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Abstract: Biosimilars are copies of biological medicines developed after the patent

for the originator drug (the reference product) has expired. Extensive clinical

trials are required to show the therapeutic equivalence of the biosimilar and its

reference product before the biosimilar can be sold on the market. However, even

after more than 10 years of experience with biosimilars, there is still uncertainty

whether patients can switch between the biosimilar and its reference product

without negative effects. One convenient way to assess the impact of switches is

to analyze their mixed and self carryover effects: if the products are switchable,

there should be no difference between the carryover effects. For p = 3 periods

(and the number of subjects is divisible by 8) and for p ≡ 1 mod 4 periods (and

the number of subjects is divisible by 4), determine a series of simple designs that

efficiently compare the mixed and self carryover effects of two treatments. The

proof of the efficiency is not straightforward, because the information matrices

of the efficient designs are not completely symmetric.
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1. Introduction

After the patent for a pharmaceutical product has expired, competing com-

panies can produce and sell a copy of the originator product (the reference

product). In the context of small molecule drugs, this is already well es-

tablished, and the copied products are known as generics. However, for

large molecule drugs (so-called biologics), it is not possible to produce an

identical chemical copy (Schellekens, 2004). Therefore, we call a copy of a

biologic a biosimilar. In order to obtain market authorization for a biosim-

ilar, a company must show that there is no clinically relevant difference

between the biosimilar and the originator product (equivalence testing).

This typically means observing treatment-naive patients under continuous

treatment with either the reference treatment or the test treatment, and

then comparing their efficacy at a predefined time point.

There is still limited experience with biosimilars in practice. Hence,

there is some uncertainty among patients, physicians, and health care pro-

viders over whether a patient on an originator product can switch to a

biosimilar. There is also a debate on whether substituting the treatment

at the pharmacy level is acceptable (e.g., Ebbers et al. 2012). In practice,

substitution could lead to multiple switches between a biosimilar and the

originator product.
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In order to establish that multiple switches do affect the efficacy and

safety of a treatment, a crossover study can be conducted. Here the units

are observed over several periods, where the treatment can change between

periods. No carryover effects are assumed in the first period. Owing to

the currently used parallel groups design, in practice, only the first period

is observed for a market authorization decision. Therefore, a biosimilar is

accepted if the direct effects are sufficiently similar. However, later periods

may include carryover effects. One way of confirming that switching does

not affect the efficacy of the treatment is to analyze the carryover effects.

We consider the model introduced by Afsarinejad and Hedayat (2002),

which assumes that each treatment has two carryover effects: one is present

if a subject stays on the treatment (self carryover effect), and the other is

present if the subject changes to a different treatment (mixed carryover

effect). Kunert and Stufken (2002, 2008) determined optimal crossover de-

signs for estimating direct effects in this model. Kunert and Stufken (2008)

deal with the case of two treatments, which is relevant for our application

(biosimilar and reference product). However, when examining the switch-

ability of a biosimilar and its reference product, the direct effects are not

of primary interest because their equivalence will already have been estab-

lished when demonstrating biosimilarity. The effects of switching should be
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visible in differences between the carryover effects. Thus, to confirm switch-

ability, we need to focus on estimating the carryover effects. Unfortunately,

the literature on optimal designs for estimating carryover effects is sparse.

Cheng and Wu (1980) and Kunert (1983) provide some results for carryover

effects in a simpler model in which the mixed and self carryover effects are

assumed identical; however, they focus on estimating direct effects. In a

model with self and mixed carryover effects, Druilhet and Tinsson (2014)

derived optimal designs for total effects, where the total effect of a treat-

ment is the sum of its direct and self carryover effects. In this study, we

focus on efficient designs for estimating self and mixed carryover effects.

2. The model

We consider a model where the response yu,r of subject u in period r de-

pends on a treatment effect, subject effect, period effect, and mixed or

self carryover effect. We distinguish between the treatment effects of the

biosimilar and the originator, even though biosimilarity has already been

established. Biosimilarity only means that the direct treatment effects are

similar, but not necessarily identical. Therefore, including direct effects in
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the model avoids bias. The model is given by

yu,r =


αu + βr + τd(u,r) + ρd(u,r−1) + eu,r, if d(u, r) 6= d(u, r − 1),

αu + βr + τd(u,r) + χd(u,r−1) + eu,r, if d(u, r) = d(u, r − 1).

