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Abstract: Researchers often need to infer how the conditional mean of a response

varies with the predictors. Sufficient dimension-reduction techniques reduce the

dimension by identifying a minimal set of linear combinations of the original

predictors, without loss of information. This study tests whether a given small

number of linear combinations of the original ultrahigh-dimensional covariates is

sufficient to characterize the conditional mean of the response. We first introduce

a novel consistent lack-of-fit test statistic for the case when the dimensionality of

the covariates is moderate. The proposed test is shown to be n-consistent under

the null hypothesis, and root-n-consistent under the alternative hypothesis. A

bootstrap procedure is developed to approximate the p-values, and the consis-

tency of the test is studied theoretically. To deal with the ultrahigh dimensional-

ity, we introduce a two-stage lack-of-fit test with screening (LOFTS) procedure,

based on a data-splitting strategy. The data are randomly partitioned into two

equal halves. In the first stage, we apply the martingale difference correlation-

based screening to one half of the data, and select a moderate set of covariates.
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In the second stage, we perform the proposed test, based on the selected covari-

ates, using the second half of the data. The data-splitting strategy is crucial to

eliminate the effect of spurious correlations and to prevent an increase in the

type-I error rates. We also demonstrate the effectiveness of our two-stage test

procedure by means of comprehensive simulations and a real-data application.

Key words and phrases: Bootstrap; Central mean subspace, Data splitting, Lack-

of-fit test, Sufficient dimension reduction, Variable Selection.

1. Introduction

Let x = (X1, . . . , Xp)
T ∈ Rp be a covariate vector, and y = (Y1, . . . , Yq)

T ∈

Rq be a response vector. Researchers often need to infer how the conditional

mean of y varies with the predictors. Sufficient dimension-reduction tech-

niques have become important and useful in high-dimensional data analyses.

Such techniques aim to identify a few linear combinations of the original

high-dimensional covariates, while retaining all information about E(y | x).

Cook and Li (2002) assumed there exists a p× d0 matrix β, such that

E(y | x) = E(y | βTx), (1.1)

which implies that the conditional mean function E(y | x) depends on x

through only d0 linear combinations βTx. This model not only retains the

flexibility of nonparametric modeling, but also enjoys the interpretability
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of parametric modeling. Because β is not identifiable, Cook and Li (2002)

defined the central mean subspace (CMS), denoted by SE(y|x), as the small-

est column space of β. Here, the corresponding smallest column numbers,

denoted by d0, form the structural dimension. To recover SE(y|x), Li and

Duan (1989) suggested using an ordinary least squares estimator when

x follows an elliptical distribution, particularly when d0 = 1. Cook and

Li (2002) proved that the column space of {var(x)}−1cov(x,y) belongs

to the CMS SE(y|x) when x satisfies the linearity condition. Xia et al.

(2002) proposed a minimum average variance estimation (MAVE) that can

be applied when the covariates are continuous. Ma and Zhu (2012) de-

veloped a semiparametric approach to dimension reduction. Ma and Zhu

(2014) further investigated the inference and estimation efficiency of the

CMS for sufficient dimension reduction. Zhu and Zhong (2015) estimated

the CMS for multivariate response data. Refer to Ma and Zhu (2013a) for

a comprehensive review of dimension reduction.

Most works in the dimension-reduction literature have focused on es-

timating the CMS. However, model diagnostic studies have not received

much attention within the context of dimension reduction. Thus, it is fun-

damental to study whether a given small number of linear combinations

of the original high-dimensional covariates is sufficient to characterize the
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conditional mean of y. That is, we test the following null hypothesis, for a

given d0 ≥ 1:

H0 : E(y | x) = E(y | βTx), for some p× d0 matrix β. (1.2)

Some efforts have been devoted to model checking. For example, Stute

and Zhu (1998) studied nonparametric tests for the validity of general-

ized linear models with a given parametric link structure, based on certain

empirical processes marked by the residuals. Xia et al. (2004) consid-

ered model checking for single-index models. Verzelen and Villers (2010)

proposed a new goodness-of-fit test for high-dimensional Gaussian linear

models based on the Fisher statistic. Guo, Wang, and Zhu (2016) intro-

duced a model-adaptation concept in lack-of-fit testing, and proposed a

dimension-reduction model-adaptive (DRMA) test for checking parametric

single-index models. Shah and Buhlmann (2018) developed residual pre-

diction goodness-of-fit tests to assess the validity of high-dimensional linear

models. For the choice of the structural dimension d0, Cook and Li (2004)

provided a sequential test procedure. Zhu, Yu, and Zhu (2010) proposed a

sparse eigendecomposition strategy by introducing an ℓ1 penalty to shrink

small-sample eigenvalues to zero. Ma and Zhang (2015) considered an

information criterion-based method to determine the structural dimension

of the reduction model. However, the challenges associated with designing
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a general test for (1.2), especially for ultrahigh-dimensional covariates, are

not addressed.

For ultrahigh-dimensional data in which the number of covariates is

much higher than the sample size, the aforementioned dimension-reduction

methods do not work. This is because their asymptotic normality results

may require that the dimensionality divergence rate satisfy p = o(n1/3)

(Zhu, Zhu, and Feng , 2010). In addition, as pointed by Zhang, Yao, and

Shao (2018), testing H0 : E(ε | x) = 0 almost surely, without assuming a

parametric model, is very challenging, because we are targeting a general

class of alternatives. In addition, the power may decrease quickly owing to

the growing dimension and nonlinear dependence. It is natural and crucial

to assume the sparsity principle, which states that only a small set of covari-

ates, denoted by A, truly contribute to the response. Let xA = {Xk, k ∈ A}

denote the covariates indexed by A. Under the sparsity assumption, the

null hypothesis (1.2) can be written as

H0 : E(y | x) = E(y | βT
AxA), for some |A| × d0 matrix βA, (1.3)

where |A| represents the cardinality of A. Without loss of generality, we

assume β = (βT
A,0d0×(p−|A|))

T, where 0d0×(p−|A|) denotes a d0 × (p − |A|)

matrix of zeros. However, in general, A is unknown. Sure-independence

screening approaches (Fan and Lv , 2008; Zhu et al. , 2011; Li, Zhong, and
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Zhu , 2012) have been developed to screen out irrelevant covariates and

estimate A for ultrahigh-dimensional data. Refer to Liu, Zhong, and Li

(2015) for a review of variable screening. In particular, Shao and Zhang

(2014) proposed a martingale difference correlation (MDC) that imposes

few parametric assumptions on the mean regression form E(y | x), but

retains the model-free flavor of sufficient dimension reduction.

