)}
zrj

×

(
k∏
s=2

[
πj{Fj(xis ; θj)− Fj(xis−1 ; θj)}

]wsj

)
.

Using Lemma 1, the joint distribution of (X̃,Zr), for r = 1, . . . , k, is

f(x̃, zr) ∝{F (xi1 ; Ψ)}i1−1
M∏
j=1

{πjfj(xir ; θj)}
zrj

k∏
s=1
s6=r

f(xis ; Ψ)

×
k∏
s=2

{
F (xis ; Ψ)− F (xis−1 ; Ψ)

}is−is−1−1 {
F̄ (xik ; Ψ)

}n−ik (2.3)

In the Supplementary Material, we provide further remarks on the joint pdf

of the order statistics and their latent variables.

From (2.3) and the pdf of the order statistics, we can easily show that

fZr|X̃(zr|x̃) =
M∏
j=1

{
πjfj(xir ; θj)

f(xir ; Ψ)

}zrj
, (2.4)

and conclude that Zr|X̃ = x̃∼Mult
(

1, π1f1(xir ;θ1)

f(xir ;Ψ)
, . . . , πMfM (xir ;θM )

f(xir ;Ψ)

)
, for

each r = 1, . . . , k.

Lemma 2. Let Zr be the latent vector associated with X(r), for r = 1, . . . , k.

For given order statistics, Zr are independent and identically distributed

(i.i.d.).

The proof, taken from Yang (1977), is given in the Supplementary Material.
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Based on Remark 5 in the Supplementary Material and the pdf of the

order statistics, we have

fW1|X̃(w1|x̃) =

(
i1 − 1

w11, . . . , w1M

) M∏
j=1

(
πjFj(xi1 ; θj)

F (xi1 ; Ψ)

)w1j

; (2.5)

that is, W1|X̃ = x̃ ∼Mult
(
i1 − 1,

π1F1(xi1 ;θ1)

F (xi1 ;Ψ)
, . . . ,

πMFM (xi1 ;θM )

F (xi1 ;Ψ)

)
. Similarly,

from Remark 6 in the Supplementary Material, we have

f(wr|x̃) =
M∏
j=1

(
ir − ir−1 − 1

wr1, . . . , wrM

)(
πj[Fj(xir ; θj)− Fj(xir−1 ; θj)]

F (xir ; Ψ)− F (xir−1 ; Ψ)

)wrj

, (2.6)

for each r = 2, . . . , k. Finally, from Remark 7 in the Supplementary

Material, we have

f(wk+1|x̃) =

(
n− ik

wk+1 1, . . . , wk+1M

) M∏
j=1

(
πjF̄j(xik ; θj)

F̄ (xik ; Ψ)

)wk+1 j

. (2.7)

From Lemma 1, the complete-data log-likelihood function is

l(Ψ|x̃, δ) ∝
M∑
j=1

{
w1j log [πjFj(xi1 ; θj)] + wk+1 j log

[
πjF̄j(xik ; θj)

]
+

k∑
r=1

zrj log [πjfj(xir ; θj)]

+
k∑
s=2

wsj log{πj[Fj(xis ; θj)− Fj(xis−1 ; θj)]}
}
. (2.8)

3. EM Algorithm

Here, we use the EM algorithm of Dempster et al. (1977) to obtain Ψ̂MLE

using (2.8). To this end, let Ψ(0) be an initial value for Ψ.
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E-Step: Given X̃ = x̃, the conditional expectation of the complete-data

log-likelihood function isQ(Ψ,Ψ(0)) = EΨ(0) [l(Ψ|x̃)], where the expectation

is taken under Ψ(0). In the (p + 1)th iteration, Q(Ψ,Ψ(p)) is computed in

the E-step, where Ψ(p) is the estimate of Ψ obtained from the pth iteration.

From (2.4), (2.5), (2.6), and (2.7), we have

τr,j(Ψ) = E (Zrj|x̃) =
πjfj(xir ; θj)

f(xir ; Ψ)
, r = 1, . . . , k; j = 1, . . . ,M. (3.1)

β1,j(Ψ) = E (W1j|x̃) = (i1 − 1)
πjFj(xi1 ; θj)

F (xi1 ; Ψ)
, j = 1, . . . ,M. (3.2)

βs,j(Ψ) = E (Wsj|x̃) = (is − is−1 − 1)
πj[Fj(xis ; θj)− Fj(xis−1 ; θj)]

[F (xis ; Ψ)− F (xis−1 ; Ψ)]
,

s = 2, . . . , k; j = 1, . . . ,M. (3.3)

βk+1,j(Ψ) = E (Wk+1 j|x̃) = (n− ik)
πjF̄j(xik ; θj)

F̄ (xik ; Ψ)
, j = 1, . . . ,M. (3.4)

Combining these with (2.8), the expectation at the (p+ 1)th iteration is

Q(Ψ,Ψ(p)) = Q1(π,Ψ(p)) +Q2(ξ,Ψ(p)), (3.5)

Q1(π,Ψ(p)) =
M∑
j=1

log πj

{
k∑
r=1

τr,j(Ψ
(p)) +

k+1∑
s=1

βs,j(Ψ
(p))

}
,

Q2(ξ,Ψ(p)) =
M∑
j=1

[
β1,j(Ψ

(p)) logFj(xi1 ; θj) + βk+1,j(Ψ
(p)) log F̄j(xik ; θj)