Here, d(u, r) is the treatment assigned to subject u in period r (1 ≤ u ≤

n, 1 ≤ r ≤ p) by the design d, αu is the effect of subject u, βr is the effect

of period r, τi is the direct effect of treatment i (1 ≤ i ≤ t), and ρi is the

mixed carryover effect and χi is the self carryover effect of treatment i. No

carryover effect is present in the first period; that is, ρd(u,0) = χd(u,0) = 0.

The errors eu,r, for 1 ≤ u ≤ n, 1 ≤ r ≤ p, are assumed to be independent

and identically distributed (i.i.d.) with expectation zero and variance σ2 >

0. The set of all designs with t treatments, n subjects, and p periods is

denoted by Ωt,n,p. We focus on t = 2, the case of two treatments (reference

product R, biosimilar (test) product T ). Note that, in this case, the model

with self and mixed carryover effects is equivalent to the full model with

interactions between the direct and carryover effects.

For a given design d ∈ Ω2,n,p, we define Td as the design matrix of the

direct effects, Sd as that of the self carryover effects, and Md as that of

the mixed carryover effects. We also consider the matrices U = In ⊗ 1p

and P = 1n ⊗ Ip, where ⊗ denotes the Kronecker product of matrices, Is

is the (s × s) identity matrix, and 1s is a column vector of length s with
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all entries equal to one. We write the vector y of observations as y =

[y1,1, ..., y1,p, y2,1, ..., yn,p]
T , where the superscript T denotes the transpose

of a vector or a matrix. Then, U and P are the design matrices for the

subject and period effects, respectively, and the model can be written in

vector notation as

y = Tdτ + Sdχ+ Mdρ+ Uα + Pβ + e,

where τ is a vector of direct (treatment) effects, χ is a vector of self carryover

effects and ρ is a vector of mixed carryover effects. Furthermore, α, β, and e

are vectors of subject effects, period effects, and residual errors, respectively.

We are interested in estimating contrasts of the four-dimensional vector of

all carryover effects,

δ =

χ
ρ

 .
For a matrix A, we define the projection ω(A) = A(ATA)+AT , where

(ATA)+ is the Moore–Penrose generalized inverse. Setting ω⊥(A) = Is −

ω(A), where s is the number of rows of A, the information matrix for the

estimation of δ is given by

Cd = [Sd,Md]
Tω⊥([P,U,Td])[Sd,Md];

see Kunert (1983, page 248). Note that [Sd,Md]14 = P[0, 1, . . . , 1]T , be-

cause each subject experiences one of the four carryover effects in all periods
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but the first. Therefore, because ω⊥([P,U,Td])P = 0, the information ma-

trix Cd has row and column sums equal to zero and only contrasts of the

carryover effects are estimable.

To compare the performance of the designs, we consider the A-criterion;

see, for example, Pukelsheim (1993, p. 210). We define λi(A) as the ordered

eigenvalues of a real symmetric matrix A. Therefore, for a design d ∈ Ω2,n,p,

the ordered eigenvalues of Cd are λ1(Cd) ≥ λ2(Cd) ≥ λ3(Cd) ≥ λ4(Cd).

Note that λ4(Cd) = 0, because Cd14 = 0. We then define the A-criterion

ϕA as

ϕA(d) =


1/
(

1
λ1(Cd)

+ 1
λ2(Cd)

+ 1
λ3(Cd)

)
, if λ3(Cd) > 0,

0, if λ3(Cd) = 0.

An A-optimal design d∗ maximizes ϕA(d).

Ideally, to maximize ϕA(d), we find a design with λ1(Cd) = λ2(Cd) =

λ3(Cd), where L = λ1(Cd) + λ2(Cd) + λ3(Cd) is as large as possible. Such

a design does not exist. Instead, we use a slightly smaller bound for ϕA(d).

Proposition 1. Assume the design d ∈ Ω2,n,p has an information matrix

with eigenvalues λ1 ≥ λ2 ≥ λ3 and zero, with the side conditions that

λ1 + λ2 + λ3 ≤ L, andλ3 ≤ q,
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where 0 < q ≤ L/3. Then, we have for the A-criterion of the design that

ϕA(d) ≤ q(L− q)
L+ 3q

.

For the proofs of all propositions presented in this paper, see the online

Supplementary Material.

3. Deriving bounds for the A-criterion

The aim of this study is to propose efficient designs for the joint estimation

of mixed and self carryover effects. The efficiency of the designs is measured

by comparing their A-criteria to an upper bound for the A-criterion. To

use Proposition 1, we determine an upper bound for the second-smallest

eigenvalue λ3(Cd) and an upper bound for tr(Cd), where tr(A) denotes the

trace of a matrix A.

