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Abstract: We study robust Bayesian prediction problems using the posterior regret Γ-

minimax (PRGM) approach. We provide a unified theory for PRGM prediction un-

der a very general class of regret loss functions that includes the squared error, linear-

exponential, entropy and many other loss functions as special cases. We apply our results

to the problem of predicting unknown parameters for finite populations under different

superpopulation models (normal and non-normal, with or without auxiliary variables) and

several classes of prior distributions, including the commonly used ǫ-contaminated class

of priors. Our results are augmented with real-world applications and simulation studies.
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1. Introduction

The Bayesian approach provides an attractive methodology for inferences about

population parameters, and allows for prior information about the underlying prob-

lem to be incorporated in the analysis through the prior distribution. Perhaps the

main barrier in using the Bayesian approach is the subjectivity involved in choosing
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a single and completely specified prior distribution for the parameter of interest. In

other words, a practitioner who produces subjective Bayesian estimates might be

vulnerable to criticism, as in the case of the sampler who uses a purposive sampling

plan (Little, 2004). In general, there is no single method for choosing a prior distri-

bution. Thus, different users may produce different priors, and therefore arrive at

different posteriors and conclusions. In some situations, one might choose a family

of prior distributions that depends on some unknown hyperparameters. However,

as shown in Ghosh and Kim (1993), even in simple examples, failing to specify the

correct values of one or more of hyperparameters might have serious consequences,

from a Bayesian viewpoint. To address this issue, one solution is to use a robust

Bayesian approach by choosing a class Γ of plausible prior distributions for the

parameter of interest, obtaining Bayesian solutions that are relatively insensitive

to the uncertainty in determining the prior distribution. This is a common prac-

tice when the underlying problem must be solved by two or more decision-makers

(sources) who do not necessarily agree on which prior distribution to use. In ad-

dition, because any selected prior distribution is just an approximation of the true

and unknown prior distribution, sometimes it is better to choose a wide class of

prior distributions, rather than just one (Berger, 1984). A robust Bayesian anal-

ysis yields a range of Bayes estimators, and one needs to specify which of these

is most appropriate. In other words, it is interesting not only to investigate the

range of estimators, but also to construct optimal procedures. Several methods

can be used for this purpose, including the Γ-minimax (GM) (e.g., Berger, 1984),

conditional Γ-minimax (CGM) (e.g., Betro and Ruggeri, 1992), most stable (MS)

(e.g., Meczarski and Zielinski, 1991), and posterior regret Γ-minimax (PRGM)

(e.g., Rios Insua et al., 1995; Boratynska, 2006; Jafari Jozani and Parsian, 2008)

approaches, the last of which minimizes the maximal posterior regret in specifying

the optimum robust Bayes estimator/predictor.
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We consider the problem of a robust Bayesian prediction using the PRGM

approach under a very general class of loss functions and different classes of prior

distributions. We gear our methodology toward predicting unknown parameters

of finite population. However, our results are equally valid for other problems,

such as PRGM estimations in parametric inferences based on infinite populations.

To this end, we consider a finite population and adopt a model-based approach

that views the finite population as a sample from a superpopulation (parametric)

model, which depends on some unknown parameters. A sample of size n is selected

from this population, and the goal is to predict characteristics of the underlying

population, such as the population mean, total, variance, and so on. Bayesian

predictions of the finite population total and mean within the class of unbiased

and linear unbiased predictors have been studied by Godambe and Joshi (1965)

and Godambe (1955), respectively. More information about Bayesian inferences

for finite populations can be found in Hill (1968), Ericson (1969), Bolfarine (1990),

Hamner et al. (2001), Liu and Rong (2007), Kim and Saleh (2008), Ghosh (2008),

Pefeffermann and Rao (2009), Chen et al. (2012), and Si et al. (2015), and the

references there in. The need for a robust Bayesian analysis in survey sampling

has been recognized by many authors, including Godambe and Thompson (1971),

Ghosh and Kim (1993), Ghosh (2008), and Zangeneh and Little (2015). In the

context of a robust Bayesian approach in a finite population, Ghosh and Kim

(1993) use ML-II priors to obtain a robust Bayes predictor of the finite population

mean based on the posterior risk and robustness procedure suggested by Berger

(1984), and study its performance over a class of prior distributions under the

squared error (SE) loss function. To the best of our knowledge, no previous works

have examined PRGM predictions of the finite population parameters.

