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Abstract: High-dimensional nonGaussian time series data are becoming increas-

ingly common. However, the conventional methods used to estimate mean vec-

tors and second-order characteristics are inadequate for ultrahigh-dimensional

and heavy-tailed data. Therefore, we use a framework of functional dependence

measures to establish a Bernstein-type inequality under dependence. Then, we

investigate a Huber estimator for the mean for a high-dimensional time series

with (1 + ε)th moments, for some 0 < ε ≤ 1, and establish a phase transition

for Huber estimators. The transition admits nearly subGaussian concentration

around the unknown mean for ε = 1, and a slower convergence rate if 0 < ε < 1.

We also investigate Huber-type estimators for the covariance and precision ma-

trices of the process with (2+2ε)th moments, for some 0 < ε ≤ 1, and present the

convergence rates for robust modifications of the regularized estimators. Simi-

larly, a phase transition occurs between ε = 1 and 0 < ε < 1. As a significant

improvement, the dimension can be allowed to increase exponentially with the

sample size to ensure consistency under very mild moment conditions. Numerical

results indicate that the Huber estimates perform well.
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1. Introduction

The recent widespread increase in the collection of high-dimensional

data has led to numerous methodologies and theories for analyzing such

data. Suppose we have identically distributed observations x1, . . . ,xn ∈ Rp.

We wish to estimate the mean vector µ = (µ1, . . . , µp)
> = Exi when the

dimension p can be much larger than the sample size n. A simple, natural,

and popular method of doing so is to calculate the sample mean vector x̄ =

n−1
∑n

i=1 xi. When x1, . . . ,xn are independent and identically distributed

(i.i.d.) Gaussian or subGaussian, nice performance bounds can be derived

with the help of concentration inequalities; see Chapter 14 of Bühlmann

and Van De Geer (2011) for a review of many useful inequalities.

The covariance matrix and inverse covariance (precision) matrix play

a fundamental role in characterizing the second-order properties of high-

dimensional data. Denote the covariance matrix and precision matrix by

Σx = E[(xi − µ)(xi − µ)>] and Ωx = Σ−1x , respectively. It is well known

that the sample covariance matrix

Σ̂x =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)> (1.1)
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is not a consistent estimator of Σx, and that we cannot use its inverse to

estimate the precision matrix Ωx, owing to its singularity when p > n. The-

ories related to estimating covariance matrices and their inverses for high-

dimensional i.i.d. data have developed significantly. For example, various

regularization methods have been investigated for estimating Σx, starting

from the sample covariance matrix Σ̂x. Such methods include thresholding

(Bickel and Levina (2008b), El Karoui (2008)) and its variants (Rothman

et al. (2009), Cai and Liu (2011)), banding (Bickel and Levina (2008a)),

and tapering (Cai and Zhou (2012)), among others. In additions many

alternatives to regularized estimates have been considered; see Cai et al.

(2016) for a review.

Most theoretical investigations assume that x1, . . . ,xn are i.i.d. Gaus-

sian or subGaussian random vectors, which is quite restrictive. On the one

hand, the assumption of independence may not be valid for temporally ob-

served data in many fields, including finance, signal processing, neuroimag-

ing, meteorology, and seismology. As a result, regularized estimations were

later generalized to include high-dimensional time series; see Chen et al.

(2013), McMurry and Politis (2015) and Basu and Michailidis (2015), a-

mong many others. On the other hand, high-dimensional time series data

are often drawn from non-subGaussian or even heavy-tailed distributions.

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0185



Robust Estimation for High Dimensional Time Series

For example, being able to estimate the covariance and precision matrices

for high-dimensional time series drawn from non-subGaussian distribution-

s is becoming a crucial problem in fields such as portfolio allocation (Kim

et al. (2012)), risk management(Koopman and Lucas (2008)), and brain net-

work (Friston (2011)) and geophysical dynamic studies (Kondrashov et al.

(2005)). Here, Chen et al. (2013) attempt to do so by quantifying the con-

vergence rates of covariance and precision matrix estimators, and Zhang

and Wu (2017) provide Gaussian approximations for the sample mean vec-

tor and sample covariance matrix. Both assume the underlying process has

finite qth moments, for some q > 4, and allow the dimension p to increase

polynomially with the sample size n as a natural requirement of consistency.

If the process is not Gaussian, Huber (1964) remarked that “the sample

mean then may have a catastrophically bad performance...” Motivated by

Huber (1964) and Huber (1973), Huber’s estimator of the mean µj, for

1 ≤ j ≤ p, based on the observations xi = (xi1, . . . ,xip)
>, for 1 ≤ i ≤ n, is

defined as the solution to the equation

n∑
i=1

ϕκ(xij − θ) = 0, (1.2)

where ϕκ(x) = (x ∧ κ) ∨ (−κ) is the Huber function with the robustifica-

tion parameter κ > 0. The properties of Huber estimators with a fixed

robustification parameter have been well studied in regression settings; see,
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for example, Huber (1973), Catoni (2012), and Fan et al. (2017), among

others. Robust estimation has also been applied to matrices such as the

covariance matrix for the i.i.d. case. Here, notable works include those of

Catoni (2016), Minsker (2016), Fan et al. (2017), and Avella-Medina et al.

(2018).

There is limited research on the theoretical properties of robust estima-

tors for high-dimensional time series with finite qth moments. To the best

of our knowledge, whether the moment order q ≤ 4 and the dimension p can

be ultrahigh with log p = o(nc) for some c > 0 remains an open problem.

