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Abstract: Estimating optimal individualized treatment rules (ITRs) in single- or

multi-stage clinical trials is a key element of personalized medicine and, as a re-

sult, is receiving increasing attention within the statistical community. Recent

works have suggested that machine learning approaches can provide significantly

better estimations than those of model-based methods. However, a proper infer-

ence for estimated ITRs has not been well established for machine learning-based

approaches. In this paper, we propose an entropy learning approach for estimat-

ing optimal ITRs. We obtain the asymptotic distributions for the estimated rules

in order to provide a valid inference. The proposed approach is demonstrated

to perform well through extensive simulation studies. Finally, we analyze data

from a multi-stage clinical trial for depression patients. Our results offer novel

findings not revealed by existing approaches.

Key words and phrases: Dynamic treatment regime, entropy learning, personal-

ized medicine.
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1. INTRODUCTION

1. Introduction

An important goal of personalized medicine is to develop a decision sup-

port system to provide adequate management for individual patients with

specific diseases. Estimating individualized treatment rules (ITRs) using

evidence from single- or multi-stage clinical trials is a key element of such a

system. As a result, estimation methods are receiving increasing attention

within the statistical community. The methods for estimating ITRs include

Q-learning (Watkins and Dayan, 1992; Murphy, 2005; Chakraborty et al.,

2010; Goldberg and Kosorok, 2012; Laber et al., 2014; Song et al., 2015)

and A-learning (Robins et al., 2000; Murphy, 2003). Q-learning models the

conditional mean of the outcome, given historical covariates and treatments

using a well-constructed statistical model. A-learning models the contrast

function that is sufficient for a treatment decision.

Recently, Zhao et al. (2012) discovered that it is possible to cast the

estimation of the optimal regime into a weighted classification problem.

Based on this, Zhao et al. (2012, 2015) proposed an outcome-weighted

learning (OWL) directly optimizes the approximate expected clinical out-

come, where the objective function is a hinge loss, weighted by individual

outcomes. This method has been shown to outperform the model-based ap-

proaches, such as Q- and A-learning, in numerical studies, and the asymp-
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1. INTRODUCTION

totic behavior might be established, owing to its convexity Hjort and Pollard

(2011). However there is no valid inference procedure for the parameters in

the optimal treatment rules, owing to the nondifferentiability of the hinge

loss near the decision boundary. Furthermore, the minimization operator

is more or less heuristic.

In this paper, we propose a class of smooth-loss-based outcome-weighted

learning methods for estimating optimal ITRs, among which, one special

case of the proposed losses is a weighed entropy loss (Murphy, 2012). By

using continuously differentiable loss functions, we not only maintain the

Fisher consistency of the derived treatment rule, but also obtain a proper

inference for the parameters in the derived rule. Furthermore, we quan-

tify the uncertainty of the value function under the estimated treatment

rule, which is potentially useful for designing future trials and comparing

the results with those of other, nonoptimal treatment rules. Numerically,

in contrast to existing inferences for the model-based approaches, such as

the bootstrap approach for Q-learning, our inference procedure does not

require tuning parameters. In addition, the proposed method yields a more

accurate inference in finite-sample numerical studies.

Note that Bartlett et al. (2006) produced a profound conceptual work

on classification loss, for a relatively general setting. However, to link their
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1. INTRODUCTION

work to recursive or dynamic optimization is not trivial. To do so, we

employ a logistic loss. Luedtke and van der Laan (2016) tried to create

a unified surrogate loss function for outcome-dependent learning. Their

method of showing the validity of their approach differs from our deriva-

tion. Our justification is more intuitive and our algorithm is also different.

Whereas super learning is a general and powerful method, a logistic regres-

sion can be implemented easily and fits our needs directly. Moreover, the

asymptotic properties of our estimators are established in order to conduct

a proper inference, which is not addressed in the above-mentioned studies.

The paper is structured as follows. In Section 2, we introduce the pro-

posed entropy learning method for single- and multi-stage settings. In Sec-

tion 3, we provide the asymptotic properties of our estimators. In Section 4,

simulation studies are conducted to assess the performance of our methods.

In Section 5, we apply entropy learning to the well-known STAR*D study.

We conclude the paper in Section 6. Technical proofs are provided in the

Supplementary Material.
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2. METHOD

2. Method

2.1 Smooth surrogate loss for outcome-weighted learning

To motivate our approach of choosing a smooth surrogate loss to learn the

optimal ITRs, we first consider data from a single-stage randomized trial

with two treatment arms. A treatment assignment is denoted by A ∈ A =

{−1, 1}. A patient’s prognostic variables are denoted as a p-dimensional

vector X. We use R to denote the observable clinical outcome, also called

the reward, and assume that R is positive and bounded from above, with

larger values of R being more desirable. Data consist of {(Xi, Ai, Ri) : i =

1 . . . , n}.

For a given treatment decision D, which maps X to {−1, 1}, we denote

PD as the distribution of (X, A,R), given that A = D(X). Then, an optimal

treatment rule is one that maximizes the value function

ED(R) = E
{
R

I(A = D(X))

Aπ + (1− A)/2

}
, (2.1)

where π = P (A = 1|X). Following Qian and Murphy (2011), it can be

shown that the maximization problem is equivalent to the problem of min-

imizing

E
{
R

I(A 6= D(X))

Aπ + (1− A)/2

}
. (2.2)
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2. METHOD

The latter is a weighted classification error that can be estimated using the

observed sample, as follows:

n−1

n∑
i=1

{
Ri

I(Ai 6= D(Xi))

Aiπ + (1− Ai)/2

}
. (2.3)

Owing to the discontinuity and nonconvexity of the 0-1 loss on the right-

hand side of (2.2), the direct minimization of (2.3) is difficult and a param-

eter inference is infeasible. To resolve this problem, the hinge loss from the

support vector machine (SVM) was proposed as a substitute for the 0-1 loss

(Zhao et al., 2012, 2015). However, owing to the nondifferentiability of the

hinge loss, the inference remains challenging. This motivates us to seek a

smoother surrogate loss function for estimation.