The reminder of the paper is organized as follows. In Section 2, we give some

definitions and preliminary results, and define the general class of loss functions
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that will be used throughout the paper. In Section 3, we obtain our main result

on the PRGM prediction of unknown parametric functions under general classes

of loss functions and prior distributions. In Section 4, we apply our method to

obtain PRGM predictors of the finite population mean and/or variance under

the SE and linear exponential (LINEX) loss functions and some classes of prior

distributions for normal and non-normal superpopulation models. In Section 5,

we provide real-world examples to predict finite population parameters such as

the mean and variance under normal and non-normal models. In addition, we

compare the estimated risk and bias of the PRGM and Bayes predictors under the

SE loss function using simulations. Lastly, Section 6 concludes the paper. Some

proofs and details of the derivations in the examples, as well as numerical results

for two real-data applications, are presented in the Supplementary Material.

2 Preliminaries

In this section, we give some notation and preliminary results, which are used

throughout the paper. Consider a finite population ofN units, denoted by an index

set U = {1, 2, . . . , N}, and suppose y = (y1, . . . , yN)
⊤ is the vector of unknown val-

ues associated with a characteristic of interest y. From U , a sample s = {i1, . . . , in}

of size n(s) = n is selected using the simple random sampling without replacement

(SRSWOR) method. A typical sample point is then the set of labels of units

contained in the observed sample, along with y(s) = (s,ys) =
(

s, (yi1 , . . . , yin )
⊤),

where yij is the observed value of the characteristic of interest for unit ij se-

lected in the sample. Using ys, we are interested in making inferences about

some unknown finite population quantities, γ(y), such as the population mean

γ1(y) =
1
N

∑N
i=1 yi = Ȳ and population variance γ2(y) =

1
N

∑N
i=1(yi − Ȳ )2.

We adopt a model-based approach (e.g., Little, 2004), where the finite pop-
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ulation y is assumed to be a realization from a superpopulation model f(y|θ)

that depends on some unknown parameters θ Thus, making inferences about

γ(y) reduces to the problem of predicting the outcomes of the non-sampled units

ys = {yi : i /∈ s}. We follow a robust Bayesian methodology, where one specifies a

class Γ of prior distributions for the superpopulation parameters θ. The posterior

predictive density, h(γ(y)|ys), the posterior distribution of γ(y) given the observed

data ys, is the basis for the inference about γ(y). This is a general setting that cov-

ers many situations not necessarily restricted to a finite-population context. For

example, to predict a future observation in its usual parametric setting, we have

a sequence of random variables y1, y2, . . . , yn, and we want to predict the future

random variable yn+1. Here, ys = (y1, . . . , yn)
⊤, ys̄ = yn+1 and γ(y) = ys̄ = yn+1.

Therefore, in each case, our goal is to predict some functions γ(y) using the pre-

dictors δ(ys).

Let L(γ(y), δ(ys)) be the loss function for predicting γ(y) using δ(ys). To

obtain a robust Bayesian predictor of γ(y), one needs to calculate the posterior

risk of δ = δ(ys) for a given prior π ∈ Γ, as follows:

ρ(π, δ) = E[L(γ(y), δ(ys))|ys]. (2.1)

Then, the posterior risk (2.1) is minimized over the class of all possible predic-

tors D when the prior distribution is also changing in Γ. One may also attempt

to determine an optimal predictor by minimizing measures such as the maximal

posterior regret, defined below (e.g., Berger, 1990).

Definition 2.1. δPRGM
Γ is a PRGM predictor of γ(y) if supπ∈Γ R(δPRGM

Γ , δπ) =

infδ∈D supπ∈ΓR(δ, δπ), where

R(δ, δπ) = ρ(π, δ)− ρ(π, δπ) (2.2)
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is the posterior regret due to the loss of optimality caused by using δ instead of the

Bayes predictor δπ.