+
k∑
r=1

τr,j(Ψ
(p)) log fj(xir ; θj)

+
k∑
s=2

βs,j(Ψ
(p)) log{Fj(xis ; θj)− Fj(xis−1 ; θj)}

]
.
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M-Step: In the (p+ 1)th iteration of the M-step, Q(Ψ,Ψ(p)) is maximized

with respect to Ψ to obtain Ψ(p+1). From (3.5), the estimate π̂(p+1) is

updated by maximizing Q1(π,Ψ(p)) with respect to π. Owing to the con-

straint
∑M

j=1 πj = 1, we use the Lagrangian multiplier to update the mixing

proportions πj, for j = 1, . . . ,M − 1, as follows:

π̂
(p+1)
j =

1

n

{
k∑
s=1

τs,j(Ψ
(p)) +

k+1∑
s=1

βs,j(Ψ
(p))

}
. (3.6)

Using Q2(ξ,Ψ(p)) in (3.5), we obtain ξ(p+1) as the solution to

ξ(p+1) = arg max
ξ
Q2(ξ,Ψ(p)). (3.7)

Finally, the Ψ̂MLE of FMM (2.1) is computed by iterating the the E-step

and the M-step until the algorithm converges.

3.1 Modified EM Algorithm

In the algorithm proposed above, each M-step requires finding a solu-

tion to (3.7). Thus, updating ξ is cumbersome, computationally expen-

sive, and affects the convergence rate of the algorithm. This intractabil-

ity is due to the terms of ∂
∂ξ

logFj(x(i1); θj),
∂
∂ξ

log(1 − Fj(x(ik); θj)), and

∂
∂ξ

log{Fj(x(is); θj) − Fj(x(is−1); θj)} in the log-likelihood function. When

the cdf of the component densities does not have a closed form, which is

the case for most commonly used distributions, the dependence structures
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among the order statistics make the computations extensive and time con-

suming. To solve this problem, Johnson and Mehrotra (1972) and Mehrotra

and Nanda (1974) proposed a modification technique in which the expecta-

tion of the likelihood function is maximized to obtain the MLE. Recently,

Hatefi et al. (2015) employed this modified approach for FMM analyses

under various RBS designs. Using the properties of the RBS, where the

order statistics are independent, they showed that the M-step for ξ in the

EM algorithm reduces to the M-step in the usual simple random sampling

EM algorithm. Unfortunately, owing to the dependence structure among

the order statistics, this is not the case in the EM algorithm under cor-

related order statistics. Based on their work, we propose computing the

M-step of the EM algorithm for estimating ξ using the M-step for ξ of an

EM algorithm for SRS data. However, despite the similarity in updating ξ,

note that the observations are order statistics of the FMMs. Accordingly,

instead of equation (3.7), the following modified estimating equation is used

to update ξ:

ξ̂
(p+1)

= arg max
ξ

k∑
s=1

M∑
j=1

{
τs,j(Ψ

(p)) log fj(xis ; θj)
}
, (3.8)

where τs,j(Ψ
(p)) is defined in (3.1). This updating step for ξ is the same

as that under SRS data, but we still take advantage of the information in

the order statistics and their latent variables when updating the mixing
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proportions in each step. This indirectly affects the estimation of ξ.

4. Classification

Once the parameters of the FMM are estimated, we can determine the com-

ponent membership of each observation. Based on the characteristics of the

order statistics of the FMM, we propose several model-based classification

criteria. These criteria enable us to determine the component membership

of the observations, and to make probabilistic inferences about rarely ob-

served component(s) in FMMs. We first focus on the classification of a

sample of order statistics from an FMM.

Suppose we have observed X(r) = x(r). To classify x(r), we estimate its

component membership vector Zr = (Zr1, . . . , ZrM) by Ẑr, where

Ẑrj =


1, if j = argmaxhηh(x(r); Ψ),

0, otherwise,

for j = 1, . . . ,M , and ηh(x(r); Ψ) = P(Zrh = 1|x(r); Ψ). From (2.4), the

posterior distribution of Zr given X(r) = x(r), is given by

P(Zr = zr|x(r)) =

(
1

zr1, . . . , zrM

) M∏
h=1

{
πhfh(x(r); θh)

f(x(r); Ψ)

}zrh
;

thus,

ηh(x(r); Ψ) =
πh fh(x(r); θh)

f(x(r); Ψ)
. (4.1)
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The posterior probabilities ηh(x(r); Ψ) are then estimated by ηh(x(r); Ψ̂MLE).

Using the classifier in (4.1), we assign each observation to the component

that has the highest estimated posterior probability. Note that the expres-

sion obtained in (4.1) as the posterior probability of component membership

of each order statistic is equal to the commonly used expression for the SRS

design. However, the parameters are estimated using the order statistics of

the FMM in (2.1).

The following remark describes the classification of unobserved Xl,

given observed order statistics Xr, where l ≤ r; other classification sce-

narios are summarized as Remarks 8 and 9 in the Supplementary Material

Remark 1. Given X(r) = x(r) and its label Z(r) = z(r), suppose we are

now interested in classifying an unobserved order statistic X(l), for l ≤ r.