Consider an arbitrary surrogate loss h(a, y) : {−1, 1} ×R 7→ R. Then,

by replacing the 0-1 loss with this surrogate loss, we estimate the treatment

rule by minimizing

Rh(f) = E
{
R

h(A, f(X))

Aπ + (1− A)/2

}
. (2.4)

To prevent nonconvexity, we require that h(a, y) be convex in y. Further-

more, simple algebra gives

E
{

R

Aπ + (1− A)/2
h(A, f(X))

∣∣∣X = x

}
= E[R|X = x, A = 1]h(1, f(x)) + E[R|X = x, A = −1]h(−1, f(x))

= axh(1, f(x)) + bxh(−1, f(x)),
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2. METHOD

where ax = E[R|X = x, A = 1] and bx = E[R|X = x, A = −1]}. Hence, for

any given x, the minimizer for f(x), denoted by yx, solves the equation

axh
′(1, y) + bxh

′(−1, y) = 0,

where h′(a, y) is the first derivative of h(a, y) with respect to y. To en-

sure that the surrogate loss still leads to the correct optimal rule, which is

equivalent to sgn(ax − bx), we require that the solution have the same sign

as (ax − bx). On the other hand, because axh
′(1, y) + bxh

′(−1, y) is nonde-

creasing in y, we conclude that for ax > bx, if axh
′(1, 0) + bxh

′(−1, 0) ≤ 0,

then the solution yx should be positive; however, for ax < bx, if axh
′(1, 0) +

bxh
′(−1, 0) ≥ 0, then the solution yx should be negative. In other words, a

sufficient condition to ensure the Fisher consistency is

(ax − bx)(axh
′(1, 0) + bxh

′(−1, 0)) ≤ 0.

However, because ax and bx can be arbitrary nonnegative values, this con-

dition holds if and only if

h′(1, 0) = −h′(−1, 0) and h′(1, 0) ≤ 0.

In conclusion, the choice of h(a, y) should satisfy the following:

(I) For a = −1 and 1, h(a, y) is twice differentiable and convex in y;

(II) h′(1, 0) = −h′(−1, 0) and h′(1, 0) ≤ 0.
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2. METHOD8

Many loss functions satisfy the above two conditions. Here, we consider

loss functions of the form h(a, y) = −ay+g(y). Then, the first condition au-

tomatically holds if g is twice differentiable and convex. The first equation

in the second condition also holds. Finally, because h′(1, 0) = −1 + g′(0),

the second part holds if we choose g such that g′(0) = 0. A special case is

to choose

g(y) = 2 log(1 + exp(y))− y,

with the corresponding loss function,

h(a, y) = −(a+ 1)y + 2 log(1 + exp(y)),

which corresponds to the entropy loss for a logistic regression (Figure 1).

Henceforth, we use this loss function, although the results apply to any

general smooth loss that satisfies these two conditions. Correspondingly,

(2.4) becomes

R(f) = E
{

R

Aπ + (1− A)/2
[−0.5(A+ 1)f(X) + log(1 + exp(f(X)))]

}
.(2.5)

2.2 Learning optimal ITRs using the entropy loss

Now, suppose the randomized trial involves T stages, where patients might

receive different treatments across the multiple stages. With some abuse
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Figure 1: Comparison of loss functions.

of notation, we use Xt, Rt, and At to denote the set of covariates, clinical

outcome, and corresponding treatment, respectively, at stage t = 1, · · · , T ,

and let St = (X1, A1, · · · ,Xt−1, At−1,Xt) be the history by t.

A dynamic treatment regime (DTR) is a sequence of deterministic de-

cision rules, d = (d1, · · · , dT ), where dt is a map from the space of history

information St, denoted by St, to the action space of available treatments

At = {−1, 1}. The optimal DTR maximizes the expected total value func-

tion Ed(
∑T

t=1Rt), where the expectation is taken with respect to the dis-
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2. METHOD10

tribution of (X1, A1, R1, · · · ,XT , AT , RT ), given the treatment assignment

At = dt(St).

DTRs aim to maximize the expected cumulative rewards; hence, the op-

timal treatment decision at the current stage must depend on subsequent

decision rules. This motivates a backward recursive procedure that first es-

timates the optimal decision rule at future stages. Then, it determines the

optimal decision rule at the current stage by restricting the analysis to those

subjects who have followed the estimated optimal decision rules. Assume

that we observe data (X1i, A1i, R1i · · · ,XT i, AT i, RT i), for i = 1, · · · , n,

forming n independent and identically distributed (i.i.d.) patient trajecto-

ries, and let Sti = {(X1i, A1i, · · · , At−1,i,Xti) : i = 1, . . . , n}, for 1 ≤ t ≤ T .

Denote π(At,St) = Atπt − (1 − At)/2, where πt = P (At = 1|St), for

t = T, . . . , 1. Suppose that we already possess the optimal regimes at

stages t + 1, · · · , T , denoted as d∗t+1, · · · , d∗T . Then, the optimal decision

rule at stage t, d∗t (St), should maximize

E

{( T∑
j=t

Rj

)∏T
j=t+1 I(Aj = d∗j(Sj))∏T

j=t π(Aj,Sj)
I(At = dt(St))

∣∣St} ,
where we assume all subjects have followed the optimal DTRs after stage

t. Hence, d∗t is a map from St to {−1, 1} that minimizes

E

{( T∑
j=t

Rj

)∏T
j=t+1 I(Aj = d∗j(Sj))∏T

j=t π(Aj,Sj)
I(At 6= dt(St))

∣∣St} .
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2. METHOD11

Following (2.5), we consider an entropy learning framework in which the

decision function at stage t is given as

dt(St) = 2I{(1 + exp(−ft(Xt)))
−1 > 1/2} − 1 = sgn{ft(Xt)}, (2.6)

for some function ft(·). Here, for simplicity, as defined in equation (2.6), the

decision rule is assumed to depend on the history information St through

Xt only. Although St = St−1 ∪ {At−1,Xt}, any elements in St−1 and At−1

can be included as one the covariates in Xt. Hence, this assumption is not

stringent at all. In particular, our method remains valid when Xt is set

to St. Given the observed samples, we obtain estimators for the optimal

treatments using the following backward procedure.