In order to obtain robust Bayes predictors of γ(y), one needs to specify a loss

function L(γ(y), δ(ys)) to measure the error made in predicting γ(y) using δ(ys).

We introduce a general class of loss functions L(γ(y), δ), where L is assumed to be

a strictly bowl-shaped (BS) function of both γ(y) and δ, with a unique minimum

at δ = γ(y), that satisfies some additional conditions. Note that f(t) is called a

strictly BS function on its domain if, as a function of t, it first decreases and then

increases, with a unique minimum at t0. In other words, f ′(t) < 0 for all t < t0,

and f ′(t) > 0 for t > t0. Obviously, any convex loss function is a BS function.

Definition 2.2. Consider a class Γ of prior distributions on an unknown param-

eter θ. Suppose π ∈ Γ, and let R(δ, δπ) be the posterior regret, as in (2.2), where

δπ is the Bayes estimator of γ(y) with respect to π. Suppose L is a class of loss

functions L(γ(y), δ) : R2 −→ R
+, such that L is a BS function of both γ(y) and

δ. We call L a class of regret loss functions if

R(δ, δπ) = L(δπ, δ). (2.3)

One can easily show that many commonly used loss functions satisfy (2.3);

see Table 1. In the following result, we obtain a necessary condition for a strictly

BS loss function to satisfy (2.3). Assume that the predictive distribution of γ(y)

given ys, say h(γ(y)|ys), is not trivial, that is, it is degenerate, because the result

is always true for degenerate h(γ(y)|ys). Now, we have the following result, which

is proved in the Supplementary Material.

Lemma 2.3. Suppose δπ(ys) is the Bayes predictor of γ(y) under a strictly BS loss

function L(γ(y), δ) with respect to a prior distribution π. Suppose the posterior
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Table 1: Examples of regret loss functions with associated PRGM predictors, where δ = infπ∈Γ δπ and

δ = supπ∈Γ δπ, with δπ being the Bayes predictor w.r.t. the underlying loss function.

Loss function L(γ(y), δ) PRGM predictor

Squared Error Loss (SEL) (δ − γ(y))2 δ+δ
2

Zen and DasGupta (1993)

Linear Exponential Loss b{ec(δ−γ(y)) − c(δ − γ(y))} − 1 −1
c
log e−cδ−e−cδ

−c(δ−δ)

(LINEX) c 6= 0, b > 0 Boratynska and Drozdowicz (1999)

Entropy Loss (EL)
γ(y)
δ

− ln γ(y)
δ

− 1 δ−δ

ln δ−ln δ

Jafari Jozani and Parsian (2008)

Stein’s Loss (SL)
δ

γ(y)
− ln δ

γ(y)
− 1

ln 1
δ
−ln 1

δ
1
δ
− 1

δ

Jafari Jozani and Jafari Tabrizi (2013)

Square Log Error Loss (ln δ − ln γ(y))2
√

δδ

(SLEL) Kiapour and Nematollahi (2011)

h-Loss (HL) (h(δ)− h(γ(y)))2 h−1
(

h(δ)+h(δ)
2

)

Jafari Jozani et al. (2012)

Intrinsic Loss (IL) ln β(γ(y))
β(δ)

+ (δ − γ(y))β
′(γ(y))
β(γ(y))

δH(δ)−δH(δ)−ln
β(δ)
β(δ)

H(δ)−H(δ)

β(.) > 0 Jafari Jozani and Jafari Tabrizi (2013)

predictive distribution h(γ(y)|ys) is not degenerate. Then, (2.3) does not hold for

any strictly BS loss function L(γ(y), δ) that is bounded.
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3 PRGM predictors of γ(y) under the regret loss

functions

In this section, we obtain PRGM predictors of γ(y) under regret loss functions

and a general class Γ of priors. PRGM predictors are constructed to minimize the

maximum posterior regret in predicting γ(y). The posterior regret in a Bayesian

analysis is essentially the difference between the posterior risk associated with the

best predictor that could have been used if we knew the true prior distribution

in Γ and the posterior risk of the predictor that was actually used. Using the

minimax strategy, we choose a predictor that minimizes the maximum of this

posterior regret within the class of all predictors when the prior distribution varies

in Γ. This helps to protect against the effects of priors that are causing the worst

posterior risk. The key result of this section is given in the following theorem,

which is proved in the Supplementary Material.