In this study, we solve this problem by establishing the consistency and

deriving the convergence rates for Huber estimators of the mean vector, co-

variance matrix, and precision matrix for a large class of time series, taking

into account the following: (i) the complex dynamics of the data-generating

system; (ii) temporal dependence; (iii) high-dimensional data; and (iv) mild

moment conditions. The latter are new features that are quite distinct from

those of classical problems. We consider p-dimensional stationary processes

of the form

xi = (xi1, . . . ,xip)
> = h(εi, εi−1, . . .), (1.3)

where εi, for i ∈ Z, are i.i.d. random elements, and h = (h1, . . . , hp)
> is an

Rp-valued measurable function, such that xi is well defined. In the univari-
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ate case, where p = 1, the framework defined in (1.3) provides a natural

paradigm for both linear and nonlinear time series models, and represents

a large class of stationary processes that appear frequently in practice; see

Wiener (1958), Rosenblatt (1971), Priestley (1988), Tong (1990), and Wu

(2005), among many others. By allowing the data-generating function to be

Rp-valued, where p may diverge to infinity, we can extend many existing low

dimensional stationary processes to their high-dimensional counterparts in

a natural way; see Chen et al. (2013), Wu and Wu (2016), and Zhang and

Wu (2017)) for examples.

Analyzing such data presents a great challenge and requires new statis-

tical methods and tools. In Section 2, we establish a sharp Bernstein-type

inequality under dependence, which is the main tool used to obtain the per-

formance bounds of Huber estimators. We expect that our inequality to be

useful in other high-dimensional inference problems that involve dependent

data. In Section 3, we consider a Huber estimation for means with (1+ε)th

(0 < ε ≤ 1) moments. A phase transition can be observed for Huber esti-

mators that admits nearly subGaussian concentration around the unknown

mean for ε = 1, and a slower convergence rate if 0 < ε < 1. In Section 4, we

consider a Huber-type estimator for a covariance matrix, and establish the

convergence rates under an element-wise maximum norm. As a significant
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improvement, log p = o(n/(log n)2) can be allowed for consistency under

very mild moment conditions on the underlying process. In contrast, pre-

vious results allowed p to increase only polynomially with n under finite

polynomial moments; see, for example, Bickel and Levina (2008a), Cai and

Liu (2011), and Chen et al. (2013). Using the Huber-type covariance ma-

trix estimator as a pilot estimator, we investigate regularized estimators of

the covariance and precision matrix, and verify the nice performance of the

spectral norm convergence. In Section 5, we conduct a simulation study to

assess the empirical performance of the Huber mean estimators. All proofs

are relegated to the online Supplementary Material.

We now introduce some notation. For a random variable X and q ≥ 1,

we define ‖X‖q = (E|X|q)1/q. For a vector v = (v1, . . . , vp)
> ∈ Rp, we define

|v|∞ = maxj |vj| and |v|1 =
∑p

j=1 |vj|. For a matrix A = (aij)
p
i,j=1 ∈ Rp×p,

define the matrix `1-norm ‖A‖`1 = max1≤j≤p
∑p

i=1 |aij|, element-wise `∞-

norm |A|∞ = maxi,j |aij|, element-wise `1-norm |A|1 =
∑p

i,j=1 |aij|, and

spectral norm ρ(A) =
√
λmax(A>A), where λmax denotes the largest eigen-

value. Write the p × p identity matrix as Ip. We use C,C ′, · · · to denote

positive constants, with values that may differ between contexts.
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2. Bernstein-type Inequality under Dependence

The well-known Bernstein inequality (Bernstein (1946)) provides an expo-

nential concentration result for sums of uniformly bounded independent

random variables. Let X1, . . . , Xn be independent random variables, such

that EXi = 0, σ2
i = Var(Xi) < ∞, and |Xi| ≤ M , for all i. Denote

Sn =
∑n

i=1Xi. Then, for any x > 0, we have

P(Sn ≥ x) ≤ exp

{
− x2

2
∑n

i=1 σ
2
i + 2Mx/3

}
. (2.4)

It is well known that the Bernstein-type inequality also holds if, rather than

being uniformly bounded, Xi has finite exponential moments. Inequality

(2.4) suggests two types of bounds for the tail probability: a subGaussian-

type tail exp{−x2/(C
∑n

i=1 σ
2
i )}, in terms of the variance of Sn; and a

sub-exponential-type tail exp{−x/(CMx)}, involving the uniform bound

M .

Establishing exponential-type tail probability inequalities for dependent

sequences is a challenging problem. Here, relevant works include, for ex-

ample, exponential-type inequalities derived for sums of Markov chains by

Douc et al. (2008) (Theorem 10) under some drift condition, and by Adam-

czak (2008) (Theorem 6) under the minorization condition. Merlevède et al.

(2009, 2011) derived Bernstein-type bounds for sums of strong mixing pro-
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cesses. In this section, we consider stationary processes of the form given

in (1.3) when p = 1, which we abbreviate as

Xi = h(εi, εi−1, . . .), (2.5)

where h is a real-valued function. To establish a concentration inequality, we

need to introduce appropriate dependence measures. Following Wu (2005),

we adopt the following framework of functional dependence measures: If

‖Xi‖q <∞, for some q ≥ 1, define the dependence measure at lag i ≥ 0 as

δi,q = ‖Xi −Xi,{0}‖q = ‖h(εi, εi−1, . . .)− h(εi, . . . , ε1, ε
′
0, ε−1, . . .)‖q, (2.6)

where ε′i is an i.i.d. copy of εi. By convention, δi,q = 0 for all i < 0. The

dependence measure δi,q quantifies the qth moment of the difference between

the original process Xi and the decoupled process Xi,{0}, with ε0 replaced by

ε′0, and other innovations kept the same. Thus, it measures the effect of ε0

on the process Xi, which can be interpreted as a possibly nonlinear impulse

response function. Assume that there exists some constant ρ ∈ (0, 1), such

that

‖X·‖q := sup
m≥0

ρ−m
∞∑
i=m

δi,q <∞. (2.7)

Here, ‖X·‖q is called the qth dependence-adjusted moment (DAM) of the

process, and the property in (2.7) is called a geometric moment contraction

(GMC(q)). Note that in the special case of independent sequences, ‖X·‖q
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is equivalent to the qth moment ‖Xi‖q. In this sense, we can interpret the

DAM as the moment accounting for dependence.

Theorem 2.1 below provides a Bernstein-type inequality for the process

in (2.5), assuming boundedness and a finite second DAM. The exponential

inequality (2.9) is characterized by the DAM ‖X·‖2, uniform bound M , and

dependence parameter ρ, which determines the values of the constants C1

and C2 in the inequality.