We first assume that there exists a surrogate index set S with a mod-

erate size such that A ⊆ S. Then, we develop a novel consistent lack-of-fit

test statistic for (1.3), based on the moderate covariate set S. We demon-

strate that the hypothesis based on S is equivalent to (1.3), as long as

A ⊆ S in Theorem 1. The proposed test is shown to be n-consistent under

the null hypothesis, and root-n-consistent under the alternative hypothe-

sis. We suggest a bootstrap procedure to approximate the p-values, and

show theoretically that this procedure is consistent. Our second goal is

to introduce a new two-stage approach, based on a random data-splitting

strategy, for testing (1.2) when the dimensionality of the covariates is ul-

trahigh. Specifically, we first partition the data randomly into two equal

halves. In the first stage, we apply MDC screening to one half of the data,

and select a moderate set of covariates to estimate the index set S. In the

second stage, we perform the proposed test for (1.2), based on the selected
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set, using the second half of the data. Note that the data-splitting strat-

egy is crucial to eliminate the effect of spurious correlations and to prevent

the Type-I error rate of the test from increasing. Furthermore, to avoid a

potential increase in the type-I error rate when some important covariates

are missed with a non-ignorable probability, we provide a multi-splitting

strategy as an extension to the proposed procedure.

The rest of this paper is organized as follows. Section 2 introduces

the two-stage test procedure. In Section 3, we study the theoretical jus-

tification for the test procedure. Section 4 demonstrates the finite-sample

performance of the test using comprehensive simulations and a real-data

application. We discuss the aforementioned multi-splitting strategy in Sec-

tion 5. All technical proofs are relegated to the Supplemental Material.

A word on notation. Let xS be the covariate vector indexed by S,

and let |c| be the absolute value of a generic constant c. For a complex-

valued function ψ, ∥ψ∥2 = ψTψ and ψ is the conjugate of ψ, and for a

matrix β ∈ Rp×d0 , ∥β∥ = {tr(βTβ)}1/2. In addition, span(β) denotes the

column space of β, SE(y|x) and SE(y|xS) denote the CMS of y, given x, and

the CMS of y, given xS , respectively. The sign D→ denotes convergence in

distribution.
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2. A New Testing Procedure

In this section, we first propose a lack-of-fit test statistic at the population

level, based on a surrogate index set S with a moderate size, such that

A ⊆ S. Then, we estimate the test statistic and develop a two-stage lack-

of-fit test with a screening procedure.

2.1 A Lack-of-Fit Test Statistic

Under the sparsity assumption, this hypothesis can be formulated as in

(1.3), where A represents the index set of covariates that truly contribute to

the response. However, in general, A is unknown, which makes it practically

infeasible to directly propose a test for (1.3). To deal with this issue, we

first suppose that there exists a surrogate index set S, with a moderate size,

that satisfies that A ⊆ S. Then, we consider the following null hypothesis:

H0 : E(y | x) = E(y | βT
SxS), for some |S| × d0 matrix βS . (2.1)

The following natural question then arises: is testing (2.1) equivalent to

testing (1.3)? The following theorem answers this question.

Theorem 1. In addition to the sparsity assumption, we assume that both

SE(y|x) and SE(y|xS) exist and are uniquely defined. Then testing (2.1) is

equivalent to testing (1.3) for an arbitrary index set S, as long as A ⊆ S.
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We emphasize the importance of Theorem 1 because it guarantees that

testing (2.1) is equivalent to testing (1.3) as long as A ⊆ S. This allows

us to use the two-stage procedure that is feasible for ultrahigh-dimensional

testing problems; see the discussion in the next subsection.

Next, we propose a new consistent lack-of-fit test for (2.1) at the popula-

tion level, based on the index set S. In a sufficient dimension-reduction con-

text, and without any further regression model assumptions, we define the

error term ε
def
= y − E(y | βT

SxS). The null hypothesis H0 in (2.1) is equiv-

alent to E(ε | xS) = 0. It is further equivalent to
∥∥∥E{εexp(isTxS)}

∥∥∥2

= 0,

for all s ∈ R|S|×1, using a Fourier transformation, where i stands for an

imaginary unit; that is, i2 = −1. We further note that

∥∥∥E{εexp(isTxS)}
∥∥∥2

= E
[
εT
1ε2exp{isT(x1,S − x2,S)}

]
,

where (x1,S ,y1) and (x2,S ,y2) are two independent copies of (xS ,y). Then,

for an arbitrary weight function ω(s) > 0, testing H0 in (2.1) is equal to

checking whether

E

{∫
R|S|

εT
1ε2exp{isT(x1,S − x2,S)}ω(s)ds

}
= 0, (2.2)

where the expectation E is taken with respect to (x1,S ,y1) and (x2,S ,y2).