Step 1. Minimize

− 1

n

n∑
i=1

{
RT i

π(AT i,ST i)
[0.5(AT i + 1)fT (XT i)− log(1 + exp(fT (XT i)))]

}
.(2.7)

to obtain the stage-T optimal treatment regime. This is the same as the

single-stage treatment selection procedure. Let f̂T be the estimator of fT

obtained by minimizing (2.7). Then, for a given ST , the estimated optimal

regime is given by d̂T (ST ) = sgn(f̂T (XT )).

Step 2. For t = T − 1, · · · , 1, sequentially minimize

−n−1

n∑
i=1

{(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

[
0.5(Ati + 1)ft(Xti)

− log(1 + exp(ft(Xti)))
]}
, (2.8)
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2. METHOD12

where d̂t+1, · · · , d̂T are obtained prior to stage t. Let f̂t be the estimator

of ft obtained by minimizing (2.8). Then, for a given St, the estimated

optimal regime is given by d̂t(St) = sgn(f̂t(Xt)).

LetHpt be the set of all functions fromRpt toR. As outlined in Section

2.1, the following proposition justifies the validity of our approach.

Proposition 1. Suppose

ft = arg maxf∈Hpt
E
{(
∑T

j=tRj)
∏T

j=t+1 I(Aj = sgn(fj(Xj)))∏T
j=t π(Aj,Sj)[

0.5(At + 1)f(Xt)− log(1 + exp(f(Xt)))
]}
, (2.9)

backward through t = T, T − 1, . . . , 1. We have d∗j(Sj) = sgn(fj(Xj)), for

j = 1, . . . , T .

Let Vt = E(d∗t ,...,d
∗
T )
∑T

i=tRi be the maximal expected value function at

stage t. After obtaining the estimated decision rules d̂T , . . . , d̂t, for simplic-

ity, we estimate Vt by

V̂t = n−1

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

I(Ati = d̂t(Sti))

}
.(2.10)

Note that our results also fit into the more general and robust estimation

framework constructed by Zhang et al. (2012), Zhang et al. (2013).
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3. ASYMPTOTIC THEORY FOR LINEAR DECISIONS 13

3. Asymptotic Theory for Linear Decisions

Suppose the vector of stage-t covariates Xt is of dimension pt, for 1 ≤ t ≤ T ,

and assume that the function ft(Xt) in (2.7) and (2.8) is of the linear form

ft(Xt) = (1,X>t )βt, for some βt ∈ Rpt+1. Then, (2.7) and (2.8) can be

carried out as a weighted logistic regression. In this section, we establish the

asymptotic distributions of the estimated parameters and value functions

under the aforementioned linear decision assumption. Note that when the

true unknown solution is nonlinear, similarly to other linear learning rules,

our approach can be understood only as finding the best approximation of

the true solution (2.9) in the linear space.

We consider the multi-stage case only, because the results for the single-

stage case are the same as those for stage T . For the multi-stage case, denote

X∗t = (1,X>t )> and the observations X∗ti = (1,X>ti)
>, for t = 1, . . . , T and

i = 1, . . . , n. Then, the n × (pt + 1) design matrix for stage t is given by

Xt,1:n = (X∗t1, . . . ,X
∗
tn)>. Let β0

t = (β0
t0, β

0
t1, . . . , β

0
tpt)
> be the solution to

(2.9) at stage t, and let β̂t = (β̂t0, β̂t1, . . . , β̂tpt)
> be its estimator, obtained

by solving (2.7) when t = T and (2.8) when t = T − 1, . . . , 1.
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3. ASYMPTOTIC THEORY FOR LINEAR DECISIONS 14

3.1 Parameter estimation

By setting the first derivative of (2.8) to zero for stage t, where 1 ≤ t ≤ T−1,

we have

0 = − 1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)[

.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti.

The Hessian matrix of the left-hand side of the above equation is:

Ht(βt) =
1

n
X>t,1:nDt(βt)Xt,1:n,

where Dt(βt) = diag{dt1, . . . , dtn} with

dti =
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

· exp(X∗>ti βt)

(1 + exp(X∗>ti βt))
2
.

Because Rti is positive, Ht(βt) is positive-definite with probability one.

Consequently, the objective function in (2.8) is strictly convex, implying

the existence and uniqueness of β̂t, for t = T − 1, . . . , 1. This is also true

for t = T , using a similar argument. To obtain the asymptotic distribution

of the estimators, we need the following regularity conditions:

(A1) It(βt) is finite and positive-definite for any βt ∈ Rpt+1, t = 1, . . . , T ,

where

It(βt) = E
(
∑T

j=tRj)
∏T

j=t+1 I(Aj = dj(Sj))∏T
j=t π(Aj,Sj)

· exp(X∗>t βt)X
∗
tX
∗>
t

(1 + exp(X∗>t βt))2
.

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0076



3. ASYMPTOTIC THEORY FOR LINEAR DECISIONS 15

(A2) There exists a constant BT , such that Rt < BT , for t = 1, . . . , T . In

addition, we assume that Xt1i, . . . ,Xtni are i.i.d. random variables

with bounded support, for i = 1, . . . , pt. Here, Xtij is the jth element

of Xti.

(A3) Denote Yt = X∗>t β0
t and let gt(y) be the density function of Yt, for

1 ≤ t ≤ T . We assume that y−1gt(y) → 0 as y → 0. In addition, we

assume that there exists a small constant b, such that for any positive

constant C and β ∈ Nt,b := {β : |β − β0
t |∞ < b}, P (|X∗>t β| < Cy) =

O(y) as y → 0.