To this end, the component membership vector Zl = (Zl1, . . . , ZlM) can be

estimated by Ẑl, where

Ẑlj =


1, if j = argmaxhαh(x(l); Ψ),

0, otherwise,

and αh(x(l); Ψ) = P(Zlj = 1|x(r), z(r); Ψ). From Remark 2 in the Supple-

mentary Material, the posterior distribution of Zl is given by

P(Zl = zl|Zr = zr, x(r)) =

(
1

zl1, . . . , zlM

) M∏
h=1

{
πhFh(x(r); θh)

F (x(r); Ψ)

}zlh
;
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consequently, αh(x(r); Ψ) = πh Fh(x(r); θh)/F (x(r); Ψ). In other words, given

the observed value y for the the rth order statistic X(r) selected from a

sample of size n from the FMM, missing (unselected) order statistics smaller

than y are classified into the jth component of the FMM if αj(y; Ψ̂) >

αh(y; Ψ̂), for all h = 1, . . . ,M ; j 6= h.

Next we investigate how to use the properties of the order statistics of

FMMs with rarely observed component(s). In other words, we determine

the probability of observing at least m observations from these rare com-

ponents. These probabilities are studied in Lemmas 4, 5, and 6; the proofs

are provided in the Supplementary Material. We first state the following

result from David and Nagaraja (1981).

Lemma 3. Let X be a random variable with cdf F (·; Ψ). Then,

n∑
i=r

(
i

n

)
[F (x; Ψ)]i[F̄ (x; Ψ)]n−i = IF (x;Ψ)(r, n− r + 1), (4.2)

where IF (x;Ψ)(r, n−r+1) = 1
B(r,n−r+1)

∫ F (x;Ψ)

0
tr−1(1−t)n−rdt, and B(a, b) =

Γ(a+b)
Γ(a)Γ(b)

.

Lemma 4. Let X(r) = xr be the observed rth order statistic from the FMM

in (2.1), based on a random sample of size n. For m = 1, . . . , r−1, let T 1
m,j

denote the event of observing at least m sample points less than X(r) from

component j; then, we have P(T 1
m,j|xr) = IG1(xr)(m, r−m), where G1(xr) =

Statistica Sinica: Preprint 
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πjFj(xr; θj)/F (xr; Ψ) and j = 1, . . . ,M . In addition, let S1
j denote the

event of observing no sample points less than X(r) from component j; then,

we have P(S1
j |xr) = 1− IG1(xr)(1, r − 1).

Lemma 5. Let X(r) = xr and X(l) = xl be the observed rth and lth order

statistics, respectively, for r < l, for the FMM in (2.1) from a sample of

size n. Let T 2
m,j denote the event of observing at least m sample points

between X(r) and X(l) from component j; then, we have P(T 2
m,j|xr, xl) =

IG2(xr,xl)(m, l − r − m), for m = 1, . . . , l − r − 1, where G2(xr, xl) =

πj[Fj(xl; θj) − Fj(xr; θj)]/[F (xl; Ψ) − F (xr; Ψ)] and j = 1, . . . ,M . There-

fore, let S2
j denote the event of observing no sample points between X(r) and

X(l) from component j; then, we have P(S2
j |xr, xl) = 1−IG2(xr,xl)(1, l−r−1).

Lemma 6. Let X(l) = xl be the observed lth order statistic from the FMM

in (2.1) based on a random sample of size n. For m; m = 1, . . . , n−l−1, let

T 3
m,j denote the event of observing at least m sample points greater than X(l)

from component j; then, we have P(T 3
m,j|xl) = IG3(xl)(m,n−l−m+1), where

G3(xl) = πjF̄j(xl; θj)/F̄ (xl; Ψ) and j = 1, . . . ,M . Further, let S3
j denote

the event of observing no sample points greater than X(l) from component

j; then, we have P(S3
j |xl) = 1− IG3(xl)(1, n− l).

As mentioned in Section 1, in many environmental, ecological, and

medical studies, measuring the variable of interest is difficult and time-
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consuming. However, rank information can usually be obtained easily, as

in the example of determining the age of fish based on their length, as de-

scribed in the introduction. Hatefi et al. (2015) exploited the properties of

a ranked set sampling (RSS) design under perfect ranking to analyze the

age of fish based on length frequency data. To obtain a sample of k fish, a

simple random sample of k2 fish is selected first, these fish are then divided

randomly into k sets of size k. Then, in each set, fish are ranked based on

their length and, finally, the ith smallest fish from set i is selected for age

determination. In the following example, we use Lemma 6, for a perfect

RSS (i.e., there is no ranking error in the sampling process) as an example

of order statistics of FMMs.

Example 1. Consider a perfect RSS, with set size H = 10, from a mixture

of two normal distributions with Ψ = {π, µ1, µ2, σ1, σ2} = {0.8, 4.87, 8, 1, 2}.

Figure 1 shows the probability of observing at least one observation from

the second component. For example, Given x(5) = 4, the probability of

observing at least m = 3 units of H = 10 sampling units from a rare pop-

ulation (second component with π = 0.2) is 0.0856. Figure 1 shows that

if the rank is fixed, then, as the value of x increases, the probability of

observing a sample from the rare component increases. Furthermore, if x is

fixed, then as the rank of x increases, the probability of observing a sample
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from the rare event decreases.

Figure 1: The probability of observing at least one observation from the second com-

ponent when the set size is 10.