Then, the left-hand side of (2.2) can be considered a test statistic. Borrow-

ing from Székely, Rizzo, and Bakirov (2007) and Shao and Zhang (2014),
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we specifically choose ω(s) =
(
c0∥s∥1+|S|)−1, where c0 = π(1+|S|)/2/Γ{(1 +

|S|)/2}. Then, by E(ε1) = E(ε2) = 0 and Lemma 1 of Székely, Rizzo, and

Bakirov (2007), this test statistic has the following closed form:

T
def
= E

[∫
R|S|

(
c0∥s∥1+|S|)−1

εT
1ε2exp{isT(x1,S − x2,S)}ds

]
= E

{∫
R|S|

(
c0∥s∥1+|S|)−1

εT
1ε2ds

}
− E

[∫
R|S|

(
c0∥s∥1+|S|)−1

εT
1ε2 [1− cos{sT(x1,S − x2,S)}] ds

]
= −E (εT

1ε2∥x1,S − x2,S∥) . (2.3)

In general, T ≥ 0. In addition, T = 0 if and only if H0 in (2.1) is true.

This motivates us to use a consistent estimator of T as our test statistic for

(2.1). Here, larger values of T provide stronger evidence against the null

hypothesis (2.1).

2.2 Two-Stage Lack-of-Fit Test with Screening

In order to estimate the test statistic T , we first determine an index set

S that contains the true covariates set A, and estimate the error term

ε = y−E(y | βT
SxS). To this end, we propose a two-stage testing procedure

based on a data-splitting strategy. We partition the random sample D def
=

{(xi,yi), i = 1, . . . , n} randomly into two halves. In the first stage, we

screen out as many irrelevant covariates as possible based on the first half
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of the data, D1
def
= {(xi,yi), i = 1, . . . , n1}. As such, we obtain an index

set S with a moderate size, where n1 is the integer part of n/2. In the

second stage, we develop a novel consistent lack-of-fit test for (1.3) using

the second half of the data, D2
def
= {(xi,yi), i = n1 + 1, . . . , n1 + n2}.

Stage 1: Feature Screening

Feature screening approaches screen out irrelevant covariates and retain

those that are truly relevant in a moderate set for ultrahigh-dimensional

data. In the first stage, we apply the martingale difference correlation

(MDC)-based screening approach proposed by Shao and Zhang (2014) to

the first half of the data. In this way, we select a moderate set of covariates.

The martingale difference divergence (MDD) of y, given each covariate

Xj, is defined by

MDD(y | Xj)
2 =

1

cq

∫
Rq

∥gy,Xj
(s)− E(y)gXj

(s)∥2

∥s∥1+q
ds, (2.4)

where gy,Xj
(s) = E(yeis

TXj), gXj
(s) = E(eis

TXj), cq = π(1+q)/2/Γ(1 + q)/2,

and Γ(·) is the gamma function. Note that MDC(y | Xj) is the normalized

version of MDD(y | Xj). Here, MDC(y | Xj) = 0 if and only if E(y |

Xj) = E(y) almost surely, when E(∥y∥2 + X2
j ) < ∞. That is, when

MDC(y | Xj) = 0, the conditional mean of y, given Xj, is independent

of Xj. Shao and Zhang (2014) proposed using the estimated MDC of the

response, given a covariate, as the marginal utility to rank the importance
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of all covariates. Then, they select a moderate set of covariates from the top

ranks. Refer to Shao and Zhang (2014) for the calculation of the sample

MDC.

As mentioned by Cook and Li (2002), a regression analysis is primar-

ily concerned with making an inference about the conditional mean of a

response, given a set of covariates. This is true of MDC-based screening as

well. Furthermore, this approach inherits the model-free flavor of sufficient

dimension reduction. We apply MDC-based screening to D1, the first half

of the data. Then, we select the set of covariates defined by

S = {j : M̂DC(y | Xj) is among the top s largest of all p sample M̂DC values}.

With a slight abuse of notation, we still use S to represent the set selected by

screening. Under some regularity assumptions, the sure-screening property

holds for MDC-based screening; that is, P (A ⊆ S) → 1 as the sample size

approaches infinity. Then, from Theorem 1 and the sure-screening property,

it follows that testing (2.1) is asymptotically equivalent to testing (1.3).

Stage 2: A Lack-of-Fit Test

Next, we estimate the test statistic T . First, we suggest using the profile

least squares approach to recover SE(y|xS). This amounts to minimizing the
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profile least squares to obtain the following estimator:

β̂S,−d0

def
= argmin

b∈R(|S|−d0)×d0

n∑
i=n1+1

∥yi − m̂(xS,d0,i + bTxS,−d0,i)∥
2 ,

where xS,d0 is a vector of the first d0 elements of xS , and xS,−d0 is a vector of

the remaining elements. Here, we restrict the upper d0×d0 submatrix of βS

to be an identity matrix to ensure that βS itself is identifiable (Ma and Zhu

, 2013b) for a given d0. Then, β̂S,−d0 is a (|S| − d0)× d0 matrix composed

of the lower (|S| − d0) rows of βS . For an arbitrary b ∈ R(|S|−d0)×d0 , we

estimate m(xS,d0,i + bTxS,−d0,i) using the leave-one-out kernel estimator,

defined as

m̂(xS,d0,i+bTxS,−d0,i)
def
=

n∑
j=n1+1,j ̸=i

Kh(xS,d0,j + bTxS,−d0,j − xS,d0,i − bTxS,−d0,i)yj

Kh(xS,d0,j + bTxS,−d0,j − xS,d0,i − bTxS,−d0,i)
,

where Kh(·) = K(·/h)/hd0 , K(·) is the product of d0 univariate kernel

functions, and h is the bandwidth. Then, we estimate T by

Tn2

def
= tr

(
− 1

n2
2

n1+n2∑
i=n1+1

n1+n2∑
j=n1+1

ε̂iε̂
T
j ∥xi,S − xj,S∥

)
, (2.5)

where ε̂ = y − m̂(β̂
T

SxS). In practice, larger values of Tn2 provide stronger

evidence against H0 in (2.1).

Because the null hypothesis (2.1) is concerned with studying whether

a given small number of linear combinations of covariates is sufficient to

characterize the conditional mean of y, the test based on Tn2 is essentially
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a lack-of-fit test. Thus, we name this two-stage test procedure the lack-

of-fit test with screening (LOFTS) procedure, which is summarized in the

following algorithm.