Theorem 2.1. Let (Xi) be the process in (2.5), and let Sn =
∑n

i=1Xi.

Assume EXi = 0, |Xi| ≤ M for all i, and ‖X·‖2 < ∞ for some ρ ∈ (0, 1).

In addition, assume n ≥ 4 ∨ (log(ρ−1)/2). For any t > 0, such that t <

(C2M)−1(log n)−2, we have

logE exp(tSn) ≤ C1t
2(n‖X·‖22 +M2)

1− C2tM(log n)2
, (2.8)

which further implies the Bernstein-type inequality: for x > 0,

P(Sn ≥ x) ≤ exp
{
− x2

4C1(n‖X·‖22 +M2) + 2C2M(log n)2x

}
, (2.9)

where C1 = 2 max{(e4 − 5)/4, [ρ(1− ρ) log(ρ−1)]−1} · (8 ∨ log(ρ−1))2, C2 =

max{(c log 2)−1, [1∨(log(ρ−1)/8)]} with c = [log(ρ−1)/8]∧
√

(log 2) log(ρ−1)/4.

Remark 1 (Sharpness of Theorem 2.1). If ‖X·‖2 = O(1), compared with

the classical Bernstein inequality (2.4) for independent processes, our result
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(2.9) is not far off with an additional (log n)2 order in the sub-exponential-

type tail. Theorem 6 in Adamczak (2008) provides a slightly sharper in-

equality involving only an additional log n order:

P(Sn ≥ x) ≤ C exp
{
− 1

C
min

( x2
nν2

,
x

log n

)}
,

where Sn =
∑n

i=1Xi, Xi =
∑n

i=1 f(Yi), (Yi) is a Markov chain satis-

fying some minorization condition, f is a bounded function, and ν2 =

limn→∞Var(Sn/
√
n). Our result is as sharp as that established in The-

orem 2 of Merlevède et al. (2009), up to a multiplicative constant in the

exponential function:

P(Sn ≥ x) ≤ exp
{
− Cx2

nν2 +M2 +M(log n)2x

}
, (2.10)

where (Xi) is a strong mixing process with mean zero, bounded by M .

Conveniently, our framework provides a neat closed form of the upper

bound of the long-run variance ν2 in terms of the DAM. Define the pro-

jection operator Pj· = E(·|εj, εj−1, . . .) − E(·|εj−1, εj−2, . . .). Then, we can

write Xi =
∑∞

h=0Pi−hXi. By the orthogonality of Pj, triangle inequality,

and Hölder inequality, we have

|Cov(X0, Xk)| =
∣∣∣ ∞∑
h=0

E[(P−hX0)(P−hXk)]
∣∣∣ ≤ ∞∑

h=0

∣∣∣E[(P−hX0)(P−hXk)]
∣∣∣

≤
∞∑
h=0

‖P−hX0‖2‖P−hXk‖2 ≤
∞∑
h=0

δh,2δh+k,2,
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where the final step follows from ‖PjXi‖2 ≤ δi−j,2, given Jensen’s inequality.

Hence, it follows that

ν2 =
∞∑

k=−∞

|Cov(X0, Xk)| ≤ 2
∞∑
k=0

∞∑
h=0

δh,2δh+k,2 ≤ 2‖X·‖22. (2.11)

A few comments on the conditions of Theorem 2.1 are in order. First,

we require the GMC condition in (2.7) to depict the dependence. This is

an easily verified condition, satisfied by many linear and nonlinear time

series models; see Wu (2005) and Shao and Wu (2007) for examples. As

noted in Section 5 of the latter paper, the contraction conditions widely

used to check the stationarity of Markov chains (Elton (1990), Diaconis

and Freedman (1999), Jarner and Tweedie (2001), Wu and Shao (2004))

typically imply a GMC, under some mild assumptions. In contrast, the

mixing conditions for probabilistic dependence measures are, in general, not

easy to verify, because the calculation involves taking the supremum over

two sigma algebras. This creates overwhelming difficulties if the process is

high dimensional. In addition, many well-known processes are not strong

mixing. For example, Andrews (1984) showed that a simple autoregressive

process with innovations as i.i.d. Bernoulli shifts is not strong mixing. In

view of these features, we employ the GMC rather than the mixing condition

as an underlying assumption for the dependent process.

In the framework of functional dependence measures, a commonly used
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condition, weaker than the GMC, assumes polynomially decaying depen-

dence measures; that is

∞∑
i=m

δi,q = O(m−α) for some α > 1 and q ≥ 1.

This was adopted in Chen et al. (2013), Wu and Wu (2016), and Zhang

and Wu (2017), among others. However, we can show that an exponential-

type probability inequality does not, in general, hold with polynomially

decaying dependence measures, even if the process is uniformly bounded.

For example, consider the moving average process ei =
∑∞

j=0 ajεi−j, where

aj = O(j−α), j ≥ 1, for some α > 1, and εi are i.i.d. symmetric, with tail

probability

P(εi ≥ x) = x−q(log x)−2, for x ≥ x0, q > 2. (2.12)

Let Xi(t) = 1{ei ≤ t} and Sn(t) =
∑n

i=1Xi(t). From Theorem 14 in Chen

and Wu (2018), we have the following precise order for the tail probability:

for
√
n log n ≤ x ≤ n/ log n,

P(Sn(t) ≥ x) =
C(1 + o(1))n

xqα(log x)2
, (2.13)

where C is a constant that depends on t, q, and α. Compared with the

exponential bound in (2.9), the algebraic decay in (2.13) is much larger.
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3. Robust Estimation of Mean Vectors

Starting from this section, we consider high-dimensional stationary process

xi ∈ Rp, generated from (1.3). For high-dimensional time series, it is chal-

lenging to depict the dependence structure, because both the temporal and

the cross-sectional dependence need be considered. A main advantage of

the representation in (1.3) is that it lets us define physically meaningful

and easily workable dependent measures, even for high-dimensional cases.