Theorem 3.1. Suppose L(γ(y), δ) is a regret loss function. Let y be a random vec-

tor with pdf f(y|θ). Suppose θ has a prior distribution with a pdf π(·) that belongs

to a class Γ of priors, and D is the class of all predictors. Let δ(ys) = infπ∈Γ δ
π(ys)

and δ(ys) = supπ∈Γ δ
π(ys) be finite, where δπ(ys) is the Bayes predictor of γ(y)

with respect to π ∈ Γ under the loss function L(γ(y), δ). The PRGM predictor of

γ(y), denoted by δp(ys), is given as a solution to the following equation:

L(δ(ys), δ
p(ys)) = L(δ(ys), δ

p(ys)), for all ys ∈ R
n. (3.1)

If the solution to (3.1) is not unique, the PRGM predictor is chosen as the solution

that results in the minimum L(δ(ys), δ
p(ys)).

Table 1 provides the PRGM predictors of γ(y) under a general class of prior

distributions Γ for some commonly used loss functions in the literature.
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Remark 3.2. In some cases, the posterior regret function (2.2) has the following

form:

R(δ(ys), δ
π(ys)) = k(ys, α)L(δ

π(ys), δ(ys)),

where k(ys, α) is a function of ys and α, with α being a hyperparameter associated

with the prior distribution πα in the class Γ of priors. When k(ys, α) does not

depend on α, that is, k(ys, α) = k∗(ys), then, similarly to the proof of Theorem

3.1, it can be shown that the PRGM predictor of γ(y) is the solution to equation

(3.1). For example, suppose the loss function is given by

Lw(γ(y), δ) =

[

(

δ

γ(y)

)w/2

−

(

γ(y)

δ

)w/2
]2

=

(

δ

γ(y)

)w

+

(

γ(y)

δ

)w

− 2.

Then, the Bayes predictor of γ(y) is given by δπ(ys) = 2w

√

E(γw(y)|ys)
E(γ−w(y)|ys)

, and one

can easily show that

R(δ(ys), δ
π(ys)) =

√

E(γw(y)|ys)

E(γ−w(y)|ys)
Lw(δ

π(ys), δ(ys))

= K(ys, πα) Lw(δ
π(ys), δ(ys)).

Now, if K(ys, πα) does not depend on the hyperparameter α, then the PRGM

predictor of γ(y) is the solution to equation (3.1), and is given by δp(ys) =
√

δ(ys) δ(ys).

4 PRGM prediction under various superpopula-

tion models

In this section, we use Theorem 3.1 to find PRGM predictors of characteristics of

finite populations, such as the mean and the variance, under some regret loss func-

tions and various normal and non-normal superpopulation models, with or without



10

using auxiliary variables. First, we consider the prediction of the finite-population

mean and variance when the underlying population is assumed to be generated

from a normally distributed superpopulation. We then study the problem when

auxiliary variables are also used in the prediction process. Finally, we provide re-

sults for a PRGM prediction for a non-normal superpopulation model. Note that

results can be obtained for any population parameters. However, we only present

those related to predicting the population mean and variance, because these are

the two main parameters of interest in many finite-population studies.

4.1 PRGM prediction of the mean (normal model without auxiliary

variables)

Consider the superpopulation model (Ghosh and Kim, 1993)

yi = θ + εi, εi ∼ N(0, σ2), i = 1, . . . , N, (4.1)

where εi, for i = 1, . . . , N , is i.i.d. Suppose σ2 is known and θ is distributed accord-

ing to a N(µ, τ 2) distribution. We find the PRGM predictors of the mean γ1(y)

under the SE and LINEX loss functions and three classes of prior distributions.