Algorithm 1 The LOFTS Procedure
Step 1. Randomly split the random sample into two even halves, D1

and D2.
Step 2. Apply MDC-based screening to D1 and select the moderate set
S.
Step 3. Test (2.1) based on the test statistic Tn2 using D2. The associ-
ated p-value can be obtained using the bootstrap procedure (Algorithm
2 in Section 3).
Step 4. Reject (2.1) and (1.3) if p-value< α, the significance level.

Remark 1: Note that the data-splitting technique is crucial in the pro-

posed two-stage LOFTS procedure for ultrahigh-dimensional data. If we

do not split the data, a naive two-stage procedure is as follows. In the first

stage, MDC-screening is applied to the full sample. In the second stage, the

proposed test is conducted based on the selected covariates, using the same

data. In theory, this method works well, and is even more efficient if, in

the first stage, S happens to be A exactly. However, this is usually difficult

to achieve in ultrahigh-dimensional problems. Often, inactive covariates,

which may contribute to the response in a finite sample, are selected in the

first screening stage of the naive two-stage procedure. As a result, there is

an increase in the type-I error rate when testing (2.1); see the simulation
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results in Section 4. This is the result of spurious correlations inherent

in ultrahigh-dimension problems (Fan, Guo, and Hao , 2012). The data-

splitting technique can eliminate spurious correlations and further avoid

the size increase. Because the two halves of the data set are independent,

a covariate that has a large spurious sample correlation with the response

over the first half has a small chance of being highly correlated with the

response in the second half. Hence, its influence on the size of the test in

the second stage is negligible.

Remark 2: Feature screening can efficiently reduce the dimensionality

of covariates in the first stage, while retaining the truly important covari-

ates in the asymptotical sense. However, some important covariates may

be missed at the finite-sample level. As such, the choice of the reduced

model size may be crucial for the screening procedure to work. Fan and

Lv (2008) suggested a hard thresholding, where the reduced model size

is proportional to [n/logn]. Wu, Boos, and Stefanski (2007), Zhu et al.

(2011), and Li, Zhong, Li, and Wu (2014) proposed a soft-thresholding

rule by introducing auxiliary variables. To reduce this risk in practice, we

may choose a relatively large set S if we believe that the size of the impor-

tant covariates is relatively large. Alternatively, we can apply the iterative

version of MDC-based screening to avoid missing any important covariates
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3. THEORETICAL PROPERTIES16

that are marginally uncorrelated with the response. Another strategy to

enhance the performance of the data-splitting technique is that of multiple

data splitting; see Section 5.

Remark 3: The number of linear combinations of covariates, d0, in (2.1)

is prespecified before the lack-of-fit test procedure. The null hypothesis H0

(2.1) holds trivially if we specify d0 = |S|, letting βA be an |S|×|S| identity

matrix. We wish to determine the smallest number of linear combinations of

covariates that sufficiently capture the regression information of E(y | xS).

For instance, the optimal value of d0 is one for a general single-index model.

For a given dimension d0, if H0 is rejected at some level of significance, then

we can conclude that βT
SxS is not sufficient to characterize the conditional

mean E(y | xS); thus, additional linear combinations of xS are needed. In

practice, we can perform the two-stage LOFTS procedure sequentially for

d0, from 1 to |S|, until we fail to reject H0. In this way, we can determine

the optimal value of d0.

3. Theoretical Properties

In this section, we study the theoretical properties of the proposed test,

including the asymptotic distribution under the null hypothesis and the

asymptotic distributions under the global and local alternative hypotheses.
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3. THEORETICAL PROPERTIES17

We also propose a bootstrap procedure to calculate the associated p-value.

The regularity conditions are provided in the Appendix.

Theorem 2 states the asymptotic null distribution of the test statistic

under the null hypothesis (2.1).

Theorem 2. Assume Conditions (C1)–(C5) hold. Then, under H0 in (2.1),

n2Tn2

D→ ∥ζ(s)∥2ω
def
=

∫
s∈R|S|

∥ζ(s)∥2(c0∥s∥1+|S|)−1ds, as n2 → ∞,

where ζ(s) denotes a complex-valued Gaussian random process with mean

zero and covariance function cov{ζ(s), ζT(s0)}, defined in (S3.1) in the

Supplementary Material.

However, the asymptotic distribution of Tn2 under H0 is unfortunately

not tractable, because ∥ζ(s)∥2ω hinges upon the unknown joint distribution

of (xS ,y). In practice, we propose the bootstrap procedure in Algorithm 2

to calculate the associated p-value.

Theorem 3 states the consistency of the bootstrap procedure.

Theorem 3. Assume Conditions (C1)–(C5) hold. Then, we have that

n2T̃n2

D→ ∥ζ(s)∥2ω, as n2 → ∞.

Note that although it is not tractable in Theorem 2, it is necessary that

we derive the asymptotic distribution of Tn2 under H0, because Theorem 3
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3. THEORETICAL PROPERTIES18

Algorithm 2 The Bootstrap Procedure
Step 1. Obtain β̂S and m̂(β̂

T

SxS) using the second half D2, and calculate
the residuals ε̂i = yi − m̂(β̂

T

SxS,i), for i = n1 + 1, n1 + 2, . . . , n. Then,
compute the test statistic Tn2 in (2.5).
Step 2. Draw the weights δi independently from {1,−1} at random
with probability 0.5. Let ε̃i = ε̂iδi and generate ỹi = m̂(β̂

T

SxS,i)+ ε̃i, for
i = n1 + 1, n1 + 2, . . . , n.
Step 3. Repeat Step 1 and calculate the test statistic T̃n2 based on (2.5)
using the new bootstrapped data set (xi, ỹi), i = n1 + 1, n1 + 2, . . . , n.
Step 4. Repeat Step 2 and 3 1,000 times to obtain T̃ (1)

n2 , T̃
(2)
n2 , . . . , T̃

(1,000)
n2 .