5. Statistical Learning with Order Statistics

In this section, we study how the notion of order statistics can be incorpo-

rated into supervised and unsupervised learning in the context of FMMs.

As in the previous section, we use the properties of order statistics to make

inferences about FMMs in the context of unsupervised learning, where in-

formation about the component membership of the order statistics is not

available. Because the cost of obtaining k order statistics is the same as that
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of ordering the entire sample, we examine the order statistics under unsu-

pervised learning for the sake of completeness, in the context of estimation,

classification, and the consistency of the results. This enables us to bet-

ter compare the performance of the proposed methods with that of their

counterparts under supervised learning, particularly in settings in which

measuring the labeled data is difficult. In this section, we study the order

statistics of FMMs in the context of supervised learning. In this case, both

measured values of the order statistics and their component memberships

are available.

In Subsection 5.1, we revisit the results of Section 2 for the order

statistics of FMMs in an unsupervised learning setting, after which, we

examine the order statistics of an FMM for supervised learning. Suppose

X = (X1, . . . , Xk) represents a collection of unlabeled SRS data of size k

from the FMM in (2.1). In the case of labeled SRS data, for each observa-

tion Xi for i = 1, . . . , k, let Z∗i = {z∗i1, . . . , z∗iM} be the observed label, such

that z∗ij = 1 if Xi is from component j and is zero otherwise.

5.1 Unsupervised Learning using Ordered Statistics from FMMs

Suppose we only have access to the unlabeled SRS data x = (x1, . . . , xk); in

this case, the likelihood function becomes Lun(Ψ|x) =
∏k

i=1

∑M
j=1 πjfj(xi; θj).
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As in Section 2, we introduce the latent variables Zi = (Zi1, . . . , ZiM), for

i = 1, . . . , k and for each xi, such that Zij = 1 if xi comes from component

j of the FMM, and Zij = 0 otherwise. Now, let Yun = (X,Z) denote the

complete data with likelihood function

Lun(Ψ|Yun) =
k∏
i=1

M∏
j=1

{πjfj(yi; θj)}zij . (5.1)

As in Section 3, we obtain ML estimates of the parameters using the EM

algorithm. The conditional expectation of Zij|y, computed in the E-step,

is used in the (p+ 1)th step to update Ψ
(p+1)
un = (π

(p+1)
un , ξ(p+1)

un ), as follows:

π̂
(p+1)
un,j =

1

k

k∑
i=1

τr,j(Ψ
(p)), j = 1, . . . ,M, (5.2)

ξ̂
(p+1)

un = arg max
ξ

k∑
i=1

M∑
j=1

{
τr,j(Ψ

(p)) log fj(yi; θj)
}
, (5.3)

where τr,j(Ψ
(p)) = E(Zrj|y), for r = 1, . . . , k.

Let X̃ou = {X(i1), . . . , X(ik)} be the collection of order statistics of un-

labeled data X from a sample of size n. Let You = (X̃ou,∆) denote the

complete order statistics, consisting of the unlabeled order statistics and

their latent variables. According to Lemma 1, the likelihood function based

on You can be written as

L(Ψ|You) ∝ L(Ψ|Yun)κ(Ψ|You), (5.4)
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where

κ(Ψ|You) =
M∏
j=1

{
{πjFj(y(i1); θj)}w1j{πjF̄j(y(ik); θj)}wm+1,j

×
k∏
s=2

{
πj[Fj(y(is); θj)− Fj(y(is−1); θj)]

}wsj

}
. (5.5)

From (5.1), it is apparent the κ(Ψ|You) is the contribution of k order statis-

tics to the unsupervised learning of FMMs.

5.2 Supervised Learning with Ordered Statistics of FMMs

In this subsection, we analyze FMMs using labeled data. For SRS super-

vised learning, we estimate the parameters based on the labeled data. The

likelihood function based on these observations is

Lus(Ψ|x, z∗) =
k∏
i=1

M∏
j=1

{πjfj(xi; θj)}z
∗
ij . (5.6)

Using (5.6), the ML estimate Ψ̂us is

π̂us,j =
1

k

k∑
i=1

z∗ij, (5.7)

θ̂j = arg max
θj

k∑
i=1

log fj(xi; θj), j = 1, . . . ,M. (5.8)

Here, we show how to exploit the properties of order statistics to make

inferences for FMMs using labeled data. Let X̃os = {X(i1), . . . , X(ik)} be

the collection of k order statistics for the labeled data X from a sample of
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size n, with labels Z∗ = {Z∗1 , . . . , Z∗k}. Using the pdf of the order statistics,

the likelihood function based on (X̃os,Z
∗) is

Los(Ψ|x̃os, z∗) ∝
{
F (x(i1); Ψ)

}i1−1 {
F̄ (x(ik); Ψ)

}n−ik
×

k∏
s=2

{
F (x(is); Ψ)− F (x(is−1); Ψ)

}is−is−1−1

×
k∏
r=1

M∏
j=1

{
πjfj(x(ir); θj)

}z∗rj . (5.9)

In order to obtain the ML estimate of Ψ, we introduce the latent vectors

Ws = (Ws1, . . . ,WsM), for s = 1, . . . , k+ 1. Let Yos = (X̃os,Z
∗,W) denote

the complete labeled order statistics. Similarly to Lemma 1, the complete

likelihood function version of (5.9) is given by

L(Ψ|Yos) ∝ L(Ψ|Yus)κ(Ψ|Yos), (5.10)

where κ(Ψ|Yos) is defined in (5.5) by replacing yij with x(ij). From (5.10),

it is apparent that κ(Ψ|Yos) shows the contribution of k order statistics

from a sample of size n to the supervised FMM. Now, we estimate the

parameters of the FMM using the EM algorithm presented in Section 3.