Similarly, as in (2.6), we define the functional dependence measure for each

component process (x·j), for 1 ≤ j ≤ p, as follows: If ‖xij‖q <∞, for some

q ≥ 1, define

δi,q,j = ‖xij − xij,{0}‖q = ‖hj(εi, εi−1, . . .)− hj(εi, . . . , ε1, ε′0, ε−1, . . .)‖q,

which measures the temporal dependence at lag i. Because each component

xij is dependent on the p-variate vectors xi−1,xi−2, . . ., δi,q,j incorporates

the cross-sectional dependence as well.

Assume that the GMC is satisfied for each component process. For

each j, there exists a constant ρj ∈ (0, 1), such that

‖x·j‖q := sup
m≥0

ρ−mj

∞∑
i=m

δi,q,j <∞. (3.14)

To account for high dimensionality, let

‖x·‖q := max
1≤j≤p

‖x·j‖q
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be the uniform DAM, which may increase with p. Let ρ := max1≤j≤p ρj be

the uniform dependence parameter. In the following example, we bound

the dependence measure and the unform DAM of a high-dimensional time

series. This is a key step in applying our theorems.

Example 3.1 (High-dimensional Linear Models). Let εij, for i, j ∈ Z, be

i.i.d. random variables with mean zero and ‖εij‖q < ∞ for some q ≥ 2.

Write εi = (εi1, . . . , εip)
>, and define the p-dimensional linear process

xi =
∞∑
k=0

Akεi−k, (3.15)

whereAk, for k ∈ N, are p×p real coefficient matrices, such that
∑∞

k=0 tr(AkA
>
k ) <

∞. Then, by Kolmogorov’s three-series theorem, the process in (3.15) is

well defined. Denote the kth row of Aj by Aj(k, ·). By Rosenthal’s inequal-

ity (Rosenthal (1970)), we have

δi,q,j = ‖Ai(j, ·)ε0‖q ≤ (q − 1)1/2|Ai(j, ·)|2‖ε00‖q.

If there exist ρj ∈ (0, 1) and Kp > 0, which may depend on p, such that

|Ai(j, ·)|2 ≤ Kpρ
i
j, for all i ≥ 0 and 1 ≤ j ≤ p, with ρ = max1≤j≤p ρj, we

then have

‖x·‖q = max
1≤j≤p

sup
m≥0

ρ−mj

∞∑
i=m

δi,q,j ≤
Kp(q − 1)1/2‖ε00‖q

1− ρ
. (3.16)
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Before proceeding, we state the main assumptions required in studying

the properties of the Huber mean estimator µ̂H = (µ̂H1 , . . . , µ̂
H
p )>, where µ̂Hj

is the solution to the equation (1.2) with robustification parameter κ > 0.

Assumption 3.1. Assume n ≥ 4 ∨ (log(ρ−1)/2) and p ≥ 3.

Assumption 3.2.

(a) Assume σ2 := max1≤j≤p
√

Var(xij) < ∞ and ‖x·‖2 < ∞, for some

ρ ∈ (0, 1) .

(b) Assume σ1+ε = max1≤j≤p(E|xij−µj|1+ε)1/(1+ε) <∞, for some ε ∈ (0, 1),

‖x∗·j‖1+ε := sup
m≥0

ρ−m
∞∑
i=m

δ
(1+ε)/2
i,1+ε,j <∞,

for some ρ ∈ (0, 1). Denote ‖x∗· ‖1+ε = max1≤j≤p ‖x∗·j‖1+ε.

Assumption 3.1 is a very mild condition on the sample size n and the

dimension p, which is noninformative and used purely for technical reasons.

Assumption 3.2 imposes moment and dependence conditions on the under-

lying process. Theorem 3.1 is established under Assumption 3.2 (a), with

a finite variance and a second DAM for each component process. Theorem

3.2 adheres to Assumption 3.2 (b), relaxing the order to just (1 + ε), for

some 0 < ε < 1.

In the rest of the paper, let C1 and C2 be the constants as in Theorem

2.1. Define C1 = 4
√√

C1 + C2, C2 =
√
C1, and C3 = C1/2 +

√
C1 + C2.
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Theorem 3.1. Let Assumptions 3.1 and 3.2 (a) be satisfied. Let µ̂Hj be the

Huber estimator of µj = Exij, with the robustification parameter

κ =
8σ∗

C1
·
√

n

(log n)2 log(1/x)
, (3.17)

for σ∗ ≥ σ2, where 0 < x ≤ 1/e satisfies

C1 log(1/x)[C1(log n)2 + C2(log n)‖x·‖2/σ2] ≤ 4n. (3.18)

Then, for 1 ≤ j ≤ p, we have

P

(
|µ̂Hj − µj| ≥

(C1σ∗ log n+ C2‖x·‖2)
√

log(1/x)√
n

)
≤ 2e−1/4x. (3.19)

In particular, letting x = p−τ−1, for some τ > 0, if (3.18) is satisfied,

P

(
|µ̂H − µ|∞ ≥

√
τ + 1(C1σ∗ log n+ C2‖x·‖2)

√
log p

n

)
≤ 2e−1/4p−τ .

(3.20)

Remark 2. Theorem 3.1 indicates that the Huber estimator admits a near-

ly subGaussian deviation bound with second moments. In particular, by

(3.19), the constructed robust mean estimator µ̂Hj deviates from the true

mean µj logarithmically in 1/x. However, we cannot expect such behavior

by the sample mean under the same moment condition, even for the spe-

cial case of i.i.d. random variables. In particular, consider i.i.d. symmetric

random variables xij, with the same tail probability as in (2.12). Then, we
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have µj = 0, for all j. Let Φ(·) be the cdf of a standard normal distribution.

If we consider the empirical mean µ̂j = n−1
∑n

i=1 xij, by Theorem 1.9 of

Nagaev (1979), for x ≥ n−1/2,

P(µ̂j − µj ≥ x) = (1 + o(1))
(

1− Φ(
√
nx) +

1

nq−1(log nx)2xq

)
,

indicating that it may deviate from the true mean polynomially in 1/x.