Let M = σ2/τ 2, B = M/(M + n), ys = n−1
∑n

i=1 yi, and ys = {yi : i /∈ s}. It is

easy to see that

ys|ys ∼ MN

(

{ys − B(ys − µ)}1N−n, σ
2(IN−n + (M + n)−1JN−n)

)

, (4.2)

where MN denotes a multivariate normal distribution, 1N−n is a vector of ones,

IN−n is the identity matrix, and JN−n = 1N−n1
′

N−n. Using (4.2), the conditional

distribution of γ1(y) given ys is given by

γ1(y)|ys ∼ N

(

ys − (1− f)B(ys − µ),
σ2(1− f)

n
(1− (1− f)B

)

, (4.3)

where f = n/N . In general, choosing an appropriate class Γ of priors for posterior

robustness is important. The ultimate goal is to choose a large Γ to ensure that
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nothing is left out, while also ensuring that Γ is not so large that posterior ro-

bustness is not achievable. As suggested by Berger (1990), the process of a robust

Bayesian analysis should be regarded as a data-interactive process in which we

start with a perhaps very large Γ, check the robustness, and progressively refine Γ

(if needed) until robustness is achieved. In this section, we consider the following

classes of prior distributions for θ in (4.1):

Γµ = {π : π is N(µ, τ 20 );µ1 ≤ µ ≤ µ2, τ 20 is a known constant},

Γτ2 = {π : π is N(µ0, τ
2); τ 21 ≤ τ 2 ≤ τ 22 , µ0 is a known constant},

Γǫ = {π : π = (1− ǫ)π0 + ǫ q, q ∈ Q}.

Classes Γµ and Γτ2 are appealing because they are very easy to work with (cf.,

Goldstein, 1980; Berger, 1985). However, they often fail to include many priors

that are plausible. For example, they do not admit much variation in the prior

tails, and hence may provide the illusion that robustness is obtained. In such

situations, one might consider Γǫ as a very rich and flexible alternative class of prior

distributions (e.g., Berger, 1985), where π0 is a base prior, q is a contamination,

Q is a class of plausible distribution functions, and 0 ≤ ǫ ≤ 1 reflects the amount

of contamination.

Example 4.1. (SE and LINEX loss functions) Under the SE loss function, using

(4.3), and as we show in the Supplementary Material, the PRGM predictors of the

population mean γ1(y) =
1
N

∑N
i=1 yi under Γµ, Γτ2, and Γǫ are give, respectively,

by

δPRGM
µ (ys) = ys − (1− f)B0(ys −

µ1 + µ2

2
), (4.4)

δPRGM
τ (ys) = ys − (1− f)(ys − µ0)(

B1 +B2

2
), (4.5)

δPRGM
ǫ (ys) = fys +

(1− f)

2

(

aδ0(ys) + θlf(ys|θl)

a+ f(ys|θl)
+

aδ0(ys) + θuf(ys|θu)

a+ f(ys|θu)

)

,

(4.6)
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where Bi = σ2

σ2+nτ2i
, for i = 0, 1, 2, and δ0(ys) = Eπ0(θ|ys). In addition, a =

1−ǫ
ǫ
m(ys|π0), with m(ys|π0) being the marginal (predictive) density of ys under the

prior distribution π0, and θξ =
σ√
n
νξ + ys, ξ ∈ {l, u}, where νl and νu are solutions

to the following equation in ν, for some specific values of c and b defined in the

Supplementary Material for Example 4.1:

e−ν2/2 − cν2 − bν + c = 0. (4.7)

One can see that δPRGM
µ is a Bayes predictor of γ1(y) with respect to (w.r.t.)

πµ∗ ∈ Γµ, with a µ∗ = µ1+µ2

2
∈ [µ1, µ2]. Similarly, δPRGM

τ is a Bayes predictor of

γ1(y) w.r.t. πτ2∗ ∈ Γτ2, with τ 2∗ =
2nτ21 τ

2
2+σ2(τ21+τ22 )

2σ2+nτ21+nτ22
(τ 21 ≤ τ 2∗ ≤ τ 22 ). Furthermore,

δPRGM
ǫ (ys) can be considered a compromise between the Bayes predictor under the

prior distribution π0 (associated with ǫ = 0, corresponding to the case where one

is very confident in π0) and the predictor obtained as the mid-range of the class of

Bayes predictors under the ǫ-contaminated class of priors when ǫ is close to one.