For two matrices G,D ∈ Rs×s, we write G ≤ D if D−G is nonnegative

definite. Because the information matrix Cd has row- and column-sums

zero, we can rewrite

Cd = B4CdB4 = B4[Sd,Md]
Tω⊥([P,U,Td])[Sd,Md]B4,

where Bs = ω⊥(1s) = Is − 1
s
1s1

T
s . Using this notation, we obtain an

immediate upper bound for Cd, namely,

Cd ≤ C̃d = B4[Sd,Md]
Tω⊥([U,Td])[Sd,Md]B4; (3.1)
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see Kunert (1983, Proposition 2.3). Equality holds if and only if

B4[Sd,Md]
Tω⊥([U,Td])P = 0. (3.2)

We can write

ω⊥([U,Td]) = ω⊥(U)− ω⊥(U)Td(T
T
d ω
⊥(U)Td)

+TT
d ω
⊥(U),

see, for example, Bose and Dey (2009, Lemma 1.2.1). Hence, the matrix

C̃d defined in (3.1) can be split as follows:

C̃d = Cd11 −Cd12C
+
d22C

T
d12,

where

Cd11 =B4[Sd,Md]
Tω⊥(U)[Sd,Md]B4,

Cd12 =B4[Sd,Md]
Tω⊥(U)Td,

Cd22 =TT
d ω
⊥(U)Td.

Note that the Cdij are not submatrices of the information matrix Cd. In-

stead, they are submatrices of an information matrix used to jointly esti-

mate the carryover effects and the direct effects; see Cheng and Wu (1980).

Equation (3.1) implies there is an upper bound for the A-criterion,

ϕA(d) ≤ ϕ̃A(d),
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where

ϕ̃A(d) =


1/
(

1/λ1(C̃d) + 1/λ2(C̃d) + 1/λ3(C̃d)
)
, if λ3(C̃d) > 0,

0, if λ3(C̃d) = 0.

In what follows, we aim to identify designs that optimize ϕ̃A(d), while

satisfying Equation (3.2).

Each subject receives a sequence of treatments. Define Zp as the set

of all p-dimensional vectors with entries R or T . Consider an arbitrary

sequence z ∈ Zp. For this sequence, we define

• Tz as the design matrix for the direct treatment effects for this se-

quence, that is, the design matrix for the direct effects we would get

from a design consisting of one subject only, receiving sequence z;

• Sz as the design matrix for the self carryover effects for this sequence;

and

• Mz as the design matrix for the mixed carryover effects for this se-

quence.

For a design d ∈ Ω2,n,p, define ud(z) as the number of subjects receiving

sequence z, for z ∈ Zp. Then each ud(z) is a nonnegative integer. It is

convenient to consider the set ∆2,n,p of approximate designs, where ud(z)

can be any nonnegative real number, with the only restriction being that

Statistica Sinica: Preprint 
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ud(z) = n. Obviously, Ω2,n,p ⊂ ∆2,n,p, and if a design d ∈ Ω2,n,p is optimal

over ∆2,n,p, it is also optimal over Ω2,n,p. For each d ∈ ∆2,n,p, define πd(z)

as the proportion of subjects receiving sequence z, for z ∈ Zp. Then, all

πd(z) ≥ 0 and
∑

z∈Zp
πd(z) = 1, but for an approximate design d ∈ ∆2,n,p,

the πd(z) can be irrational numbers.

It is easy to see that ω⊥(U) = In ⊗ Bp. Therefore, the Cdij are linear

in the sequences. More precisely, Cdij = n
∑

z∈Zp
πd(z)Cij(z), where

C11(z) = B4[Sz,Mz]
TBp[Sz,Mz]B4, (3.3)

C12(z) = B4[Sz,Mz]
TBpTz, (3.4)

C22(z) = TT
z BpTz. (3.5)

Making use of the linearity of the Cdij, Kushner (1997) introduced a general

method for deriving optimal crossover designs. However, Kushner (1997)

considered the case where all Cdij are square matrices. In our problem,

Cd12 is a (4 × 2) matrix; therefore, we have to adapt the method to our

situation.

Proposition 2. Assume X ∈ R2×4 is an arbitrary matrix. Then,

C̃d ≤ Cd11 −Cd12X−XTCT
d12 + XTCd22X.