Remark 3. When it applies to the high-dimensional case, the result in (3.20)

provides the rate of element-wise maximum norm convergence for the mean

estimator µ̂H . If σ2 and ‖x·‖2 are both of a constant order, it follows that

|µ̂H − µ|∞ = OP(log n
√

log p/n),

under the scaling condition log n
√

log p/n → 0. As a natural requirement

for consistency, log p = o(n/(log n)2) can be allowed for the dimension p.

Theorem 5 in Fan et al. (2017) addresses the i.i.d. case under Assumption

3.2 (a), and shows that |µ̂H − µ|∞ = OP(
√

log p/n). By comparison, there

is an additional multiplicative log n term in the convergence rate for the

dependent case. This term is induced by the additional order (log n)2 in

the Bernstein-type inequality (cf.-Theorem 2.1), the main tool used in the

proof of Theorem 3.1.

Remark 4. Letting x = p−τ−1, condition (3.18) quantifies the relationship

between n and p required in the high-dimensional case. It explicitly includes
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the quantity ‖x·‖2/σ2, the ratio of the uniform second-order DAM to the

largest component-wise standard deviation. This quantity can be used to

depict the strength of dependence, and may diverge as p grows. Note too

that the robustification parameter κ may diverge to infinity by adapting to

the sample size n and the dimension p, which departs from the findings of

Huber (1964) with a fixed parameter.

In the previous discussion, we assume finite second moments: σ2 < ∞

and ‖x·‖2 < ∞. Theorem 3.2 adheres to Assumption 3.2 (b), relaxing the

moment order to 1 + ε, where 0 < ε < 1.

Theorem 3.2. Let Assumptions 3.1 and 3.2 (b) be satisfied. Let µ̂Hj be the

Huber estimator of µj = Exij, with the robustification parameter

κ = Kε

(
n

(τ + 1)C3(log n)2 log p

) 1
1+ε

, (3.21)

where Kε ≥
(
2−ε‖x∗· ‖21+ε + (2 + 2ε/ε)σ1+ε

1+ε

) 1
1+ε , and τ is a positive constant

satisfying (τ + 1)C3n−1(log n)2 log p ≤ 1/4. Then, we have

P

(
|µ̂H − µ|∞ ≥ 2Kε

(
(τ + 1)C3(log n)2 log p

n

) ε
1+ε

)
≤ 2e−1/4p−τ . (3.22)

Theorem 3.2 delivers a slower convergence rate in the regime 0 < ε <

1. A phase transition at ε = 1 is easily observed from Theorem 3.1 and

Theorem 3.2. If σ1+ε and ‖x∗· ‖1+ε are both of a constant order, for 0 < ε ≤ 1,

the phase transition is smooth.
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4. Robust Estimation of Covariance and Precision Matrices

4.1 Huber Estimation of Covariance Matrix and Regularization

Robust estimation is applied to matrices such as the covariance matrix; see,

for example, Catoni (2016), Minsker (2016), Fan et al. (2017), and Avella-

Medina et al. (2018). For Σx = (σx,jk)
p
j,k=1 = E[(xi − µ)(xi − µ)>], the

Huber type estimator is given by

Σ̂H
x = (σ̂Hx,jk)

p
j,k=1 = (µ̂Hjk − µ̂Hj µ̂Hk )pj,k=1, (4.23)

where µ̂Hj and µ̂Hjk are the Huber estimators of µj = Exij and µjk =

E(xijxik), respectively; that is, they are the solution to the equations

n∑
i=1

ϕκ1(xij − θ) = 0 and
n∑
i=1

ϕκ2(xijxik − θ) = 0,

respectively, with robustification parameters κ1, κ2 > 0. The convergence

results under the element-wise maximum norm are established in Corollary

4.1 and Corollary 4.2, which rely on the following additional assumption.

Assumption 4.1.

(a) Assume ω4 := max1≤j≤p ‖xij‖4 <∞ and ‖x·‖4 <∞, for some ρ ∈ (0, 1).

(b) Assume ω2+2ε := max1≤j≤p ‖xij‖2+2ε < ∞, for some ε ∈ (0, 1), and

‖x·‖2+2ε <∞, for some ρ ∈ (0, 1).
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We claim that Assumption 4.1 and Assumption 3.2 correspond to the

same ρ, although they adhere to moments of different orders. This holds

owing to an interesting property of the GMC: If ‖Xi‖q∗ < ∞ for some

q∗ > 0, and GMC(q0) holds for the process (Xi), for some 0 < q0 ≤ q∗ and

ρ ∈ (0, 1), then GMC(q) holds with the same ρ, for all q ∈ (0, q∗]. The

above property of the GMC follows from Lemma 2 in Wu and Min (2005).

Corollary 4.1. Let Assumptions 3.1 and 4.1 (a) be satisfied. Denote µo =

max1≤j≤p |µj|. Let Σ̂H
x = (µ̂Hjk − µ̂Hj µ̂

H
k )pj,k=1, where µ̂Hj and µ̂Hjk are the

Huber estimators of µj and µjk, respectively, with robustification parameters

chosen as

κ1 =
8σ∗

C1
√
τ + 2

·
√

n

(log n)2 log p
, κ2 =

8ω∗

C1
√
τ + 2

·
√

n

(log n)2 log p
,

respectively, for σ∗ ≥ σ2, ω
∗ ≥ ω2

4, and τ a positive constant satisfying

(τ + 2)C1 log p(C1(log n)2 +C2 log nmax{‖x·‖2/σ2, ‖x·‖4/ω4}) ≤ 4n. (4.24)

Then, we have

P(|Σ̂H
x − Σx|∞ ≥ ∆n,p) ≤

8e−1/4

3
p−τ , (4.25)

with

∆n,p =
√
τ + 2

[
C1(2µoσ∗ + ω∗) log n+ C2(2µo‖x·‖2 + ω4‖x·‖4)

]√ log p

n

+(τ + 2)(C1σ∗ log n+ C2‖x·‖2)2 ·
log p

n
.
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Remark 5. From Corollary 4.1, we have

|Σ̂H
x −Σx|∞ = OP

(
(µoσ2+ω

2
4) log n

√
log p/n+(µo‖x·‖2+ω4‖x·‖4)

√
log p/n

)
,

under the scaling condition log n
√

log p/n → 0 and condition (4.24). The

convergence rate is the sum of two terms, where the former incorporates

the moments σ2 and ω4, and the order log n
√

log p/n. Compared with

Proposition 3 of Avella-Medina et al. (2018), which addresses the Huber-

type estimator of Σx for i.i.d. vectors, we include an additional log n factor

when it is generalized to the time series setting. This factor is characterized

by DAMs ‖x·‖2 and ‖x·‖4, which would not arise in the i.i.d. case. Note that

‖x·‖2/σ2 and ‖x·‖4/ω4 may diverge as p grows, especially when the strength

of dependence is strong. Hence, we cannot tell which term dominates in

general without extra information.