Under the LINEX loss function, the PRGM predictors of the population mean

γ1(y) under Γµ, Γτ2, and Γǫ are given, respectively, by

δPRGM
µ (ys) = ys −

c(1− f)σ2

2n
(1− (1− f)B0)

−
1

c
ln

ecB0(1−f)(ys−µ1) − ecB0[(1−f)(ys−µ2)

c(µ2 − µ1)(1− f)B0
(4.8)

δPRGM
τ (ys) = ys −

c(1− f)σ2

2n

−
1

c
ln

ecB2[(1−f)(ys−µ0)− c(1−f)2σ2

2n
] − ecB1[(1−f)(ys−µ0)− c(1−f)2σ2

2n
]

c(B2 − B1)[(1− f)(ys − µ0)−
c(1−f)2σ2

2n
]

, (4.9)

δPRGM
ǫ (ys) = fys −

cσ2(1− f)2

2(N − n)
−

1

c
ln

a0+e−c(1−f)θuf(ys|θu)
a+f(ys|θu) − a0+e−c(1−f)θlf(ys|θl)

a+f(ys|θl)

ln a0+e−c(1−f)θuf(ys|θu)
a+f(ys|θu) − ln a0+e−c(1−f)θlf(ys|θl)

a+f(ys|θl)

,

(4.10)
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where νl and νu are obtained numerically as solutions to a nonlinear equation in

ν; see the Supplementary Material.

4.2 PRGM prediction of the variance (normal model without auxiliary

variables)

Here, we consider model (4.1), assuming that both θ and σ2 are unknown, and

obtain the PRGM predictors of the population variance γ2(y) = 1
N

∑n
i=1(yi −

γ1(y))
2 under the SE loss function and two classes of prior distributions. Let the

prior distribution for σ2 be the inverse gamma distribution IΓ(α, β), with known

α and β, while we choose a noninformative prior for θ with density π(θ) = 1, for

θ ∈ R, resulting in π(θ, σ2) ∝ σ−2(α+1)e
−β
σ2 . Let A = 1

2

∑

i∈s(yi − ys)
2 + β, Ai =

1
2

∑

i∈s(yi−ys)
2+βi, for i = 0, 1, 2, ȳs̄ =

1
N−n

∑

i/∈s yi, s
2 = 1

n−1

∑

i∈s(yi− ȳs)
2, and

s2s̄ =
1

N−n−1

∑

i/∈s(yi−ȳs̄)
2. It can be shown that E(θ|ys) = ȳs, V (θ|ys) =

2A
n(n+2α−3)

,

and π(θ, σ2|ys) = c( 1
σ2 )

n+2α+2
2 exp{− 1

σ2 (A+ n
2
(ȳs − θ)2)}, where c =

√

n
2π

A
n+2α−1

2

Γ(n+2α−1
2

)
.

In addition,

N
∑

i=1

(yi − Ȳ )2 = (n− 1)s2 + (N − n− 1)s2s̄ + (f 2 + (1− f)2)(ȳs − ȳs̄)
2, (4.11)

where ȳs̄, s2, and s2s̄, given θ and σ2, are distributed according to N(θ, σ2

N−n
),

Γ(n−1
2
, 2σ2

n−1
), and Γ(N−n−1

2
, 2σ2

N−n−1
), respectively. By first taking the expectation

of (4.11), conditional on θ, σ2, and ys, and then calculating the expectation w.r.t.

the posterior distribution of (θ, σ2) given ys, one can easily see that

E

[

N
∑

i=1

(yi − Ȳ )2
∣

∣

∣

∣

ys

]

=
∑

i∈s
(yi − ys)

2 +
2AN

n+ 2α− 3
N0,

with N0 = N−n−1
N

+ (f2+(1−f)2)
n(N−n)

. Now, the Bayes predictor of γ2(y) under the SE

loss function is

δπ(ys) =
1

N

∑

i∈s
(yi − ys)

2 +
2A

n+ 2α− 3
N0. (4.12)
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We consider the following classes of prior distributions for σ2:

IΓα = {π : π is IΓ(α, β0);α1 ≤ α ≤ α2, β0 is a known constant},

IΓβ = {π : π is IΓ(α0, β); β1 ≤ β ≤ β2, α0 is a known constant}.