The E-step requires only the conditional expectation of the latent variables

Ws, for s = 1, . . . , n, given x̃os, z
∗. As in Section 3, using (3.2), (3.3), and

(3.4), the parameters are updated on the (p+ 1)th step using

π̂
(p+1)
os,j =

1

n

{
k∑
s=1

z∗sj +
k+1∑
s=1

βs,j(Ψ
(p))

}
, (5.11)
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where j = 1, . . . ,M − 1 and, on the (p + 1)th iteration of the M-step, the

estimates of the component parameters ξ(p+1)
os are updated using

ξ(p+1)
os = arg max

ξ
Qos(ξ,Ψ

(p)), (5.12)

where

Qos(ξ,Ψ
(p)) =

M∑
j=1

{
β1,j(Ψ

(p)) logFj(xi1 ; θj) + βk+1,j(Ψ
(p)) log F̄j(xik ; θj)

+
k∑
r=1

z∗rj log fj(xir ; θj)

+
k∑
s=2

βs,j(Ψ
(p)) log[Fj(xis ; θj)− Fj(xis−1 ; θj)]

}
.

Then, the E-step and M-step are repeated until the algorithm converges.

6. Numerical Studies

In this section, we empirically study the performance of the MLEs of the

FMM parameters under various order statistics designs Di, for i = 1, . . . , 6,

as shown in Table 1. In all designs, the original simple random sample

size is assumed to be n = 30, where we observe only k order statistics,

for k ∈ {6, 8, 10}. We select Di such that the performance of ΨMLE can

be evaluated under different scenarios, including right- and left- censoring

schemes (D1, D2), a modified version of maxima-minima nominated sam-

pling (D3, D4), and systematic sampling (D5). The MLEs of the parameters
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of the FMMs are computed assuming we have labeled order statistics, un-

labeled order statistics, labeled SRS data, and unlabeled SRS data. We

used the modified EM algorithm to compute ΨMLE. The underlying FMM

is assumed to be a mixture of two univariate normal distributions,

f(x; Ψ) = πφ(x;µ1, σ) + (1− π)φ(x;µ2, σ). (6.1)

with parameters Ψ = {π, µ1, µ2, σ}. Owing to the key role of mixing the

proportion parameters in mixture modeling, we investigate two simulation

studies. The first, described in Subsection 6.1, estimates the mixing pro-

portion, where the component parameters are assumed to be known. The

second, provided in the Supplementary Material, estimates all parameters

of the model. We investigate the performance of the estimation and clas-

sification procedures based on designs Di, and compare it with the case

in which observations are simple random samples. Note that we do not

necessarily suggest using order statistics for finite mixture modeling as a

sampling scheme to replace SRS, but rather as a natural setting that hap-

pens in many real-world applications. The goal is to show how the rank

information provided by different collections of order statistics can affect

the estimation and classification processes. To generate observations using

Di, for each simulation, we take a sample of size n = 30 from (6.1). After

ranking the observations, we select the order statistics using the designs
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shown in Table 1. When using an unsupervised approach, we consider only

the value of the selected order statistics, whereas in a in supervised ap-

proach, we observe both the selected order statistics and their component

memberships.

Table 1: Collections of order statistics.

Design Collection of Order Statistics Experiment (k=size)

D1 {1, 2, 3, 4, 5, 6} Right censored data (6)

D2 {23, 24, 25, 26, 27, 28, 29, 30} Left censored data (8)

D3 {1, 2, 3 , 28, 29, 30} Modified MMN sample (6)

D4 {1, 2, 3, 4, 5, 26, 27, 28, 29, 30} Modified MMN sample (10)

D5 {1, 5, 10, 20, 25, 30} Systematic selection (6)

6.1 Simulation Study 1

We first estimate π and evalute the classification performance when the

component parameters of the FMM are assumed to be known. Using Ta-

ble 1, we generate samples from model (6.1). We consider (µ1, µ2, σ) =

(9.01, 11.70, 1.15) and π ∈ {0.35, 0.50, 0.60, 0.67, 0.80}, such that the com-

ponent parameters are the same as those for Spot data analyzed in Sec-

tion 7. The modified EM algorithm, described in Subsection 3.1 is car-

ried out 5000 times, with initial value 0.5, for π, with stopping criteria
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|π(k+1) − π(k)| < 10−6.