The associated p-value is obtained by 1000−1
∑1000

b=1 I(T̃
(b)
n2 ≥ Tn2), where

I(·) is an indicator function. Reject H0 if the p-value < α, a given
significance level.

shows that the asymptotic null distribution of the bootstrapped test statis-

tic is the same as that of the original test statistic. This implies that the

bootstrap procedure is able to provide an asymptotically valid inference for

the proposed lack-of-fit test.

Next, we consider two alternative hypotheses. The global alternative

hypothesis can be specified as follows:

H1g : E(y | x) = E(y | BT
SxS), for some |S| × d1 matrix BS , d0 < d1 ≤ |S|.(3.1)

Under H1g, d0 linear combinations of covariates are not sufficient to recover
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the CMS SE(y|xS). We also consider a sequence of local alternatives:

H1l : y = m(βT
SxS) + Cn2g(B

T
SxS) + ε, (3.2)

for some |S| × d1 matrix BS , d0 < d1 ≤ |S|,

where βS is a subspace of BS , and Cn2 → 0 results in H1l becoming local

alternatives. Under H1l, we have that E(ε | xS) = 0 and βT
SxS is not

sufficient to characterize the conditional mean function E(y | xS). How-

ever, as n2 → ∞, H1l approaches H0. Then, the asymptotic distributions

under both the global and the local alternative hypotheses are presented in

Theorem 4.

Theorem 4. Assume conditions (C1)–(C5) in the Appendix hold.

(i) Under the global alternative in (3.1), as n2 → ∞,

n2
1/2(Tn2 − T )

D→ N(0, σ2
0),

where the variance σ2
0

def
= 4var(Z1 + Z2 + Z3), and Z1, Z2, and Z3 are

defined in (S5.1)–(S5.3) of the Supplementary Material, respectively.

(ii) Under the local alternative in (3.2) with Cn2 = n
−1/2
2 , as n2 → ∞,

n2Tn2

D→ ∥ζ0(s)∥2ω
def
=

∫
s∈R|S|

∥ζ0(s)∥2(c0∥s∥1+|S|)−1ds,
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where ζ0(s) denotes a complex-valued Gaussian random process with

the mean function defined in (S5.4) and the covariance function

cov{ζ0(s), ζ0(s0)} defined in (S3.1) of the Supplementary Material.

4. Numerical Studies

Example 1. We examine the finite-sample performance of the proposed

two-stage test procedure using simulations. Consider the following two

regression models:

Model (I) : Y = (3 + βT
1x)

2 + c(βT
2x)

2 + ε,

Model (II) : Y = βT
3x+ (3 + βT

4x)
2 + c(βT

5x)
2 + ε,

where x = (X1, . . . , Xp)
T is generated from a multivariate normal distribu-

tion with mean zero and covariance matrix Σ = (σkl)p×p, with σkl = 0.5|k−l|

for k, l = 1, . . . , p, and ε ∼ N(0, 1). Here, we set β1 = (0.25, 0.25, 0.25, 0.25,

0, . . . , 0)T, β2 = (0, 1, 0, 0, 0, . . . , 0)T, β3 = (3, 0, 3, 0, 0, . . . , 0)T, β4 = (0, 0.5,

0, 0.5, 0, . . . , 0)T, and β5 = (0, 0, 2, 0, 0, . . . , 0)T. In both models, the value

c = 0 corresponds to the null hypotheses, and c ̸= 0 represents the alter-

natives. Thus, the CMS SE(Y |x) depends only on βT
1x under H0, but on

two linear combinations (βT
1x,β

T
2x) under H1 in Model (I). For Model (II),

SE(Y |x) is two-dimensional under the null, but three-dimensional under the

alternative.
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We consider the sample size n = 200 and the covariate dimension

p = 2000. Each sample is divided randomly into two equal halves. We

perform the LOFTS procedure in Algorithm 1: Apply MDC-based screen-

ing to the first half of the data D1 = {(xi, Yi), i = 1, . . . , 100} to obtain a

selected model S. Then test hypothesis (2.1) using the second half of the

data D2 = {(xi,S , Yi), for i = 101, . . . , 200}. To compare their empirical per-

formance, we consider the following two procedures: (1) a naive two-stage

test procedure, denoted by “NAIVE”; here, we perform both MDC-based

screening and the lack-of-fit test on the same full sample; (2) an oracle

test procedure, denoted by “Oracle.” In the second stage, we conduct the

test based on {(xi,A, Yi), i = 101, . . . , 200} directly, because the true model

A is known. We repeat the simulations 1,000 times and summarize their

finite-sample performance.

Remark: For simplicity, we test the null hypothesis (2.1) with d0 = 1 for

Model (I) and d0 = 2 for Model (II) to compare the performance of the test

procedures in the simulations. As a practical byproduct of the two-stage

LOFTS procedure, we can perform the procedure for d0 sequentially, from 1

to |S|. Then, the optimal value of d0 is determined when the corresponding

null hypothesis fails to be rejected at some significance level.

Screening Performance: In the two-stage LOFTS procedure, the first-
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stage screening performance is crucial to the follow-up test, according to

Theorem 1. The MDC-based screening method is effective at including al-

most all truly important covariates in the selected models in this example.

However, because this is not the main contribution of this study, we re-

port the screening performance in the Supplementary Material. Refer to

Shao and Zhang (2014) for further numerical justifications of MDC-based

screening.