Among the extensive literature on covariance matrix estimation in the

high-dimensional case, the sample covariance matrix Σ̂x defined in (1.1)

is widely used as a pilot estimator for Σx. Various regularized (banded,

tapered, thresholded) estimators can then be constructed based on Σ̂x, af-

ter imposing some structural assumptions on the true covariance matrix.

See, for example, Bickel and Levina (2008a,b), El Karoui (2008), Cai et al.

(2010), Cai and Liu (2011), and Cai and Zhou (2012) for independent data,

and Wu and Pourahmadi (2009), McMurry and Politis (2010), and Chen
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et al. (2013) for temporally dependent data. In these theoretical investiga-

tions, either subGaussianity of the data is assumed, or the derived deviation

bound increases with p polynomially.

Our result represents a significant improvement by relaxing the sub-

Gaussian assumption to the existence of fourth moments, while retaining

a nearly subGaussian deviation bound. Regularized estimators based on

Σ̂H can exhibit such nice performance. We illustrate this by discussing the

property of a robust modification of the thresholded estimator

Tu(Σ̂
H
x ) = (σ̂Hx,jk1{σ̂Hx,jk ≥ u})1≤j,k≤p,

where Σ̂H
x is the Huber estimator of the covariance matrix defined in (4.23).

Here, we consider the following uniform class of sparse matrices:

Ur(M1, s0(p)) =

{
Σ = (σjk)

p
j,k=1 : max

j
σjj ≤M1, max

j

p∑
k=1

|σjk|r ≤ s0(p)

}
,

for some 0 ≤ r < 1. The above class, defined in terms of a strong `r-

ball, was also considered by Bickel and Levina (2008a), Rothman et al.

(2009), Cai et al. (2011), Cai and Zhou (2012), and Chen et al. (2013).

Imposing such a structural assumption on the true covariance matrix, we

obtain a convergence result under the spectral norm, in a similar way to

the proof of Theorem 1 in Bickel and Levina (2008a). Assume Σx belongs

to Ur(M1, s0(p)), and that µo, σ2, ω4, ‖x·‖2, and ‖x·‖4 are of a constant
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order. Then, we have that if log n
√

log p/n = o(1),

ρ(Tu(Σ̂
H
x )− Σx) = OP

(
s0(p)

((log n)2 log p

n

)(1−r)/2)
, (4.26)

where u = C log n
√

log p/n and C is a sufficiently large constant. We now

compare our result with those of existing work on thresholded covariance

estimation for the uniform class Ur(M1, s0(p)). First, for vectors x1, . . . ,xn

that are i.i.d. and Gaussian, Bickel and Levina (2008a) derive the following

thresholded estimator, based on the sample covariance matrix:

ρ(Tu(Σ̂x)− Σx) = OP

(
s0(p)

( log p

n

)(1−r)/2)
, (4.27)

for u = C
√

log p/n. The same rate as that of (4.27) is achievable for

some variants; see, for example, Rothman et al. (2009) for generalized

thresholding, and Cai and Liu (2011) for adaptive thresholding. The latter

work shows that the rate is minimax optimal. Our result concerns high-

dimensional time series and relaxes the Gaussian/subGaussian assumption

to the existence of fourth moments, at the cost of a logarithmic factor in

the convergence rate.

We next compare our result with those of works that assume finite

polynomial moments. In Section 2.3 of Bickel and Levina (2008a), when

‖xij‖q is bounded for some q ≥ 4, by taking u = Cp4/qn−1/2, they obtained

ρ(Tu(Σ̂x)− Σx) = OP

(
s0(p)

(p8/q
n

)(1−r)/2)
.
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To ensure consistency, p = o(n8/q) is required. Cai and Liu (2011) assumed

q > 4 + ε, and suggested p ≤ Cnε/4 in Theorem 1 (ii). Chen et al. (2013)

quantified the convergence rate for high-dimensional time series when q > 4.

By Theorem 2.3 and Corollary 2.7 therein, p can still only be allowed to in-

crease polynomially with n. In contrast, we can allow log p = o(n/(log n)2),

and require only q = 4. We can further relax the moment condition by

imposing finite (2 + 2ε)th moments, for some 0 < ε < 1; see Corollary 4.2.

Corollary 4.2. Let Assumptions 3.1, 3.2 (b), and 4.1 (b) be satisfied. De-

note µo = max1≤j≤p |µj|. Let Σ̂H
x = (µ̂Hjk − µ̂Hj µ̂Hk )pj,k=1, where µ̂Hj and µ̂Hjk

are the Huber estimators of µj and µjk, respectively, with robustification

parameters chosen as

κ1 = Kε

(
n

C3(τ + 2)(log n)2 log p

) 1
1+ε

, κ2 = K ′ε

(
n

C3(τ + 2)(log n)2 log p

) 1
1+ε

,

respectively, for Kε ≥
(
2−ε‖x∗· ‖21+ε + (2 + 2ε/ε)σ1+ε

1+ε

) 1
1+ε ,

K ′ε ≥
(
2−εω1+ε

2+2ε‖x∗· ‖21+ε + (2 + 2ε/ε)ω2+2ε
2+2ε

) 1
1+ε , and τ a positive constant sat-

isfying (τ + 2)C3(log n)2 log p ≤ n/4. We then have

P(|Σ̂H
x − Σx|∞ ≥ ∆∗n,p) ≤

8e−1/4

3
p−τ , (4.28)

with

∆∗n,p = (4µoKε + 2K ′ε)

(
(τ + 2)C3(log n)2 log p

n

) ε
1+ε
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+4K2
ε

(
(τ + 2)C3(log n)2 log p

n

) 2ε
1+ε

.