Tables 2 and 3 provide the biases, square root of the mean squared

errors (
√
MSE), classification precisions (CLP%), and convergence rates

(CVR%) for all estimation procedures. The classification precision rate

(CLP%) is the average proportion of correct classification rates over 5000

simulations. The simulation studies are devised so that we have access to

the true component membership of the sampling units under all estimation

procedures. Comparing the true and predicted memberships of the test

data, we compute the correct classification rate of the classifiers for each

estimator in each simulation. The rate of convergence (CVR%) is calculated

as the average number of times that the estimation procedure converged

over 5000 replications. Comparing the ML estimates of π under each design

Di, we clearly observe the impact of various collections of order statistics

on the estimation and classification procedures. For instance, from Table

2, when π = 0.8, design D1 practically fails to capture the rare event

(i.e., the second component), yielding a convergence rate for the estimation

procedure of about 1%. On the other hand, using the collection of upper

order statistics (design D2) guarantees that we will observe data from the

rare component and, consequently, improves the convergence rate of the

estimation procedures by 93%.
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The relative efficiency (RE) of the proposed estimator depends on the

sampling design Di. The estimator based on design D5 provides a substan-

tial improvement over the MLE of the SRS design. For example, the relative

efficiencies RE = MSE(SRS)/MSE(D5) from Table 2 are (0.182/0.112 =

)2.7, 2.98, 2.7, 2.7, and 3.16, for π = 0.35, 0.50, 0.60, 0.67, and 0.8, re-

spectively. These empirical results show that the MLE based on design

D5 is at least 2.7 times more efficient than the corresponding SRS esti-

mator. The same efficiencies under unsupervised learning in Table 3 are

4.76, 4.69, 4.34, 4.76, 4.41. These RE values indicate that design D5 is much

better suited to unsupervised learning.

7. Data Analysis

The age structure of fish is an important part of many fishery studies,

because it provides valuable information about age of recruitment, maturity,

and so on. As a result, estimations of the age structure play a key role in

stock assessments and in the dynamics of a fish population. In this section,

we examine the age determination of Spot, as a short-lived fish species,

using frequency data on the length of the fish. Owing to its commercial

and recreational purposes and food source for other fish, Spot represent one

of the most important and frequently caught fish in the Chesapeake Bay

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0266



28

Table 2: Bias,
√
MSE, (CLP%), and (CVR%) under supervised learning, based on

the designs of Table 1, against those of SRS data of the same size, when π is the only

unknown parameter of model (6.1).

OS SRS

π 0.35 0.50 0.60 0.67 0.80 0.35 0.50 0.60 0.67 0.80

Bias -0.09 -0.15 -0.19 -0.24 -0.30 0.02 -0.00 -0.01 -0.03 -0.07

D1

√
MSE 0.15 0.24 0.28 0.35 0.44 0.18 0.19 0.18 0.17 0.17

CLP% 87.7 86.6 87.1 84.7 87.7 85.2 84.0 84.6 85.5 87.7

CVR% 31.1 9.5 4.6 2.8 1.2 92.1 97.0 94.8 91.1 72.6

Bias 0.17 0.11 0.07 0.04 0.00 0.01 0.00 -0.00 -0.02 -0.04

D2

√
MSE 0.26 0.18 0.13 0.10 0.08 0.16 0.17 0.17 0.16 0.13

CLP% 87.4 87.4 87.5 88.4 90.8 86.0 85.2 85.6 86.2 88.5

CVR% 7.3 21.1 40.8 61.8 93.8 97.0 99.3 98.2 96.1 83.9

Bias 0.04 -0.00 -0.03 -0.04 -0.05 0.03 -0.00 -0.02 -0.03 -0.07

D3

√
MSE 0.16 0.15 0.16 0.16 0.15 0.18 0.19 0.18 0.18 0.16

CLP% 87.7 86.9 87.2 88.1 90.4 85.2 84.1 84.6 85.5 87.9

CVR% 100 100 100 99.9 99.5 92.4 96.7 94.9 90.8 74.0

Bias 0.02 -0.00 -0.02 -0.03 -0.02 0.01 -0.00 -0.00 -0.01 -0.02

D4

√
MSE 0.13 0.13 0.13 0.13 0.11 0.15 0.16 0.15 0.15 0.12

CLP% 88.2 87.2 87.4 88.2 90.5 86.4 85.6 85.8 86.6 88.9

CVR% 99.9 100 100 100 99.7 98.7 99.8 99.4 98.3 88.4

Bias 0.00 -0.00 -0.00 -0.00 -0.00 0.03 0.00 -0.02 -0.04 -0.07

D5

√
MSE 0.11 0.11 0.11 0.11 0.09 0.18 0.19 0.18 0.18 0.16

CLP% 88.0 87.3 87.8 88.4 90.7 85.1 84.1 84.7 85.3 87.8

CVR% 99.8 100 99.9 99.8 97.7 92.6 97.1 94.5 90.8 73.3
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Table 3: Bias,
√
MSE, (CLP%), and (CVR%) under unsupervised learning, based on

the designs of Table 1, against those of SRS data of the same size, when π is the only

unknown parameter of model (6.1).