A sufficient condition for equality is that X = Xd, where Xd = C+
d22C

T
d12.

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0137



12

Note that the right-hand side of the inequality in Proposition 2 is linear

in the sequences; that is,

Cd11 −Cd12X−XTCT
d12 + XTCd22X (3.6)

= n
∑
z∈Zp

πd(z)
(
C11(z)−C12(z)X−XTCT

12(z) + XTC22(z)X
)
.

As a first step, we can use this proposition to derive an upper bound

for λ3(Cd) (see Proposition 4). Define

b2 =
1√
2

 1

−1

 .
Then, b2b

T
2 = B2. Using this notation, we obtain an immediate conse-

quence of Proposition 2.

Proposition 3. Assume k ∈ R4 and x ∈ R. Then,

kT C̃dk ≤ kTCd11k− 2kTCd12b2x+ bT2 Cd22b2x
2.

A sufficient condition for equality is that x = kTCd12C
+
d22b2 = xd, say.

This proposition allows us to give an upper bound for λ3(Cd).

Proposition 4. Consider an arbitrary design d ∈ ∆2,n,p. Assume that

0 6= k ∈ R4, with kT14 = 0, and that x ∈ R. For the second-smallest

eigenvalue, we then have that

λ3(Cd) ≤ n
1

kTk
max
z∈Zp

{kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2}.
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We use another consequence of Proposition 2 to derive a bound for

tr(C̃d).

Proposition 5. Consider an arbitrary design d ∈ ∆2,n,p and any matrix

X ∈ R2×4. We then have

tr(Cd) ≤ nmax
z∈Zp

tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
.

Set

Lz(X) = n tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
.

Then, Proposition 5 can be written as

tr(Cd) ≤ max
z∈Zp

Lz(X). (3.7)

Proposition 5 holds for any X ∈ R2×4. We choose an X that gives a

small bound. One way to find such an X is as follows. Assume there is

a design f ∈ Ω2,n,p, for which we hope that f maximizes tr(Cd). Clearly,

from (3.1), we have tr(Cf ) ≤ tr(C̃f ). It follows from Proposition 2 that

tr(C̃f ) ≤ tr
(
Cf11 −Cf12Xf −XTCT

f12 + XTCf22X
)

=
∑
z∈Zp

πfLz((X),

with equality for X = Xf = C+
f22Cf12. For some X 6= Xf , this inequality

can be strict. In that case, there will be at least one z ∈ Zp, such that

Statistica Sinica: Preprint 
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Lz(X) > tr(C̃f ). However, for X = Xf , it is possible that all Lz(Xf ) ≤

tr(C̃f ). If (3.2) holds for f , it is even possible that all Lz(Xf ) ≤ tr(Cf ).

This would be sufficient for tr(Cf ) to be maximal.

Proposition 6. Assume f ∈ Ω2,n,p is such that, for every sequence z ∈ Zp,

we have

Lz(Xf ) ≤ tr (Cf ) , where Xf = C+
f22C

T
f12,

as in Proposition 2. Then,

tr(Cf ) = max
d∈∆2,n,p

tr(Cd).

For any sequence z ∈ Zp, there is a dual sequence z̄ ∈ Zp, where each

T in z is replaced by an R in z̄, and vice versa. A design d ∈ ∆2,n,p is called

dual balanced if πd(z) = πd(z̄) for each pair of dual sequences z and z̄ in Zp.

The next proposition allows us to restrict our attention to dual-balanced

designs in what follows.

Proposition 7. If we allow for approximate designs, then for each design

d ∈ ∆2,n,p, there is a dual-balanced design f ∈ ∆2,n,p, such that

ϕ̃A(f) ≥ ϕ̃A(d).
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4. Efficient dual-balanced designs

For a given sequence z ∈ Zp, it is possible to give explicit entries of Cij(z).