As Corollary 4.2 shows, under a weaker moment condition, the conver-

gence rate is slower, which is in line with the phase transition phenomenon

of Huber mean estimators. With the element-wise maximum norm conver-

gence result, we can establish the rates of convergence under the spectral

norm for various regularized estimators based on Σ̂H
x ; the discussion is thus

omitted here for brevity.

4.2 Robust Estimation of Precision Matrices

A precision matrix is a powerful tool used to encode the relationships be-

tween a large number of random variables in graphical models. For the

nonGaussian case, the matrix is associated with partial correlation graph-

s (e.g., Peng et al. (2009)). The problem of estimating a large precision

matrix and recovering its support has drawn considerable attention in the

i.i.d. case; see Meinshausen and Bühlmann (2006), Rothman et al. (2008),

Lam and Fan (2009), Yuan (2010), Ravikumar et al. (2011), Cai et al.

(2011), Xue and Zou (2012), and Cai et al. (2016), among many others.

We consider a modified procedure of the CLIME (Cai et al. (2011)) to es-

timate Ωx within the framework given in (1.3). Let Σ̂H
x be the Huber-type

estimator of Σx. Our procedure for estimating Ωx consists of two steps.
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Step I: Solve the optimization problem

Ω̃H = arg min |Ω|1 subject to |Σ̂HΩ− Ip|∞ ≤ λn,

where λn > 0 is a tuning parameter.

Step II: Obtain the symmetric estimator

Ω̂H = (ω̂Hjk) where ω̂Hjk = ω̃Hjk1{|ω̃Hjk| ≤ |ω̃Hkj|}+ ω̃Hkj1{|ω̃Hjk| > |ω̃Hkj|}.

It is known that Step I is equivalent to solving the following p-vector mini-

mization problems in parallel:

ω̃Hj = arg min |w|1 subject to |Σ̂Hω − uj|∞ ≤ λn, for 1 ≤ j ≤ p,

where uj is the unit vector in Rp, with one in the jth coordinate, and zero

otherwise. Then, we construct our estimator as Ω̃H = (ω̃H1 , . . . , ω̃
H
p ). We

consider the uniform class of matrices

Vr(M2, s0(p)) =

{
Ω = (ωjk)

p
j,k=1 : ‖Ω‖`1 ≤M2, max

j

p∑
k=1

|σjk|r ≤ s0(p)

}
,

for some 0 ≤ r < 1. The following theorem gives the rates of convergence

for the modified CLIME estimator Ω̂H under the element-wise maximum

norm and the spectral norm.

Theorem 4.3. Suppose Ωx ∈ Vr(M2, s0(p)). (i) Let the assumptions of

Corollary 4.1 be satisfied, and let Σ̂H
x be the Huber-type estimator therein.
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Let Ω̂H
x be obtained as

λn = L1M2

√
log p

n
+ L2M2

log p

n
,

for L1 ≥
√
τ + 2

[
C1(2µoσ∗ + ω∗) log n+ C2(2µo‖x·‖2 + ω4‖x·‖4)

]
, and L2 ≥

(τ + 2)(C1σ∗ log n+ C2‖x·‖2)2. Then, we have,

P
(
|Ω̂H

x − Ωx|∞ ≥ 4‖Ω‖`1λn
)
≤ 8e−1/4

3
p−τ , (4.29)

P
(
ρ(Ω̂H

x − Ωx) ≥ C4s0(p)(‖Ω‖`1λn)1−r
)
≤ 8e−1/4

3
p−τ , (4.30)

where C4 = 2(1+21−q +31−q)41−q. (ii) Let the assumptions of Corollary 4.2

be satisfied, and let Σ̂H
x be the Huber-type estimator therein. Then, (4.29)

and (4.30) hold for

λn = L3M2

(
(τ + 2)C3(log n)2 log p

n

) ε
1+ε

+L4M2

(
(τ + 2)C3(log n)2 log p

n

) 2ε
1+ε

,

where L3 ≥ 4µoKε + 2K ′ε and L4 ≥ 4K2
ε .

If M2 = O(1) and log n
√

log p/n = o(1), and if µo, σ2, ω4, ‖x·‖2, and

‖x·‖4 are of a constant order, we have

|Ω̂H − Ωx|∞ = O(log n
√

log p/n), (4.31)

with probability greater than 1−O(p−τ ), for some τ > 0.

We now compare our result with earlier results under the assumption

of finite qth moments. For convenience of notation, we denote all other
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estimators by Ω̂x. For i.i.d. p-variate vectors, Ravikumar et al. (2011) s-

tudied the graphical Lasso estimator, with off-diagonal entries penalized

by the `1-norm, and Cai et al. (2011) investigated the CLIME construct-

ed using the sample covariance matrix Σ̂x. Corollary 2 of the former pa-

per showed that for some q ≥ 4 and τ > 2, if p = O([n/s0(p)]
q/(4τ)),

|Ω̂x − Ωx|∞ = O
(
p2τ/q/n1/2

)
with probability greater than 1 − O(p2−τ ).

Furthermore, their Theorem 4 shows that for p = O(nγ) and q = 4+4γ+δ,

where γ > 0 and δ > 0, with probability greater than 1 − O(n−δ + p−τ/2),

|Ω̂x − Ωx|∞ = O(
√

log p/n).

The nice property of our estimator comprises three aspects: (i) We

can relax the moment condition by allowing 2 < q ≤ 4. (ii) A nearly

subGaussian deviation bound is attained. (iii) The dimension p can be

allowed to increase exponentially with n, and the range log p = o(n/(log n)2)

is much wider than when allowing for a polynomial increase only.