Under IΓα, the Bayes predictor of γ2(y) is given by (4.12) when A is replaced with

A0. From Table 1, the PRGM predictor of γ2(y) under the SEL loss function is

obtained as follows:

δPRGM
α (ys) =

1

N

∑

i∈s
(yi − ys)

2 +
2A0

n + 2α∗ − 3
N0, (4.13)

where α∗ =
2α1α2+(n−3)

α1+α2
2

(n−3)+α1+α2
. Note that δPRGM

α (ys) is a Bayes predictor of γ2(y)

w.r.t. πα∗ ∈ IΓα, with α∗ ∈ [α1, α2]. Under IΓβ, the Bayes predictor of γ2(y)

under the SE loss function is given by (4.12), where α is replaced with α0. Using

Table 1, one can easily show that the PRGM predictor of γ2(y) is

δPRGM
β (ys) =

1

N

∑

i∈s
(yi − ys)

2 +
2A∗

n+ 2α0 − 3
N0,

where A∗ = 1
2

∑

i∈s(yi − ys)
2 + β∗ and β∗ = β1+β2

2
. Here again, δPRGM

β is a Bayes

predictor of γ2(y) w.r.t. πβ∗ ∈ IΓβ∗ , (β1 ≤ β∗ ≤ β2).

4.3 PRGM prediction of the mean (normal model with auxiliary vari-

ables)

In many populations, particularly those that have been previously sampled or

surveyed, a frame of units is available, along with some auxiliary data on each unit.

In other cases, a full frame of all units is not available, but can be constructed by

sampling in stages and assembling a partial frame at each stage. In both single

and multi-stage sampling designs, auxiliary data may be used to construct efficient

estimators of population parameters such as the population total and mean. A
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superpopulation model is often used to formalize the relationship between a target

variable and the auxiliary data. To this end, quantities of interest are modeled as

realizations of random variables with a particular joint probability distribution. A

frequently used model in survey sampling is

yi = βxi + εi, εi ∼ N(0, σ2), i = 1, . . . , N, (4.14)

where xi is the value of the auxiliary variable and εi is i.i.d. To perform a Bayesian

analysis, one can use prior information that often exists in survey sampling in the

form of auxiliary variables through administrative records. The Bayesian approach

uses this auxiliary information explicitly through prior distributions for finite-

population parameters, that is, distributions that relate these parameters and

the auxiliary variables. It is common to assume that in model (4.14), xi (and

hence
∑N

i=1 xi) and σ2 are known and β follows a N(µ, τ 2) distribution. Let xs =

{xi : i ∈ s}, xs̄ = {xi : i /∈ s}, bs =
∑

i∈s xiyi, ds =
∑

i∈s x
2
i , cs =

∑

i 6∈s x
2
i , and

as =
∑

i 6∈s xi =
∑N

i=1 xi −
∑

i∈s xi. Then, one can easily show that the posterior

distribution of ys, given ys and xs, is a multivariate normal distribution

MN

(

((1− Bs)µ+
bs
ds
Bs)xs, σ

2(IN−n +
Bs

ds
xsx

⊤
s )

)

, (4.15)

where Bs =
τ2ds

σ2+τ2ds
. Using (4.15), we can show that

γ1(y)|ys,xs ∼ N

(

fys + ((1−Bs)µ+
bs
ds
Bs)

as
N

,
σ2

N2
((N − n) +

Bs

ds
a2s)

)

.(4.16)

Thus,

E(γ1(y)|ys,xs) = fys + ((1− Bs)µ+
bs
ds
Bs)

as
N
,

V (γ1(y)|ys,xs) =
σ2

N2
((N − n) +

Bs

ds
a2s), (4.17)
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and

−
1

c
lnE(e−cγ1(y)|ys,xs) = fys + ((1−Bs)µ+

bs
ds
Bs)

as
N

−
1

2
c
σ2

N2
((N − n) +

Bs

ds
a2s). (4.18)

We consider the Γµ, Γτ2 , and Γǫ classes of prior distributions for β in (4.14). In the

following examples, we obtain the PRGM predictors of γ1(y) =
1
N

∑N
i=1 yi under

the SE and LINEX loss functions.