(A4) There exist constants 0 < ct1 < ct2 < 1, such that ct1 < πt < ct2, for

t = 1, . . . , T , and P (
∏T

j=1 I(Aj = d∗j(Sj)) = 1) > 0.

Remark 1. By definition, It(βt) is positive semidefinite. In A1, we assume

that It(βt) is positive-definite to ensure that the true optimal treatment rule

is unique and estimable. The boundedness assumption, A2, can be relaxed

further using truncation techniques. Assumption A3 indicates that the

probability of Yt ≤ Cn−
1
2 is o(n−

1
2 ). This is necessary to ensure that the

optimal decision is estimable, and is essential to establishing asymptotic

normality without an additional Bernoulli point mass, as in Laber et al.

(2014). Assumption A4 ensures that the treatment design is valid, such

Statistica Sinica: Preprint 
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that the probability of a patient being assigned to the unknown optimal

treatments is nonnegligible.

Theorem 1. Under assumptions A1−A4, for t = T, . . . , 1, and any con-

stant κ > 0, there exists a large enough constant Ct,

P

(
|β̂t − β0

t |∞ > Ct

√
log n

n

)
= o

(
log n

n

)
, (3.1)

and given X∗t , for any x > 1 and x = o(
√
n), we have

P

(
|X∗>t (β0

t − β̂t)| >
xWt√
n

∣∣∣X∗t) =

{
1 +O

( x3

√
n

)}
Φ(−x) +O

( log n√
n

)
,(3.2)

where W 2
t = Var(X∗>t (β0

t − β̂t)) and Φ(·) is the cumulative distribution

function of the standard normal distribution. In addition, for the ith sample,

we have

E

∣∣∣∣∣
T∏
j=t

I(Aji = d̂j(Sji))−
T∏
j=t

I(Aji = d∗j(Sji))

∣∣∣∣∣ = o

(
log n

n

)
. (3.3)

Furthermore, we have,

√
nIt(β

0
t )(β̂t − β0

t )→ N(0,Γt), (3.4)

where Γt = (γtjk)1≤j,k≤p+1 with

γtjk = E

[
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = dj(Sji))∏T
j=t π(Aji,Sji)

]2

·
[
0.5(Ati + 1)− exp(X∗>ti β

0
t )

1 + exp(X∗>ti β
0
t )

]2

X∗tijX
∗
tik,

and X∗tij is the jth element of X∗ti.
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3. ASYMPTOTIC THEORY FOR LINEAR DECISIONS 17

Remark 2. The proof of Theorem 1 is not straightforward because, for

stage t < T , the n terms in the summation of the objective function (2.8)

are weakly dependent on each other. Note that the estimation errors of

the indicator functions in (2.8) might aggregate when the estimators are

obtained sequentially. Thus, we need to show that the estimation errors

of these indicator functions are well controlled. By establishing Bernstein-

type concentration inequalities (3.1) and large deviation results (3.2) for the

parameter estimation, we establish error bounds (3.3) for the estimation of

these indicator functions. This enables us to establish the asymptotic distri-

bution of the estimators. Detailed proofs are provided in the Supplementary

Material. On the other hand, from the proofs, we can see that the asymp-

totic results in the above theorem would also hold if other loss functions

satisfying the two conditions discussed in Section 2.1 are used, with some

corresponding modifications to Condition (A1) and the covariance matrix.

In practice, we estimate Γt in Theorem 1 by Γ̂t = (γ̂tjk)1≤j,k≤pt+1, with

γ̂tjk =
1

n

n∑
i=1

[
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

]2

·

[
0.5(Ati + 1)− exp(X∗>ti β̂t)

1 + exp(X∗>ti β̂t)

]2

X∗tijX
∗
tik.

The covariance matrix of
√
n(β̂t−β0

t ) can be estimated by: Σ̂t = H−1
t (β̂t)Γ̂tH

−1
t (β̂t).
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3.2 Estimating the optimal value function

In this subsection, we establish the asymptotic normality of the estimated

maximal expected value function defined in (2.10) when f(x) is a linear

function of x.

Theorem 2. Under the same assumptions as Theorem 1, we have

√
n(V̂t − Vt)→ N(0,ΣVt), t = 1, . . . , T,

where V̂t is defined as in (2.10) and,

ΣVt = E

{
(
∑T

j=tRj)
∏T

j=t+1 I(Aj = dj(Sj))∏T
j=t π(Aj,Sj)

I(At = dt(St))

}2

−{
E

(
∑T

j=tRj)
∏T

j=t+1 I(Aj = dj(Sj))∏T
j=t π(Aj,Sj)

I(At = dt(St))

}2

.

When conducting inferences, ΣVt can be estimated using the empirical

estimators,

Σ̂Vt =
1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

I(Ati = d̂t(Sti))

}2

−{
1

n

n∑
i=1

(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

I(Ati = d̂t(Sti))

}2

.

3.3 Testing treatment effects

In practice, treatments in some stages might not be effective for some pa-

tients. When the true optimal treatment rule is linear in Xt, a nonsignif-

icant treatment effect on stage t, for some 1 ≤ t ≤ T , is equivalent to
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X∗>t β0
t = 0. Here, X∗t = (1,X>t )>. From Theorem 1 we immediately have

that, given Xt, X∗>t β̂t → N(X∗>t β0
t ,

1
n
X∗>t It(β

0
t )
−1ΓtIt(β

0
t )X

∗
t ). Therefore,

we can use X∗>t β̂t as a test statistic when testing the significance of the

treatment effects: for a realization x∗t and a given significance level α, we

reject H0 : x∗>t β0
t = 0 if

√
n|(x∗>t Ît(β̂t)

−1Γ̂tÎt(β̂t)x
∗
t )
−1/2x∗>t β̂t| > Φ(1−α/2),

where Ît(β̂t), Γ̂t(β̂t) are empirical estimators of It,Γt, respectively, evaluated

at β̂t, and Φ(·) is the cumulative distribution function of the standard nor-

mal distribution.