5. Numerical Results

5.1 Simulation Study

We conduct a simulation study to compare the empirical peformance of

the Huber mean estimator with that of the sample mean. We consider the

following linear process with fat-tailed errors: let εij, for i, j ∈ Z, be i.i.d.
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random variables distributed as t(d)/
√
d/(d− 2), where t(d) is Student’s

t-distribution with degrees of freedom d = 2.5; let εi = (εi1, . . . , εip)
> and

Xi =
∞∑
k=0

Akεi−k. (5.32)

Here, the coefficient matrix Ak = ρkM , where M = (mij)
p
i,j=1 is a Toeplitz

matrix with mij = ρ|i−j|+1. The parameter ρ ∈ (0, 1) controls the decay rate

of the functional dependence measures for the generated process. We con-

sider the following numerical setups: ρ is set to 0.2, 0.5, 0.8; n = 20, 50, 100;

and p = 50, 100, 200. In each simulation, we truncate the sum in the lin-

ear process in (5.32) to
∑2000

k=0 . For each case, we report the average (as

an entry) and standard deviation (in parentheses) of the uniform deviation

|µ̂H − µ|∞, and of |µ̂− µ|∞ based on 1000 repetitions.

In particular, to obtain the Huber mean estimate µHj for the jth com-

ponent process, 1 ≤ j ≤ p, we solve (1.2) in parallel with the robustification

parameter κj. Motivated by Bickel (1975) and the theoretical suggestion in

(3.17) on the choice of κj, in practice, we take

κj = σ̂j ·
√

n

(log n)2 log p
, (5.33)

where σ̂j = median{|xij −mj|}/Φ−1(3/4) is the symmetrized interquartile

range for the jth component process, for 1 ≤ j ≤ p; mj is the sample

median of x·j, for 1 ≤ i ≤ n; and Φ is the standard normal cdf.
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Table 1 shows that, as expected from our theoretical results, the Hu-

ber mean estimator outperforms the sample mean, with a smaller uniform

deviation and a smaller standard deviation in all cases. Moreover, the uni-

form deviation is larger when the dependence is stronger, the sample size

is smaller, and the dimension is higher, supporting the result in (3.20). A

similar claim can be made in the case of Theorem 3.2; the results are not

reported here.

5.2 Real-Data Analysis

In this section, we compare the aforementioned estimators using a real

data set, taken from the CRSP. The data matrix contains daily returns

of S&P 500 stocks between December 8, 2009, and December 29, 2017.

We chose this period to avoid the effects of the financial crises in 2001

and 2008, which could make the time series of stock returns nonstationary.

Stocks with missing price data are excluded, and prices on weekends are

not observed. In total, there are 2030 time points and 94 stocks in the

data set. We estimate the true means of the daily returns for the 94 stocks

using the empirical means based on the first 2000 time points, denoted by

µ0 ∈ R94. Then, we use the data matrix x ∈ R30×94 of the remaining 30 time

points to compare the Huber mean estimate µ̂H and the sample mean µ̂.
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Table 1: Uniform deviations of Huber mean estimate and sample mean.

ρ = 0.2 ρ = 0.5 ρ = 0.8

(n, p) |µ̂H − µ|∞ |µ̂− µ|∞ |µ̂H − µ|∞ |µ̂− µ|∞ |µ̂H − µ|∞ |µ̂− µ|∞

(20, 50) 0.019 0.035 0.257 0.369 2.362 2.588
(0.004) (0.025) (0.060) (0.234) (0.843) (1.319)

(20, 100) 0.021 0.047 0.293 0.456 2.771 3.015
(0.004) (0.061) (0.059) (0.320) (0.823) (1.504)

(20, 200) 0.023 0.056 0.324 0.574 0.933 3.847
(0.004) (0.057) (0.059) (0.415) (0.933) (1.926)

(50, 50) 0.012 0.022 0.161 0.234 1.477 1.658
(0.002) (0.013) (0.036) (0.140) (0.439) (0.678)

(50, 100) 0.013 0.028 0.183 0.273 1.785 2.147
(0.002) (0.024) (0.034) (0.135) (0.434) (1.294)

(50, 200) 0.014 0.033 0.199 0.358 2.071 2.635
(0.002) (0.024) (0.033) (0.269) (0.468) (1.691)

(100, 50) 0.008 0.015 0.115 0.159 1.084 1.273
(0.001) (0.008) (0.025) (0.071) (0.323) (0.690)

(100, 100) 0.009 0.018 0.127 0.210 1.277 1.500
(0.001) (0.012) (0.022) (0.201) (0.320) (0.833)

(100, 200) 0.010 0.024 0.140 0.235 1.483 1.846
(0.001) (0.035) (0.022) (0.140) (0.310) (0.908)

In computing each µ̂Hj by solving (1.2), the robustification parameter κj is

chosen as in (5.33). Figure 1 presents the normal qqplots of the daily stock

returns for six firms selected from x, all indicating heavier tails than that of
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5. NUMERICAL RESULTS

the normal distribution. We have the following output: |µ̂H−µ0|∞ = 0.0098

and |µ̂−µ0|∞ = 0.0141. If we apply the Huber mean estimate µH0 on the first

2000 time points in place of µ0, we have similar results: |µ̂H−µH0 |∞ = 0.0106

and |µ̂− µH0 |∞ = 0.0143. In both comparisons, the Huber mean estimator

shows better performance in terms of accuracy than that of the sample

mean for heavy-tailed data.

Figure 1: Normal QQplots of daily stock returns for six firms.

We further estimate the covariance matrix for the daily returns of the 94

stocks. Similarly, we estimate the true covariance matrix using the sample
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covariance matrix based on the first 2000 time points, which we denote by

Σ0 ∈ R94×94. We then work on the data matrix x ∈ R30×94 of the final 30

time points to obtain the sample covariance matrix Σ̂x given in (1.1) and the

Huber type estimator Σ̂H
x given in (4.23). The output |Σ̂H

x −Σ0|∞ = 0.0016

and |Σ̂x − Σ0|∞ = 0.0027 shows that the Huber estimator also performs

better in terms of covariance matrix estimation. Comparisons of various

regularized estimators starting from the two pilot estimators Σ̂x, Σ̂
H
x can be

further conducted, and are not discussed here.

Supplementary Material

The online Supplementary Material provides all technical proofs.
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