OS SRS

π 0.35 0.50 0.60 0.67 0.80 0.35 0.50 0.60 0.67 0.80

Bias 0.04 0.04 0.01 -0.01 -0.04 0.00 0.00 -0.00 0.00 -0.01

D1

√
MSE 0.17 0.19 0.18 0.18 0.19 0.24 0.26 0.25 0.24 0.21

CLP% 87.3 85.2 85.0 85.6 87.0 82.6 81.5 82.2 83.1 86.0

CVR% 96.9 91.0 83.1 76.8 68.7 99.2 99.2 99.2 99.3 98.9

Bias -0.02 -0.04 -0.04 -0.02 -0.01 0.00 -0.00 -0.00 -0.00 -0.01

D2

√
MSE 0.17 0.18 0.16 0.15 0.11 0.21 0.22 0.22 0.21 0.18

CLP% 85.6 86.0 87.0 87.8 90.3 84.8 84.3 84.5 84.9 87.3

CVR% 86.8 95.8 98.3 99.5 99.8 99.5 99.6 99.4 99.5 99.2

Bias 0.03 -0.00 -0.03 -0.04 -0.04 0.01 -0.01 -0.00 -0.00 -0.01

D3

√
MSE 0.16 0.15 0.16 0.16 0.15 0.25 0.26 0.25 0.24 0.21

CLP% 87.6 86.9 87.2 87.9 90.1 82.9 82.0 82.3 83.5 86.1

CVR% 99.9 100 100 99.9 99.7 99.2 99.5 99.5 99.2 99.1

Bias 0.02 0.00 -0.02 -0.02 -0.02 0.00 -0.00 -0.00 -0.00 -0.00

D4

√
MSE 0.14 0.13 0.14 0.14 0.12 0.19 0.20 0.20 0.19 0.16

CLP% 88.0 87.2 87.3 88.1 90.2 86.1 85.3 85.4 86.2 88.2

CVR% 99.9 100 100 100 99.8 99.7 99.8 99.6 99.4 99.2

Bias 0.01 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.01

D5

√
MSE 0.11 0.12 0.12 0.11 0.10 0.24 0.26 0.25 0.24 0.21

CLP% 88.0 87.3 87.7 88.2 90.3 82.8 81.7 82.5 83.0 86.0

CVR% 99.9 100 99.9 100 99.7 99.4 99.4 99.2 99.3 99.1
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area. The existence of several environmental studies on such short-lived

fish species (Thomas, 1990; Rickabaugh and Capossela, 2011) has increased

the importance of analyzing the age structures of Spot.

Recently, several fishery studies have tried different sampling designs

based on ranks and order statistics. Among other things, these studies

examine the mercury level of fish (Nourmohammadi et al., 2015), the stock

abundance of fish (Wang et al., 2009), and RBS designs for age structure

determination (Hatefi et al., 2015).

Here, we employ an ML estimation for the parameters of the FMM in

a fishery study to determine the age structure of Spot. Owing to the cost

of determining the age of fish, researchers may first capture and examine a

large sample, from which they then draw a subsample for the age determi-

nation. Because the length of a fish is correlated to its age, length is often

used as a concomitant to select the final sample. In this section, we con-

sider the length and age determined by otoliths of 403 Virginia–Chesapeake

Bay Spot as our population of interest. The data set is available online in

the FSAdata package (Ogle, 2013). In this study, we focus on two classes

of Spot: ages zero and one year, which are sexually immature and usually

smaller; and fish that are two years and older, which are sexually mature

and usually longer. A statistical analysis of the two groups is important
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because the second group plays a vital role in the current reproductivity

of the current population, and the first group influences the dynamics and

reproduction of the future population. Hatefi et al. (2015) showed that

the length distribution of Spot is well-modeled by a mixture of two normal

distributions with parameters Ψ = (π, µ1, µ2, σ) = (0.67, 9.01, 11.70, 1.15).

We perform a simulation study with 5000 repetitions by generating

samples using two common approaches to selecting a final sample. We gen-

erate samples of size n = 30, and then select the following ordered elements

(rank collections) for each sample for the age determination. The 30 fish in

the original sample are modeled according to their length, which is readily

obtained. These collections include D∗1 = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28},

D∗2 = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29}, D∗3 = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30},

D∗4 = {5, 10, 15, 20, 25}, and D∗5 = {1, 5, 10, 15, 20, 25, 30}. Then, we employ

the proposed methods to estimate and classify the observations in order to

determine the age structure of Spot. We study the effect of various collec-

tions of order statistics in the observed samples using D∗i , for i = 1, 2, 3, 4, 5.

Tables 4 and 6 present the bias and square root of the MSE for the

estimates of Ψ based on D∗i under supervised and unsupervised learning

approaches, respectively. Tables 5 and 7 present the computational aspects

of the estimation procedures in the analysis of the Spot data set. The
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estimate π̂MLE, whether using either labeled or unlabeled order statistics,

almost always outperforms the SRS-based estimate. This is because π̂MLE

takes full and direct advantage of rank information of the order statistics in

these approaches. Note that an estimation of the component parameters of

an FMM based on order statistics using the modified EM algorithm can not

take full advantage of rank information. However, it does do so indirectly π̂.

Tables 5 and 7 show that the estimation procedures under the supervised

and unsupervised approaches both outperform their SRS counterparts in

terms of classification precision and convergence rate.

8. Conclusion

We propose estimation and classification methods based on order statistics

of FMMs. This study differs in terms of focus and structure from two recent

works on order statistics in FMMs, namely, Hatefi et al. (2014, 2015). The

main objective of this study is to develop a statistical inference for clas-

sifying labeled and/or unlabeled current or future observations, based on

correlated order statistics. In contrast, Hatefi et al. (2014, 2015) estimate

the parameters of an FMM, and classify the observations into subpopula-

tions using independent order statistics in ranked-set sampling designs. In

this study, the order statistics are correlated, which requires different latent
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Table 4: Bias and
√
MSE of Spot data under the supervised learning approach, based

on designs D∗
i , for i = 1, . . . , 5, against those of SRS data of the same size.