We define nR and nT as the number of appearances of treatment R and T ,

respectively, in z. Let mRT and mTR be the number of appearances of the

mixed carryover effects of R and T , respectively, and sRR and sTT be the

number of appearances of the self carryover effects of R and T , respectively,

in z. Then,

STz BpSz =

sRR 0

0 sTT

− 1

p

 s2
RR sRRsTT

sRRsTT s2
TT

 ,

STz BpMz = −1

p

mRT sRR mRT sTT

mTRsRR mTRsTT

 ,

STz BpTz =

sRR 0

0 sTT

− 1

p

sRRnR sRRnT

sTTnR sTTnT



=
1

p

 sRRnT −sRRnT

−sTTnR sTTnR

 ,
where we have used that nR + nT = p. Similarly,

MT
z BpMz =

mRT 0

0 mTR

− 1

p

 m2
RT mRTmTR

mRTmTR m2
TR

 ,
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MT
z BpTz =

 0 mRT

mTR 0

− 1

p

mRTnR mRTnT

mTRnR mTRnT



=
1

p

−mRTnR mRTnR

mTRnT −mTRnT

 .
These (2× 2) matrices can be used to determine the (4× 4) matrix C11(z)

and the (4× 2) matrix C12(z). The matrix C22(z) is given by

C22(z) = TT
z BpTz

=

nR 0

0 nT

− 1

p

 n2
R nTnR

nTnR n2
T



=

nR(1− 1
p
nR) −1

p
nTnR

−1
p
nTnR nT (1− 1

p
nT )



=
1

p
nTnR

 1 −1

−1 1


=

2

p
nTnRB2.

The fact that C22(z) is proportional to B2 for any z implies that, for any

design d, there is a c such that Cd22 = cB2. Hence, one g-inverse of Cd22 is

given by

C+
d22 =

1

c
B2.
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4.1 Efficient designs for p = 3

First, we consider the case p = 3. We try to find an approximate design

d that maximizes ϕ̃A. Then, there are eight possible sequences (see Table

1); and ϕ̃A(d) is uniquely determined by the eight proportions πd(z), for

z ∈ Z3. Note that z1 and z2, z3 and z4, z5 and z6, and z7 and z8 are pairs

of dual sequences. We conclude from Proposition 7 that the best design is

a dual-balanced design, that is, πd(z1) = πd(z2) = p1, πd(z3) = πd(z4) = p3,

πd(z5) = πd(z6) = p5, and πd(z7) = πd(z8) = p7, say. With this restriction,

we get

STd ω
⊥(U)Sd/n =

∑
z

πd(z)STz B3Sz =
2

3
(p1 + p3 + p7)I2,

STd ω
⊥(U)Md/n =

∑
z

πd(z)STz B3Mz =

−1
3
p7 −1

3
p3

−1
3
p3 −1

3
p7

 ,
STd ω

⊥(U)Td/n =
∑
z

πd(z)STz B3Tz =

(
2

3
p3 +

2

3
p7

)
B2,

MT
d ω
⊥(U)Md/n =

∑
z

πd(z)MT
z B3Mz

=

2
3
(p3 + p7) + 4

3
p5 −2

3
p5

−2
3
p5

2
3
(p3 + p7) + 4

3
p5

 ,
MT

d ω
⊥(U)Td/n =

∑
z

πd(z)MT
z B3Tz = −

(
2

3
p3 +

4

3
p7 + 2p5

)
B2,

and
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4.1 Efficient designs for p = 318

TT
d ω
⊥(U)Td/n =

∑
z

πd(z)TT
z B3Tz =

8

3
(p3 + p5 + p7) B2.

Combining these results, we have

1

n
C̃d = B4



a b e f

b a f e

e f c d

f e d c


B4,

where

a =
2

3
(p1 + p3 + p7)− p2

3 + p2
7 + 2p3p7

12(p3 + p5 + p7)
,

b =
p2

3 + p2
7 + 2p3p7

12(p3 + p5 + p7)
,

c =
2

3
(p3 + p7) +

4

3
p5 −

p2
3 + 4p2

7 + 9p2
5 + 4p3p7 + 6p3p5 + 12p7p5

12(p3 + p5 + p7)
,

d = −2

3
p5 +

p2
3 + 4p2

7 + 9p2
5 + 4p3p7 + 6p3p5 + 12p7p5

12(p3 + p5 + p7)
,

e = −1

3
p7 +

p2
3 + 3p7p3 + 3p3p5 + 2p2

7 + 3p7p5

12(p3 + p5 + p7)
,

f = −1

3
p3 −

p2
3 + 3p7p3 + 3p3p5 + 2p2

7 + 3p7p5

12(p3 + p5 + p7)
.