Size Performance: Next, we evaluate the size performance of four test

procedures for Models (I) and (II) when c = 0: the proposed LOFTS pro-

cedure, the naive two-stage method, the oracle procedure, and the DRMA

procedure proposed by Guo, Wang, and Zhu (2016). Because the DRMA

procedure is proposed for a parametric single-index model, we report the

results for Model (I) only. The critical values of the lack-of-fit test proce-

dure are determined using the proposed bootstrap procedure in Algorithm

2. We consider four significance levels (i.e., α = 0.01, 0.02, 0.05, and 0.10)

and two sizes of the selected models, |S| = 8 and 16. The empirical type-I

error rates based on 1,000 repetitions for Models (I) and (II) are presented

in Table 1. In addition, QQ plots of the empirical p-values and the uniform

distribution are shown in Panels (A) and (B), respectively, of Figure 1.

It can be clearly seen that the empirical type-I error rates of the LOFTS
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procedure, DRMA procedure, and oracle method are relatively close to the

user-specified significance levels. However, the empirical type-I error rates

of the naive two-stage method are obviously larger than the significance

levels, especially when the selected model size becomes large. The increase

in the type-I errors in the naive two-stage procedure is due to spurious

correlations between the response and some unimportant covariates in the

ultrahigh-dimensional data. The results further support the importance

of the data-splitting strategy, which can efficiently eliminate the effect of

spurious correlations.

Table 1: The empirical type-I error rates when c = 0.

Model α
LOFTS NAIVE Oracle DRMA

|S| = 8 |S| = 16 |S| = 8 |S| = 16 |S| = 8 |S| = 16

(I)

0.01 0.010 0.011 0.021 0.041 0.015 0.011 0.013
0.02 0.017 0.020 0.044 0.064 0.020 0.020 0.025
0.05 0.046 0.054 0.096 0.117 0.052 0.051 0.049
0.10 0.114 0.105 0.152 0.209 0.095 0.098 0.088

(II)

0.01 0.013 0.017 0.021 0.026 0.009 - -
0.02 0.026 0.027 0.031 0.039 0.016 - -
0.05 0.045 0.049 0.076 0.087 0.054 - -
0.10 0.105 0.106 0.118 0.151 0.112 - -

Power Performance: When c ̸= 0, the previous null hypotheses are no

longer valid. For instance, the response depends on three linear combina-

tions in Model (II) when c ̸= 0. We consider values of c = 0.2, 0.4, 0.6, 0.8,

and 1 to compare the empirical power of the LOFTS and oracle procedures.
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Figure 1: QQ plots of the empirical p-values and the uniform distribution

for Model (I) in Panel (A) and Model (II) in Panel (B) for Example 1.

Note that the “oracle” means we assume that the set of truly important co-

variates is known in the second test stage. We choose two significance levels

(i.e., α = 0.05 and 0.10) and two reduced model sizes (i.e., |S| = 8 and 16).

Table 2 summarizes the simulation results, which show that the proposed

two-stage LOFTS procedure exhibits significant power in terms of detecting

the significance of the tests. The empirical power increases with the signal

intensity parameter c. Once the true set A has been identified, a smaller se-

lected model size yields greater empirical power. This further confirms the

importance of screening out irrelevant covariates in ultrahigh-dimensional

test problems. Note that the superior size and power performance of the

oracle procedure also demonstrate the advantage of the proposed lack-of-fit
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test.

Table 2: The empirical power when c ̸= 0 at α = 0.05 or 0.10.

LOFTS Oracle DRMA

Model c
|S| = 8 |S| = 16 |S| = 8 |S| = 16

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

(I)

0.2 0.243 0.369 0.162 0.247 0.572 0.692 0.099 0.160 0.068 0.127
0.4 0.652 0.756 0.469 0.580 0.965 0.988 0.253 0.343 0.173 0.284
0.6 0.853 0.908 0.702 0.779 0.995 0.997 0.496 0.620 0.382 0.495
0.8 0.944 0.976 0.831 0.896 1.000 1.000 0.722 0.806 0.561 0.674
1.0 0.963 0.980 0.893 0.937 1.000 1.000 0.836 0.906 0.702 0.796

(II)

0.2 0.965 0.977 0.646 0.768 1.000 1.000 - - - -
0.4 0.999 0.999 0.921 0.971 1.000 1.000 - - - -
0.6 0.998 0.999 0.963 0.982 1.000 1.000 - - - -
0.8 1.000 1.000 0.943 0.976 1.000 1.000 - - - -
1.0 0.997 0.997 0.923 0.965 1.000 1.000 - - - -

Sequential Test Performance: By performing our proposed LOFTS

procedure sequentially, we determine the smallest number of linear combi-

nations of covariates that sufficiently capture the regression information of

E(y | xS). The procedure is conducted as follows. Starting with d0 = 1,

test the null hypothesis in (1.2) using the LOFTS procedure. If the hypoth-

esis is rejected, increment d0 by one, and perform the test again. Stop when

the first null hypothesis is not rejected in the test series. The corresponding

value of d0, denoted by d̂, is the estimate of d∗ that represents the smallest

number of linear combinations of covariates that sufficiently recover the

CMS. We report the empirical distributions of d̂ at a significance level of

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0176



4. NUMERICAL STUDIES26

α = 0.05 based, on 1000 simulations, for Models (I) and (II) in Table 3.

The results show that the LOFTS sequential tests are able to estimate the

true structural dimension correctly with large probabilities, especially when

|S| = 8 and c = 0 or c is large.

We also compare the performance of the proposed method with that

of the iterative Hessian transformation (IHT) method proposed by Cook

and Li (2004) and the validated information criterion (VIC)-based method

of Ma and Zhang (2015). Note that, for simplicity, we report only those

results when the reduced model size is 8. In addition, because we focus here

on the structural dimension of the CMS, we examine the VIC for semipara-

metric principal Hessian direction estimators only. From Table 4, we can

see that our LOFTS procedure outperforms both methods in our limited

experiments. The IHT method often underestimates the structural dimen-

sion, mainly because the largest estimated eigenvalues tend to dominate

the others. Although the estimated dimension using the VIC converges to

the true structural dimension in probability, there is no guarantee of its

finite-sample performance, especially when the sample size is small and the

reduced model size is large. Our LOFTS procedure, however, avoids this

problem by using the proposed bootstrap procedure.