Before we proceed to the numerical studies, note that the theoretical

results obtained here are still valid if the model is mis-specified. However,

the parameters we are estimating are the maximizer of (2.5) under the linear

space, not the parameters in the optimal decision rules.

4. Simulation Study

We conduct numerical studies to assess the performance of our proposed

methods.

One-stage. The treatment A is generated uniformly from {−1, 1} and

is independent of the prognostic variables X = (x1, . . . , xp)
>. We set the

reward R = Q(X) + T (X, A) + ε, where T (X, A) reflects the interaction

between the treatment and the prognostic variables, and ε is a random
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variable such that ε = |Y |/10, where Y follows a standard normal distri-

bution. This folded normal error is chosen because R is restricted to be

positive. We consider the following models.

Model 1. x1, x2, x3 are generated independently and uniformly in

[−1, 1]. We generate the reward R = Q(X) + T (X, A) + ε by setting

T (X, A) = 3(.4− x1 − x2)A, Q(X) = 8 + 2x1 − x2 + .5x3. In this case, the

decision boundary is determined only by x1 and x2.

Model 2. X = (x1, x2, x3)> is generated from a multivariate normal

distribution with mean zero and covariance matrix Σ = (σij)3×3, where

σij = .5|i−j|, for 1 ≤ i, j ≤ 3. We generate the reward R by setting

T (X, A) = (.8 − 2x1 − 2x2)A, Q(X) = 5 + .5x2
1 + .5x2

2 + .5(x2
3 + .5x3).

The decision boundary of this case is also determined by x1 and x2.

Next, we consider multi-stages cases. The treatments At are generated

independently and uniformly from {−1, 1}, and are independent of the p-

dimensional vector of prognostic variables Xt = (xt1, . . . , xtp)
>, for t =

1, . . . , T . ε is generated in the same way as in the single stage.

Two-stage.

Model 3. The Stage 1 outcome R1 is generated as follows: R1 =

(1− 5x11− 5x12)A1 + 11.1 + .1x11− .1x12 + .1x13 + ε, where x11, x12, x13 are

generated independently from a uniform distribution in [−1, 1]. The Stage
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2 outcome R2 is generated by R2 = .5A1A2 + 3 + (.2 − x21 − x22)A2 + ε,

where x2i = x1i, for i = 1, 2, 3. In this case, the covariates from the two

stages are identical.

Model 4. We use the same setting as that in Model 3, except that we

set x2i = .8x1i + .2Ui, for i = 1, 2, 3, where Ui is randomly generated from

U [−1, 1]. In this case, the covariates from the two stages are different and

correlated.

4.1 Estimation and classification performance

We first examine the performance of the estimated coefficient parameters,

the corresponding value functions, and the classification accuracy.

For stage t, given the sample size n, we repeat the simulation 2000

times. Then, we compute the coverage rate CRtj, which is the propor-

tion that [β̂tj − 1.96σ̂tjj, β̂tj + 1.96σ̂tjj] covers the true parameter βtj, for

j = 0, . . . , p, where σ̂tjj is the (j, j)th element of Σ̂t. CRVt is defined sim-

ilarly for the coverage rate of the value function. A validation set with

100,000 observations is simulated to compute the oracle values and assess

the performance of our approach.

We set the sample size to n = 50, 100, 200, 400, and 800. The coverage

rates under Models 1−4 are given in Tables 1 and 2. For each replica-
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Model 1 Model 2

n CRV1
CR10 CR11 CR12 CR13 CRV1

CR10 CR11 CR12 CR13

50 0.927 0.948 0.950 0.938 0.945 0.946 0.944 0.937 0.931 0.924

100 0.936 0.950 0.947 0.949 0.944 0.942 0.947 0.949 0.945 0.940

200 0.942 0.954 0.947 0.955 0.952 0.951 0.950 0.950 0.953 0.947

400 0.940 0.949 0.960 0.954 0.944 0.946 0.963 0.952 0.949 0.933

800 0.944 0.944 0.953 0.947 0.943 0.951 0.955 0.952 0.954 0.943

Table 1: Coverage rates of the expected value function and coefficient pa-

rameters under Models 1 and 2.

tion under each model, we also compute the misclassification rate at each

stage. Figure 2 gives the box plots of the misclassification rates over 2000

replications for all four models.

From Tables 1 and 2, we observe that the coverage rates are close to the

nominal level (95%), and improve as the sample size increases, indicating

that the asymptotic normality of our estimators is well established. In

particular, the coverage rates of the coefficient parameter estimators are

very close to 95%, even when the sample size is as small as 50. The box

plots in Figure 2 also indicate that the misclassification rate of the estimated

decision rule decreases toward zero as the sample size increases.

Note that the ultimate goal of dynamic treatment regimes is to maxi-

mize the value functions. Next we compare our entropy learning with Q-

learning and outcome-weighted learning in terms of the value function esti-
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Model 3 Stage 1 Stage 2

n CRV1
CR10 CR11 CR12 CR13 CRV2

CR20 CR21 CR22 CR23

50 0.872 0.946 0.937 0.945 0.947 0.912 0.949 0.939 0.951 0.951

100 0.928 0.949 0.956 0.953 0.948 0.941 0.952 0.956 0.954 0.940

200 0.936 0.947 0.942 0.942 0.951 0.950 0.950 0.946 0.948 0.935

400 0.941 0.943 0.948 0.943 0.950 0.943 0.948 0.952 0.948 0.956

800 0.957 0.944 0.955 0.945 0.941 0.954 0.939 0.951 0.952 0.952

Model 4 Stage 1 Stage 2

50 0.865 0.948 0.944 0.941 0.947 0.908 0.942 0.948 0.942 0.942

100 0.908 0.951 0.939 0.954 0.940 0.942 0.955 0.943 0.947 0.949

200 0.941 0.940 0.943 0.951 0.948 0.948 0.948 0.954 0.954 0.951

400 0.945 0.944 0.946 0.956 0.952 0.948 0.943 0.951 0.947 0.950

800 0.954 0.949 0.946 0.957 0.953 0.951 0.950 0.963 0.952 0.950

Table 2: Coverage rates of the expected value function and coefficient pa-

rameters under Models 3 and 4.
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mation. Throughout this paper, Q-learning and outcome-weighted learning

are implemented using the R package “DTRlearn.” In addition to Models

1−4, we also consider the following nonlinear cases.