This matrix has eigenvalues

λ1 =
a− b+ c− d

2
+

√
(e− f)2 +

(
c− d− a+ b

2

)2

,

λ2 =
a− b+ c− d

2
−

√
(e− f)2 +

(
c− d− a+ b

2

)2

,
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4.1 Efficient designs for p = 319

λ3 =
a+ b+ c+ d

2
− e− f,

and λ4 = 0. The largest

ϕ̃A(d) =
1

(1/λ1 + 1/λ2 + 1/λ3)

that we found in a numerical search was ϕ̃A(d̃) = 0.0636n, attained by a

design d̃ with proportions

pd̃(1) = 0.0951, pd̃(3)= 0.1033, pd̃(5) = 0.1684, and pd̃(7)= 0.1332.

Unfortunately, there are two problems with d̃. First, it takes a large

number of experimental subjects to construct an exact design with these

proportions. Second, the true A-criterion of d̃ is less than the bound:

ϕA(d̃) < ϕ̃A(d̃). This is because d̃ does not satisfy (3.2).

A sufficient condition to satisfy (3.2) is as follows. Assume the design d

is such that in all periods, both direct effects appear in exactly half of the

subjects, and that in each of the periods 2, . . . , p, each of the four carryover

effects appears in exactly one quarter of the subjects. This implies that

∑
z

πd(z)TT
z =

1

2
121

T
p ,

and ∑
z

πd(z) [Sz, Mz]
T = 14

[
0,

1

4
,
1

4
, . . . ,

1

4

]
.
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Now, note that

B4[Sd, Md]
Tω⊥([U,Td])P =

(
B4[Sd, Md]

T −Cd12C
+
d22T

T
d

)
ω⊥(U)P

=
(
B4[Sd, Md]

T −Cd12C
+
d22T

T
d

)
(1n ⊗Bp)

= n

(
B4

∑
z

πd(z)[Sz, Mz]
T −Cd12C

+
d22

∑
z

πd(z)TT
z

)
Bp.

Thus, for our d,

B4[Sd, Md]
Tω⊥([U,Td])P = 0

and, therefore, Cd = C̃d.

The design d̃ clearly does not satisfy the sufficient condition. In periods

2 and 3, the number of subjects receiving a mixed carryover is larger than

the number of subjects receiving a self carryover. The difference is larger

in period 3 than in period 2. If n is divisible by eight, we can, instead

of the design d̃, use an exact, dual-balanced design d̂1 ∈ Ω2,n,3 that allots

πd̂1(z) = 1
8

to all sequences in Z3. It is easy to verify that the design

d̂1 satisfies the sufficient conditions for (3.2). Direct computation gives

ϕA(d̂1) = 0.0628n, which is very close to the numerically derived upper

bound for the A-criterion (0.0636n). If the numerically derived bound is

the true maximum, the efficiency of the design d̂1 is at least 0.987.
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4.2 Efficient designs for p ≡ 1 mod 4

We now consider the case p = 4`+ 1, where ` is a natural number, and n is

divisible by four. For this case, consider the exact design d̂2 ∈ Ω2,n,p, where

each of the sequences

z1 = [ R T T R R . . . T T R R ],

z2 = [ R R T T R R . . . T T R ],

and their duals

z̄1 = [ T R R T T . . . R R T T ],

z̄2 = [ T T R R T T . . . R R T ],

are assigned to one quarter of the subjects.

In practice, these designs d̂2 are appealing, because they are not too

complicated from an operational point of view, and the treatment sequence

is not too obvious for the subjects, i.e., the subjects cannot easily determine

when they switch.

For z1, we get nR = 2` + 1 and nT = 2`, and mRT = mTR = sRR =

sTT = `. This implies that

STz1BpSz1 =

` 0

0 `

− 1

p

`2 `2

`2 `2

 ,
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STz1BpMz1 = −1

p

`2 `2

`2 `2

 ,

STz1BpTz1 =
1

p

(2`+ 1)` −(2`+ 1)`

−2`2 2`2

 ,

MT
z1

BpMz1 =

` 0

0 `

− 1

p

`2 `2

`2 `2

 ,

and MT
z1

BpTz1 =
1

p

 −2`2 2`2

(2`+ 1)` −(2`+ 1)`

 .
With straightforward algebra, we get that

C11(z1) = `B4, C12(z1) = `

 B2

−B2

 and C22(z1) =
4`(2`+ 1)

p
B2.

Because the sequence z2 has the same parameters, nR = 2` + 1, nT = 2`,

and mRT = mTR = sRR = sTT = `, we find that all Cij(z2) = Cij(z1).

For the dual sequences z̄1 and z̄2, the roles of R and T are interchanged.