Example 2. We apply our proposed two-stage LOFTS procedure to
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Table 3: The empirical distributions of d̂ at the significance level α = 0.05.

Model c d∗
|S| = 8 |S| = 16

1 2 3 4 1 2 3 4
0 1 0.954 0.032 0.002 0.012 0.946 0.038 0.004 0.012

0.2 2 0.757 0.218 0.009 0.016 0.838 0.128 0.015 0.019
(I) 0.4 2 0.348 0.607 0.017 0.028 0.531 0.432 0.017 0.020

0.6 2 0.147 0.803 0.022 0.028 0.298 0.652 0.018 0.032
0.8 2 0.056 0.897 0.018 0.029 0.169 0.786 0.019 0.026
1.0 2 0.037 0.907 0.023 0.033 0.107 0.844 0.010 0.039
0 2 0.000 0.955 0.019 0.026 0.003 0.948 0.030 0.019

0.2 3 0.001 0.035 0.923 0.041 0.012 0.346 0.607 0.035
(II) 0.4 3 0.011 0.001 0.940 0.048 0.078 0.073 0.807 0.042

0.6 3 0.050 0.002 0.907 0.041 0.234 0.024 0.705 0.037
0.8 3 0.000 0.000 0.969 0.031 0.006 0.052 0.901 0.041
1.0 3 0.001 0.003 0.965 0.031 0.034 0.059 0.870 0.037

Table 4: The empirical distributions of d̂ of IHT and VIC when |S| = 8.

Model c d∗
IHT VIC

1 2 3 4 1 2 3 4
0 1 0.960 0.039 0.001 0.000 0.836 0.164 0.000 0.000

0.2 2 0.926 0.073 0.001 0.000 0.830 0.170 0.000 0.000
(I) 0.4 2 0.821 0.168 0.011 0.000 0.787 0.213 0.000 0.000

0.6 2 0.730 0.258 0.012 0.000 0.714 0.284 0.002 0.000
0.8 2 0.583 0.398 0.019 0.000 0.601 0.397 0.002 0.000
1 2 0.466 0.514 0.020 0.000 0.437 0.563 0.000 0.000
0 2 0.395 0.558 0.047 0.000 0.105 0.538 0.357 0.000

0.2 3 0.026 0.941 0.033 0.000 0.004 0.858 0.138 0.000
(II) 0.4 3 0.002 0.928 0.070 0.000 0.000 0.787 0.213 0.000

0.6 3 0.000 0.897 0.103 0.000 0.000 0.701 0.299 0.000
0.8 3 0.000 0.857 0.142 0.001 0.000 0.613 0.381 0.006
1 3 0.000 0.808 0.190 0.002 0.000 0.554 0.430 0.016
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a rat eye microarray expression data set, which is available from Gene

Expression Omnibus, with accession number GSE5680. In this study, 120

12-week-old male rats were selected for tissue harvesting from the eyes, and

31,042 probe sets were measured for the microarray analysis. In Scheetz et

al. (2006) and Huang, Ma, and Zhang (2008), 18,976 probes were retained

that were considered adequately expressed and that exhibited at least two-

fold variation in order to investigate the genetic variation in human eye

disease. The response variable TRIM32 at probe 1389163_at, one of the

selected 18,976 probes, was recently found to cause Bardet–Biedl syndrome

(Chiang et al. , 2006). In our study, we aim to check whether a single linear

combination of gene expression levels exists that is sufficient to predict the

expression level of the gene TRIM32.

We randomly partition this random sample into two halves, each with

60 observations, and marginally standardize all variables. We perform

the MDC-based screening method to reduce the covariate dimension from

18,975 to 8 and 16, respectively. Denote as xS1 = (X1, . . . , X8)
T and

xS2 = (X1, . . . , X16)
T the covariates retained in the screening stage. We ap-

ply the profile least squares approach to estimate βS1
based on {(xj,S1 , Yj),

for j = 61, . . . , 120}, and βS2
based on {(xj,S2 , Yj), for j = 61, . . . , 120}.

http://www.ncbi.nlm.nih.gov/geo
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To ensure the identifiability of βS1
and βS2

, we fix the coefficient of X1

as one. Table 5 shows the estimate coefficients (denoted by “coef”), along

with their respective standard deviations (denoted by “std”) and p-values.

With two different model sizes, both estimates agree very well: X4, X6, X7,

X8 and X1 are important at the significance level α = 0.05, X3 and X5 are

important if only eight covariates are retained, and X9 becomes important

if 16 covariates are selected.

Table 5: The estimated coefficients, standard errors, and p-values when

|S| = 8 and |S| = 16, in Example 2.

|S| β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

8

coef 0.043 1.772 -6.750 -5.762 -6.783 4.364 -3.251
std 0.824 0.828 2.794 2.596 2.643 1.848 1.346

p-value 0.959 0.037 0.019 0.030 0.013 0.022 0.019
β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

16

coef 0.711 0.270 -2.087 -1.191 -1.778 1.990 -1.355
std 0.741 0.460 0.914 0.730 0.714 0.893 0.630

p-value 0.341 0.559 0.026 0.108 0.016 0.030 0.036
β̂9 β̂10 β̂11 β̂12 β̂13 β̂14 β̂15 β̂16

coef -1.766 -0.941 -0.679 0.964 -0.393 0.764 -0.607 0.115
std 0.757 0.606 0.919 0.732 0.866 0.635 0.656 0.708

p-value 0.023 0.126 0.463 0.193 0.652 0.234 0.358 0.872

Next, we check whether a single linear combination of the retained

covariates suffices to predict the expression level of TRIM32, based on

{(xj,S1 , Yj), j = 61, . . . , 120} and {(xj,S2 , Yj), j = 61, . . . , 120}. The p-values

obtained by our test procedures are 0.765 and 0.479, respectively, indicating
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that we cannot reject the null hypothesis, and a single linear combination

indeed suffices to describe how the expression level of the gene TRIM32

varies with other genes. To further justify this test result, we chart scat-

terplots of the response versus the standardized (xT
j,S1

β̂S1
) and (xT

j,S1
β̂S2

)

in Panels (A) and (B) of Figure 2, respectively. The solid lines are fitted

by local linear approximation, where the bandwidths are decided through

leave-one-out cross-validation, and the dashed lines are the 95% pointwise

confidence intervals. It is clearly observed that the response is described

very well using only one linear combination of the selected covariates.