Model 5. x1, x2, x3 are generated independently and uniformly in

[−1, 1]. We generate the rewardR = Q(X, A)+ε withQ(X, A) = [−T (X)(A+

1) + 2 log(1 + exp(T (X)))]−1, where T (X) = (x1 − x2 + 2x1x2).

Model 6. This is identical to Model 5, except that x1, x2, x3 are dis-

crete variables generated independently and uniformly in {−1, 0, 1}.

Model 7. The Stage 1 outcome R1 is generated as follows: R1 =

[0.2−T1(X1)(A1 +1)+2 log(1+T1(X1))]−1 + ε, where T1(X1) = x11−x12 +

2x2
13 + 2x11x12, with x11, x12, x13 generated independently from a uniform

distribution in [−1, 1]. The Stage 2 outcome R2 is generated by R2 =

[0.05+(1+A2)(1+A1)/4−T2(X2)(A2 +1)+2 log(1+T2(X2))]−1 +ε, where

x2i = x1i, for i = 1, 2, 3, and T2(X2) = x21 − x22 + 2x2
23 + 2x21x22.

Model 8. This is identical to Model 7, except that x11, x12, x13 are

discrete variables generated independently and uniformly in {−1, 0, 1}.

For each model, we generate 200 random samples and the corresponding

estimated treatment rules used to compute the value function using (2.3),

with a validation set of size n = 500, 000. The above procedure is repeated

100 times; the results are reported in table 3.

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0076



4. SIMULATION STUDY25

Model E-Learning Q-Learning OW-Learning

Model 1 10.2(0.1) 10.3(0.0) 10.3(0.0)

Model 2 9.4(0.1) 9.4(0.0) 9.4(0.0)

Model 3 Stage 2 3.7(0.1) 3.7(0.0) 3.7(0.0)

Model 3 Stage 1 14.5(0.4) 15.0(0.0) 15.0(0.0)

Model 4 Stage 2 3.6(0.1) 3.6(0.0) 3.6(0.00)

Model 4 Stage 1 14.5(0.6) 15.0(0.0) 15.0(0.0)

Model 5 1.8(0.0) 1.7(0.0) 1.8(0.0)

Model 6 4.8(0.1) 4.1(0.1) -(-)

Model 7 Stage 2 1.5(0.0) 1.5(0.0) 1.5(0.0)

Model 7 Stage 1 1.1(0.1) 1.0(0.0) 1.1(0.1)

Model 8 Stage 2 3.0(0.1) 2.8(0.2) -(-)

Model 8 Stage 1 1.9(0.3) 0.9(0.2) -(-)

Table 3: Comparison of value functions using entropy learning (E-learning),

Q-learning, and outcome-weighted learning (OW-Learning) under Models

1−8.
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From Table 3, we note the value functions of our entropy learning

method are comparable with those of Q-learning and outcome-weighted

learning under Models 1−4. However, under Models 5 and 7, where the

true treatment regimes are nonlinear, the value functions of entropy learn-

ing and outcome-weighted learning are very similar, and seem to be slightly

better than those of Q-learning. However, when we consider discrete covari-

ates in Models 6 and 8, outcome-weighted learning barely produces a result,

owing to the large condition number when solving a system of equations.

4.2 Testing X∗>t β0
t = 0

In the dynamic treatment regime literature, the nonregularity condition

P (X∗>t β0
t = 0) = 0 is usually required (e.g., in Q-learning) to enable pa-

rameter inferences. Here, we examine the performance the entropy learning

approach when testing X∗>t β0
t = 0.

• Case 1: Test X∗>β0
1 = 0 under model 1. Let X∗ = (1, x1, x2, x3)> be

the covariate of a new observation and β0
1 = (β0

10, β
0
11, β

0
12, β

0
13)> be the

true parameters. By setting x1 = x3 = 1 and x2 = −(β0
10 + x1β

0
11 +

x3β
0
13)/β0

12, we have X∗>β0
1 = 0.

• Case 2: Test X∗>1 β0
1 = 0 under model 4. We set x11 = x13 = −1 and

x12 = −(β0
10 + x11β

0
11 + x13β

0
13)/β0

12.
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We set n = 50, 100, 200, 400. Note that

X∗>t β̂t → N(X∗>t β0
t ,X

∗>
t It(β

0
t )
−1ΓtIt(β

0
t )Xt).

We use X∗>t Ît(β̂t)
−1Γ̂tÎt(β̂t)X

∗
t to estimate the variance of X∗>t β̂t, where Ît

and Γ̂t are the empirical estimators of It and Γt. For each case, we run the

simulation 1000 times, and for each replication, we compute the p-value

of X∗>t β̂t. P-value plots are given in Figures 3 and 4. We can see that

the p-values follow a uniform distribution in [0, 1], indicating that our tests

perform well in detecting nonsignificant treatment effects.