OS SRS

π µ1 µ2 σ π µ1 µ2 σ

D∗
1 Bias -0.03 -0.13 -0.15 -0.08 -0.00 -0.01 -0.01 -0.16
√
MSE 0.11 0.36 0.56 0.23 0.14 0.45 0.69 0.32

D∗
2 Bias -0.01 -0.01 0.04 -0.12 -0.01 0.01 -0.01 -0.16
√
MSE 0.10 0.32 0.52 0.26 0.14 0.45 0.67 0.32

D∗
3 Bias 0.01 0.09 0.26 -0.11 -0.01 -0.01 -0.00 -0.16
√
MSE 0.11 0.34 0.64 0.25 0.14 0.45 0.69 0.32

D∗
4 Bias -0.06 0.12 -0.50 -0.37 -0.05 0.00 -0.01 -0.33
√
MSE 0.13 0.42 0.93 0.57 0.19 0.69 0.89 0.57

D∗
5 Bias 0.00 -0.29 0.52 0.01 -0.02 0.01 -0.01 -0.23
√
MSE 0.13 0.55 0.97 0.21 0.16 0.56 0.79 0.43

structures, missing data mechanisms, and EM algorithms to those in Hatefi

et al. (2014, 2015).

We used the properties of the correlated order statistics to estimate and

classify FMMs using both supervised and unsupervised learning methods.

Using the correlation structure of the order statistics, we obtained various

model-based classification criteria. These criteria help us to determine the

group membership of the data, and enable inferences about rarely observed

components. Our framework is general enough to apply to several sampling
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Table 5: Computational aspects of the estimators for the Spot data under supervised

learning, based on designs D∗
i , for i = 1, . . . , 5, against those of SRS data of the same

size.

OS SRS

interation CLP% time Conv. iteration CLP% time Conv.

D∗
1 4.26 86.40 0.0049 98.86 1.00 86.60 0.0004 98.06

D∗
2 3.00 86.83 0.0036 99.84 1.00 86.51 0.0004 98.10

D∗
3 3.69 86.89 0.0042 99.98 1.00 86.54 0.0004 97.96

D∗
4 4.60 85.37 0.0035 87.80 1.00 84.84 0.0003 85.72

D∗
5 3.58 85.86 0.0030 99.92 1.00 85.66 0.0003 93.52

designs from FMMs, including left censoring, right censoring, double cen-

soring, minimal-maximal nomination sampling, and systematic sampling.

Empirical evidence shows that selecting an appropriate collection of order

statistics provides a substantial improvement over the SRS option in both

supervised and unsupervised learning. For example, systematic sampling

can be two or three times more efficient than its SRS counterpart when

estimating the mixing proportion in supervised and unsupervised learn-

ing, respectively. The proposed methodologies were employed to determine

the age structure of Spot fish using length frequency data. Numerical re-

sults illustrate that the procedures under the supervised and unsupervised

approaches almost always outperform their SRS counterparts in terms of
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Table 6: Bias,
√
MSE of the Spot data under unsupervised learning, based on designs

D∗
i , for i = 1, . . . , 5, against those of the SRS data of the same size.

OS SRS

π µ1 µ2 σ π µ1 µ2 σ

D∗
1 Bias -0.21 -0.62 -0.64 -0.19 -0.10 -0.35 -0.05 -0.34
√
MSE 0.35 0.97 1.12 0.36 0.23 0.77 0.85 0.53

D∗
2 Bias -0.07 -0.24 -0.07 -0.23 -0.09 -0.33 -0.03 -0.34
√
MSE 0.16 0.48 0.54 0.36 0.23 0.77 0.86 0.53

D∗
3 Bias 0.06 0.19 0.56 -0.12 -0.10 -0.35 -0.06 -0.34
√
MSE 0.18 0.56 1.01 0.32 0.24 0.78 0.86 0.53

D∗
4 Bias -0.15 -0.25 -0.72 -0.54 -0.13 -0.42 -0.20 -0.56
√
MSE 0.23 0.48 1.13 0.78 0.27 1.00 1.13 0.83

D∗
5 Bias -0.01 -0.33 0.48 0.02 -0.11 -0.39 -0.12 -0.45
√
MSE 0.19 0.68 1.02 0.27 0.25 0.88 1.00 0.67

estimation and classification precision.

Supplementary Material

All proofs, eight remarks, an additional simulation study are provided in

the online Supplementary Material.
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Table 7: Computational aspects of the estimators of the Spot data under unsupervised

learning, based on designs D∗
i , for i = 1, . . . , 5, against those of the SRS data of the same

size.

OS SRS

interation CLP% time Conv. iteration CLP% time Conv.

D∗
1 18.34 75.12 0.0220 92.30 12.43 82.17 0.0043 99.06

D∗
2 14.78 85.02 0.0186 99.52 12.64 81.91 0.0044 98.90

D∗
3 21.04 83.75 0.0251 94.88 12.46 81.91 0.0043 99.00

D∗
4 9.95 81.85 0.0080 99.88 8.20 79.91 0.0028 98.82

D∗
5 21.68 82.59 0.0189 93.76 10.34 80.83 0.0035 99.30

the quality of the paper.
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