Hence, nT = 2` + 1 and nR = 2`, but we also have mRT = mTR = sRR =

sTT = `. Thus once again, C11(z̄i) = C11(z1), C12(z̄i) = C12(z1), and

C22(z̄i) = C22(z1), for i = 1, 2. This implies that, for the design d̂2,

Cd̂211 = n`B4, Cd̂212 = n`

 B2

−B2

 and Cd̂222 =
4`(2`+ 1)n

p
B2. (4.8)
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We therefore have

C̃d̂2
= n`B4 −

n`p

8(2`+ 1)



1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1



=
n(p− 1)

16(p+ 1)



2p+ 3 −1 −1 −2p− 1

−1 2p+ 3 −2p− 1 −1

−1 −2p− 1 2p+ 3 −1

−2p− 1 −1 −1 2p+ 3


.

To show that Cd̂2
= C̃d̂2

, we verify that, in each period, the direct effect

of each treatment appears in exactly two of the sequences; furthermore, in

each of the periods 2, . . . , p, each of the four carryover effects appears in

exactly one of the four sequences.

This implies that (3.2) holds and Cd̂2
= C̃d̂2

. Therefore,

tr(Cd̂2
) =

n(2p+ 1)(p− 1)

4(p+ 1)
.

The eigenvalues of Cd̂2
are λ1(Cd̂2

) = λ2(Cd̂2
) = np−1

4
, λ3(Cd̂2

) = n p−1
4(p+1)

,

and zero. The eigenvector corresponding to λ3(Cd̂2
) is k3 = 1

2
[1,−1,−1, 1]T .

Therefore, the A-criterion of the design d̂2 is

ϕA(d̂2) = n
p− 1

4 + 4 + 4(p+ 1)
= n

p− 1

4(p+ 3)
.
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Note that this cannot be larger than n
4
. Even if the number of periods p

goes to ∞, we have ϕA(d̂2) → n
4
. This is similar to what happens for the

estimation of the direct effects in the same model (see Kunert and Stufken,

2008): a large number of periods is of limited use.

In the special instance that p = 5, we did a numerical search to find an

A-optimal design. In the best design g that we found, each of the sequences

[RTTRR] , [TRRTT ] , [RRTTR] , and [TTRRT ]

is given to 20% of the subjects. Additionally, each of the sequences

[RTRRR] , [TRTTT ] , [RRRTR] , and [TTTRT ]

is given to 5% of the subjects. For this design, the A-criterion is ϕA(g) =

n/7.9375. This is only a small gain compared to the design d̂2 with ϕA(d̂2) =

n/8. If g truly is the A-optimal design, then d̂2 has an efficiency of 7.9375/8 =

0.99. However, the design g is more complicated from an organizational

viewpoint, and it requires that the number of subjects be divisible by 20.

A practical experiment to examine switchability was carried out by

Griffith et al (2017). They used a design h that gave each of the sequences

[RTRTT ] , [TRTRR] , [TTTTT ] , and [RRRRR]

to 25% of the subjects. We then get ϕA(h) = n/11.65, which is clearly

less than ϕA(d̂2). However, note that Griffith et al. (2017) did not use our
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model. Their analysis compared the performance of the subjects from the

first two groups, with switches, to that of the subjects from the last two

groups, without switches. Because every subject receives switches in design

d̂2, the analysis of Griffith et al. would not have been possible with d̂2.

Two works have derived optimal designs for our model for two treat-

ments. Neither were interested in estimating the carryover effects. Druil-

het and Tinsson (2014) derived optimal designs for the estimation of total

effects. The total effect of a treatment is the sum of its direct and self car-

ryover effects. In the case of two treatments and five periods, each subject

in Druilhet and Tinsson’s (2014) design experiences exactly one switch: in

the first two periods, the subject receives the same treatment twice, be-

fore switching to the other treatment for the last three periods. For the

joint estimation of the mixed and self carryover effects, this design has an

A-criterion of zero: the rank of the information matrix is only two. On

the other hand, with d̂2, we can estiamte the total effects. However, its

efficiency compared to that of the design by Druilhet and Tinsson (2014) is

only 75%.

Kunert and Stufken (2008) derived optimal designs for estimating direct

effects. For any given p, the set of all A-optimal designs for the estimation

of direct effects is rather large. For p ≡ 1 mod 4 and n divisible by eight, it
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contains the designs d̂2. So, when estimating the direct effects, the designs

d̂2 are, in fact, optimal.