4.3 Type-I error comparison with Q-learning

We next assess the performance of the hypothesis tests, because it is often

of interest to investigate the significance of the coefficient parameters. Note

that in Models 3 and 4, we have β13 = β23 = 0. We then compute the type-I

error to test β13 = 0 and β23 = 0. In the optimization problems (2.7) and

(2.8), the decisions Ai are formularized as the weights of a weighted neg-

ative log-likelihood. Consequently, unlike Q-learning (Zhao et al. (2009)),

the objective functions for the estimation of the parameters become con-

tinuous functions, and parameter inferences become feasible, even without

the nonregularity condition. For comparison, we compute the same quan-

tities using the bootstrap scheme for Q-learning. Note that, in general, βij

Statistica Sinica: Preprint 
doi:10.5705/ss.202018.0076



5. APPLICATION TO STAR*D28

Model 3 Model 4

H0 : β13 = 0 H0 : β23 = 0 H0 : β13 = 0 H0 : β23 = 0

n Elearn Qlearn Elearn Qlearn Elearn Qlearn Elearn Qlearn

50 0.063 0.069 0.050 0.057 0.060 0.054 0.055 0.056

100 0.044 0.063 0.054 0.056 0.044 0.057 0.043 0.055

400 0.049 0.043 0.055 0.043 0.047 0.053 0.047 0.046

800 0.050 0.059 0.044 0.064 0.047 0.053 0.054 0.055

Table 4: Type-I error comparison using entropy learning and Q-learning,

where “Elearn” refers to entropy learning and “Qlearn” refers to Q-learning.

in entropy learning differs from the βij in Q-learning. However, in Mod-

els 3 and 4, x13 and x23 are not involved in the treatment selection part;

hence, the true β in both entropy learning and Q-learning is zero. Here,

the significance level α is set to 0.05, and we consider n = 50, 100, 400, 800.

The simulation is repeated 2000 times, and the results are given in Table

4. Most of the type-I errors using entropy learning are closer to α = 0.05,

indicating that our learning method can be more appropriate for testing

the significance of covariates.

5. Application to STAR*D

We consider a real-data example extracted from the Sequenced Treatment

Alternatives to Relieve Depression (STAR*D) study funded by the Na-

tional Institute of Mental Health. STAR*D is a multisite, prospective,
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randomized, multistep clinical trial of outpatients with nonpsychotic ma-

jor depressive disorder; see Rush et al. (2004) and Sinyor et al. (2010) for

further details on the study. The complete trial involved four sequential

treatment stages (or levels), and patients were encouraged to participate in

the next level of treatment if they failed to achieve remission or experience

an adequate reduction in symptoms.

During the first level of the STAR*D study, patients initially took the

antidepressant citalopram, a selective serotonin reuptake inhibitor (SSRI).

Those who did not experience a remission of symptoms for up to 14 weeks

had the option of continuing to level 2 of the trial, where they could explore

additional treatment options designed to help them become symptom-free

(Rush et al. (2006)). Because there was one single treatment for all patients

in level 1, we do not discuss these data further.

Level 2 of the study offered seven treatments: four “switched” options,

in which study participants changed from citalopram to a new medication or

talk therapy; and three “augmented” options, in which patients added a new

medication or talk therapy to the citalopram they were already receiving.

Data taken from Level 2 are treated as first-stage observations, and we

define A1 = −1 if the treatment option is a switch, and A1 = 1 if the

treatment option is an augmentation.
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During levels 1 and 2 of the STAR*D trial, which started with 2,876

participants, about half of all patients became symptom-free. The other half

were then eligible to enter level 3, where as in level 2, patients were given the

choice of either switching medications or adding to their existing medication

(Fava et al. (2006)). Data taken from level 3 of this trial are treated as

second-stage observations, and we define A2 = −1 if the treatment option

is a switch, and A2 = 1 if the treatment option is an augmentation.

After excluding cases with missing values, we obtain a sample of 316

patients whose medical information from the two stages are available. Of

the 316 patients, 119 are assigned to the augmentation group, and 197 are

assigned to the switch group in Stage 1. Then, 115 are assigned to the

augmentation group, and 201 are assigned to the switch group in Stage 2.

The 16-item Quick Inventory of Depressive Symptomatology-Self-Report

(QIDS-SR(16)) scores were obtained during treatment visits for the pa-

tients, and are considered the primary outcome variable in this study. To

accommodate our model, where the reward is positive and “larger is bet-

ter,” we used R = c−QIDS-SR(16) as the reward at each level, where c is

a constant that bounds the empirical QIDS-SR(16) scores. In this study,

we simply set c = 30 so that all QIDS-SR(16) scores are positive.

Following earlier analysts (e.g., Kuk et al. (2010, 2014)), we consider
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Chronic Gender Age GMC

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1

Switch 0.29 (0.03) 0.29(0.03) 0.51 (0.04) 0.46(0.04) 43.99 (0.88) 45.78(0.84) 0.59 (0.04)

Augmentation 0.26 (0.04) 0.26(0.04) 0.49 (0.05) 0.57(0.05) 44.76 (1.05) 41.65(1.11) 0.56 (0.05)

GMC Anxiety Week QIDS-SR(16)

Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Switch 0.62(0.03) 0.76 (0.03) 0.74(0.03) 9.21 (0.30) 7.48 (0.34) 14.96 (0.29) 14.54 (0.31)

Augmentation 0.51(0.05) 0.70 (0.04) 0.73(0.04) 9.64 (0.40) 9.35 (0.46) 13.45 (0.37) 12.77 (0.37)

Table 5: Summary statistics for the covariates in the STAR*D study: for

continuous variables, we report the means and standard deviations; for

dichotomous variables, we report proportions and standard deviations.

the following set of clinically meaningful covariates: (i) chronic depression

indicator, equal to one if the chronic episode > 2 years, and 0 otherwise;

(ii) gender, where male= 0 and female= 1; (iii) patient age (years); (iv) the

general medical condition (GMC), defined as one in presence of one or more

general medical conditions, and zero otherwise; (v) the anxious feature, de-

fined as one if the Hamilton Depression Rating Scale anxiety/somatization

factor score ≥ 7, and zero otherwise (Fava et al. (2008)). In addition, we

consider (vi) week, the number of weeks patients spent in the corresponding

stage when the QIDS-SR(16) scores at exit were determined, and (vii) the

baseline QIDS-SR(16) scores at the corresponding stages. These covariates

are summarized in Table 5.

We applied the methods introduced in this paper to estimate the covari-
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ate effects on the optimal treatment allocation for the patients in this study.