To further examine the prediction performance of single-index models

based on the selected covariates, we calculate the mean squared prediction

errors based on leave-one-out cross-validation. The errors are 0.3801 based

on {(xT
j,S1

β̂S1
, Yj), j = 1, . . . , 120}, and 0.4297 based on {(xT

j,S2
β̂S2

, Yj), j =

1, . . . , 120}. This indicates that the selected covariates are probably truly

predictive for the expression level of the gene TRIM32, and that a single

linear combination of these covariates is probably sufficient to characterize

the conditional mean of the response.
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Figure 2: The scatterplots of the response versus standardized (xT
j,S1

β̂S1
)

in Panel (A) and versus standardized (xT
j,S2

β̂S2
) in Panel (B) in Example 2.

5. An Extension: Multiple Splitting

In the proposed two-stage testing procedure, the sure-screening property

that A ⊆ S with probability tending to one is crucial to guaranteeing that

testing (2.1) is asymptotically equivalent to testing (1.3). However, at the

sample level, important variables may be missed in the first screening stage,

owing to a limitation of the sample size, a violation of some assumption,

or data randomness. In this case, the empirical type-I error rates may be

inflated. To deal with this issue, we can use the iterated MDC-based screen-

ing procedure to reduce the risk of missing important variables. Another

efficient solution is the multi-splitting strategy Meinshausen, Meier, and

Bühlmann (2009). Here, we divide the sample repeatedly (B times), and
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obtain one p-value from each sample split using the LOFTS procedure. For

all p-values, denoted by p1, . . . , pB, we define

Q(γ) = min

[
1, qγ ({pi/γ})

]
,

for γ ∈ (γmin, 1), where qγ ({pi/γ}) is the γth quantile of {pi/γ}, for i =

1, . . . , B. Here, γmin ∈ (0, 1) is a lower bound for γ, typically 0.05 or 1/B,

in practice. The adjusted p-value is then given by Q(γ) for any fixed γ.

However, a proper selection of γ may be difficult in practice. An adaptive

version is defined as follows: Let γmin ∈ (0, 1) be a lower bound for γ,

typically 0.05, and

Q∗(γ) = min

{
1, (1− logγmin) inf

γ∈(γmin,1)
Q(γ)

}
.

With the adjusted p-value and the adaptive version of the p-value, the

type-I error remains controlled at level α, asymptotically. This result is

presented in the following theorem.

Theorem 5. Assume limn→∞ P (A ⊂ Si) = 1, where Si is the selected

model in the screening stage, based on the ith sample split. Then,

lim
n→∞

supP {Q(γ) ≤ α} ≤ α, lim
n→∞

supP {Q∗(γ) ≤ α} ≤ α.

We also perform a toy example to illustrate how the the type-I error re-

mains controlled at level α when some important covariates are missed with
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a non-ignorable probability. We generate Y from the following regression

model:

Y = X1 +X2 +X3 + 0.5X4 + ε,

where x = (X1, . . . , Xp)
T, other than X4, are drawn from a multivariate

normal distribution with mean zero and covariance matrix Σ = (ρkl)p×p,

with ρkl = 0.5|k−l|, k, l = 1, . . . , p; X4 is generated from the regression model

X4 = (0.5 − X1 − X3)
2 + ε1. In addition, ε follows the standard normal

distribution and is independent of x, and ε1 is an independent copy of ε.

The sample size is set to 200, the dimensionality of the covariates is 1000,

the reduced model size |S| = 5, and the proposed bootstrap procedure is

repeated 300 times, for simplicity. In addition, the multi-splitting procedure

is repeated 50 times. In our simulations, X4 is missed 204 times out of 1000

replicates, which means the corresponding type-I error is inflated. From

Table 6, we can see that the multi-splitting strategy outperforms the single-

splitting technique and maintains the empirical type-I errors at the nominal

levels of α = 0.05 and α = 0.10.

Supplementary Material

All technical proofs and the screening performance in the simulation

are included in the online Supplementary Material.
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Table 6: The empirical type-I errors for different splitting techniques.

single-splitting multi-splitting
nominal 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10
empirical 0.054 0.077 0.135 0.220 0.001 0.002 0.037 0.095
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Appendix: Regularity Conditions

(C1) (The Kernel Function) The univariate kernel function K(·) is a den-

sity function with compact support. It is symmetric about zero and
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Lipschitz continuous. In addition, it satisfies

∫
K(υ)dυ = 1,

∫
υiK(υ)dυ = 0, 1 ≤ i ≤ t− 1, 0 ̸=

∫
υtK(υ)dυ <∞.

(C2) (The Density) The probability density function of βT
SxS , denoted by

f(βT
SxS) is bounded away from 0 to infinity.

(C3) (The Derivatives) The (t − 1)th derivatives of the mean function

m(βT
SxS), the density function f(βT

SxS) and m(βT
SxS)f(β

T
SxS) are

locally Lipschitz-continuous with respect to βT
SxS .

(C4) (The Bandwidth) The bandwidth h satisfies h = O(n−κ), for some κ

which satisfies (2t)−1 < κ < (2d)−1.

(C5) (The Moment) The covariates used in the test stage statisfy that

E (∥xS∥2) /|S| <∞.
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