In the next section, we derive an upper bound for the A-criterion for the

estimation of the carryover effects of any design for an arbitrary p. With

the help of this bound, we show that for p ≡ 1 mod 4 and p > 5, no other

design outperforms d̂2.

5. An upper bound for the A-criterion

In this section, for arbitrary p, we derive equation (5.10), an upper bound

for the A-criterion ϕA(d). The derivation, based on the general upper bound

for ϕA(d) given in Proposition 1, proves the upper bounds for λ3(Cd) and

tr(Cd) in equation (5.9) and Proposition 10, respectively. We begin with

two technical lemmas.

Proposition 8. Consider an arbitrary sequence z ∈ Zp. Then, the design-

matrices Tz, Sz, and Mz satisfy the equality

Szb2 −Mzb2 −Tzb2 =



a

0

...

0


,

where a ∈ {−1, 1}.
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Proposition 9. Consider an arbitrary sequence z ∈ Zp, and choose k =

1
2
[1,−1,−1, 1]T . Define

Jz(x) = kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2.

Then, for each sequence z, we get

Jz(
1√
2

) =
p− 1

4p
.

Consider an arbitrary design d ∈ ∆2,n,p, and k from Proposition 9.

Because kT14 = 0 and kTk = 1, it follows from Propositions 4 and 9 that

λ3(Cd) ≤ nmax
z∈Zp

Jz(
1√
2

) = n
p− 1

4p
. (5.9)

Recall that λ3(Cd̂2
) = n p−1

4(p+1)
; see Section 4.2. Thus, λ3(Cd̂2

) is slightly

less than the bound in (5.9).

We now determine an upper bound for the trace of the information

matrix, with the help of Proposition 5. Because we expect d̂2 to have a

maximum trace, we choose X = Xd̂2
.

From the equations in (4.8), we conclude that

Xd̂2
= C+

d̂222
CT
d̂212

=
p

2(p+ 1)

[
B2,−B2

]
.

Proposition 10. Choose X∗ = c [B2,−B2], where c = p
2(p+1)

, and consider

an arbitrary sequence z ∈ Zp. Then,

Lz(X
∗) = n tr

(
C11(z)− 2C12(z)X∗ + X∗TC22(z)X∗

)
≤ n

(2p+ 3)(p− 1)

4(p+ 1)
.
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For d̂2, we showed in Section 4.2 that

tr(Cd̂2
) = n

(2p+ 3)(p− 1)

4(p+ 1)
.

Therefore, it follows from Propositions 10 and 6 that tr(Cd̂2
) is maximal.

Even in cases where p ≡ 1 mod 4 is not satisfied, we conclude from

Propositions 5 and 10 that

tr(Cd) ≤ Lz(X
∗) = n

(2p+ 3)(p− 1)

4(p+ 1)
.

This inequality, together with (5.9), allows us to use Proposition 1. We

therefore conclude that the A-criterion of any design d satisfies

ϕA(d) ≤ q(L− q)
L+ 3q

,

with L = n (2p+3)(p−1)
4(p+1)

and q = n p−1
4p
. Hence, with some straightforward

algebra, we have that

ϕA(d) ≤ n
(p− 1)(2p2 + 2p− 1)

4p(2p2 + 6p+ 3)
= ϕ∗A, (5.10)

say. Recall that the A-criterion of the design d̂2 from Section 4.2 is ϕA(d̂2) =

n p−1
4(p+3)

. This means that the efficiency of the design d̂2 is at least

ϕA(d̂2)

ϕ∗A
=

2p3 + 6p2 + 3p

2p3 + 8p2 + 5p− 3
,

which is equal to 0.88 for p = 5, and 0.92 for p = 9. The results discussed in

Section 4.2 indicate that our bound seems to be not very sharp for p = 5.
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For p ≥ 9, however, it is sharp enough to show that the designs d̂2 are

highly efficient. If p→∞, their efficiency goes to one.

Supplementary Material

The online Supplementary Material contains detailed proofs for all propo-

sitions.
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Table 1: Possible sequences with three periods (p = 3).

Sequence mTR mRT sRR sTT nR nT

z1 TTT 0 0 0 2 0 3

z2 RRR 0 0 2 0 3 0

z3 RTT 0 1 0 1 1 2

z4 TRR 1 0 1 0 2 1

z5 RTR 1 1 0 0 2 1

z6 TRT 1 1 0 0 1 2

z7 RRT 0 1 1 0 2 1

z8 TTR 1 0 0 1 1 2
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