The fitted results under the entropy learning approach are given in Table

6. The table shows that the baseline QIDS-SR(16) score is a significant

predictor of whether a patient should be treated using the switch option or

the argumentation option in both stages. More specifically, given other co-

variates, if the patient has a higher baseline score, adopting a switch option

might have better medical outcome. In addition, for the Stage 2 analysis,

the baseline score, gender, age, and the treatment time are all significant

when determining the best treatment options. Interestingly, the treatment

time is significant and has a positive sign, indicating that, given other co-

variates, treatment argumentation might benefit the patients for a longer

term.

For comparison, using the same sets of covariates, the estimation results

based on Q-learning are given in Table 7, where the estimated confidence

intervals are obtained using the bootstrap procedure. Table 7 shows that

gender is identified as the only important factor for the treatment selection

at stage 2. This method may be less powerful than our proposed entropy

learning method, because it may miss potentially useful markers. Conse-

quently, Q-learning may not be able to achieve the most appropriate treat-

ment allocation using a set of important personalized characteristics identi-
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Stage 1 Stage 2

coefficient(sd) p-value coefficient(sd) p-value

Entropy learning

intercept 0.855 (0.987) 0.386 0.452 (0.792) 0.569

chronic -1.231 (0.455) 0.007 0.103 (0.314) 0.742

gender -0.604 (0.340) 0.859 0.702 (0.269) 0.009

age 0.001 (0.016) 0.950 -0.028 (0.012) 0.022

gmc 0.089 (0.359) 0.805 -0.121 (0.274) 0.658

anxious 0.095 (0.373) 0.799 0.235 (0.298) 0.431

week 0.066 (0.036) 0.071 0.089 (0.029) 0.002

qctot -0.084 (0.044) 0.056 -0.111 (0.034) 0.001

A1 - - 0.925 (0.273) 0.001

V̂i 59.617 (5.485) - 25.697 (1.325) -

Table 6: Entropy learning for the STAR*D study.

fied from a significance study. To compare the performance of the proposed

method with Q-learning in terms of the value function, we also compute

the estimated mean and standard deviation of the value functions, using

the fitted regimes obtained using our method and the Q-learning method;

see the V̂i values in Tables 6 and 7. We observe larger mean value functions

for our entropy learning approach, indicating that our treatment regime is

outperforming that of Q-learning in this data set.

The entropy learning approach may be incorrectly interpreted by some

practitioners. The fitted regression model should not be confused with an

ordinary association study, in which we fit unweighted logistic regression
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Stage 1 Stage 2

coefficient Lower Upper coefficient Lower Upper

Q-learning

intercept 0.99 -4.28 5.50 -2.17 -5.32 0.73

chronic -0.48 -2.31 1.33 -0.63 -1.75 0.48

gender 0.66 -0.80 2.24 1.30 0.37 2.28

age -0.03 -0.09 0.04 0.02 -0.03 0.07

gmc 0.06 -1.48 1.59 0.26 -0.83 1.39

anxious 1.35 -0.32 3.00 0.62 -0.45 1.65

week -0.14 -0.31 0.04 -0.07 -0.16 0.02

qctot -0.06 -0.24 0.14 -0.02 -0.16 0.11

A1 - - - 0.11 -0.44 0.66

V̂i 40.34 32.08 48.60 20.54 17.83 23.25

Table 7: Bootstrap confidence interval of Q-learning for the STAR*D study.

Lower: lower bound of the 95% confident interval; Upper: upper bound of

the 95% confident interval.
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models to the two stage data (see Table 8). In fact, the significant findings

from Table 8 only establish how covariates affect the likelihood of being

observed in a treatment, in lieu of the likelihood of being allocated the

most appropriate treatment.

Finally, because the original design at level 2 of the STAR*D trial was

an equipoise-stratified design, one potential source of confounding effects

could be due to a patients preference for the strata in the design. A further

examination of this issue should include a patients preference in the treat-

ment estimation strategies if we trust that patients selection of treatment

options (between switch and augmentation) within each stratum is random,

as assumed in the original equipoise-stratified design (Sinyor et al., 2010).

6. Discussion

Many open questions can be addressed using our proposed method. First,

the linear specification of the treatment allocation rule may be replaced with

a nonparametric formulation, such as a partly linear model or an additive

regression model. The implementation of such methods is now widely avail-

able in most statistical packages. More effort is required to establish similar

theoretical properties to those discussed here, and to achieve interpretable

results.
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Stage 1 Stage 2

coefficient(sd) p-value coefficient(sd) p-value

intercept 0.210 (0.740) 0.777 0.182 (0.772) 0.813

chronic -0.183 ( 0.279) 0.511 0.141 (0.296) 0.635

gender 0.012 (0.242) 0.961 0.537 (0.260) 0.039

age 0.010 (0.011) 0.352 -0.030 (0.012) 0.012

gmc -0.093 (0.259) 0.719 -0.219 (0.275) 0.425

anxious -0.117 (0.275) 0.671 0.096 (0.295) 0.744

week 0.032 (0.029) 0.269 0.098 (0.027) < 0.001

qctot -0.091 (0.030) 0.003 -0.104 (0.031) 0.001

A1 - - 0.851 (0.260) 0.001

Table 8: Ordinary association study for the STAR*D data using logistic

regression models.

Second, to carry out the clinical study and select the best treatment

using our approach, it is necessary to evaluate the required sample size

at the designing stage. Applying our theoretical results attained, we can

calculate the total number of subjects for every treatment group. However,

more empirical studies on various types of settings and data distributions

can provide stronger support for the suggestion based on the asymptotic

results.

Finally, missing values are quite common in a multi-stage analysis.

Most analysts follow the standard practice of excluding cases with miss-

ing observations, under the missing-at-random assumption. It is a difficult
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task to investigate why data are missing, and an even more difficult task to

address the problem when missing is not at random. We encourage further

research in this direction.
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Figure 2: Box plot of misclassification rates over 2000 replications.
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Figure 3: P-value of X>β̂1 under case 1 over 1000 replications.
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Figure 4: P-value of X>1 β̂1 under case 2 over 1000 replications.
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