Example 4.2. (SE and LINEX loss functions) Under the SE loss function, as

shown in the Supplementary Material, the PRGM predictors of the population mean

under the Γµ, Γτ2, and Γǫ classes of priors are obtained, respectively, by

δPRGM
µ (ys) = fys +

(

(1−Bs0)(
µ1 + µ2

2
) +

bs
ds
Bs0

)

as
N
, (4.19)

δPRGM
τ (ys) = f ȳs +

as
N
µ0 +

as
N

(

bs
ds

− µ0

)

(
Bs1 +Bs2

2
), (4.20)

δPRGM
ǫ (ys) = fys +

(1− f)x̄s̄

2

(

aδ0(ys) + βlf(ys|βl)

a + f(ys|βl)
+

aδ0(ys) + βuf(ys|βu)

a+ f(ys|βu)

)

,

(4.21)

where a is defined as in Example 4.1, Bsi =
τ2i ds

σ2+τ2i ds
, for i = 0, 1, 2, and δ0(ys) =

Eπ0(β|ys). Furthermore, βξ = σ√
ds
νξ +

bs
ds
, ξ ∈ {l, u}, where νl and νu are ob-

tained as solutions to a nonlinear equation in ν; see the Supplementary Material

for Example 4.2. Here again, we show that δPRGM
µ (ys) and δPRGM

τ (ys) are Bayes

estimators with specific choices of prior distributions within Γµ and Γτ2, respec-

tively. Under the LINEX loss function, the PRGM predictors of the population
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mean under the Γµ, Γτ2, and Γǫ classes of priors are obtained, respectively, by

δPRGM
µ = f ȳs + asbs

Bs0

Nds
−

cσ2

2N2

(

(N − n) +
Bs0

ds
a2s

)

−
1

c
ln

e
−
cas
N

(1−Bs0)µ2

− e
−
cas
N

(1−Bs0)µ1

−c
1

N
as(1− Bs0)(µ2 − µ1)

, (4.22)

δPRGM
τ = f ȳs +

as
N
µ0 −

cσ2

2N
(1− f)

−
1

c
ln

e
−cBs1(

as
N

(
bs
ds

−µ0)−
cσ2

2N2

a2s
ds

)

− e
−cBs2(

as
N

(
bs
ds

−µ0)−
cσ2

2N2

a2s
ds

)

−c(Bs1 − Bs2)(
as
N
(
bs
ds

− µ0)−
cσ2

2N2

a2s
ds
)

, (4.23)

δPRGM
ǫ = fys −

cσ2(1− f)2

2(N − n)
−

1

c
ln

b0+e−c(1−f)βux̄s̄f(ys|βu)
a+f(ys|βu)

− b0+e−c(1−f)βlx̄s̄f(ys|βl)
a+f(ys|βl)

ln b0+e−c(1−f)βux̄s̄f(ys|βu)
a+f(ys|βu)

− ln b0+e−c(1−f)βlx̄s̄f(ys|βl)
a+f(ys|βl)

,

(4.24)

where t = E(e−c(1−f)βx̄s̄ |ys) and b0 = at. In addition, to calculate βl and βu,

one needs to numerically solve for νl and νu as solutions to a nonlinear equation,

defined in the Supplementary Material.

4.4 PRGM prediction of the mean (non-normal population)

In many applications, such as business surveys dealing with income data and some

medical research, the underlying variable of interest is a positive and continuous

random variable with a right-skewed distribution. In such cases, using normal

models is not appropriate, and one might decide to use other densities, such as the

gamma model (e.g., Engelhardt and Bain, 1977, Glaser, 1973, and Gross and Clark,

1975). In this section, we assume that our sample is taken from a superpopulation

that is distributed according to a gamma model. In other words, given θ, suppose
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y1, . . . , yN are conditionally independent, with

yi|θ ∼ Γ(α, θ), i = 1, . . . , N, (4.25)

where α is assumed to be known. Therefore, we have

f(yi|θ) =
θαyα−1

i e−θyi

Γ(α)
, i = 1, . . . , N,

and T =
∑

i/∈s yi, given θ, has a Γ((N−n)α, θ) distribution. We obtain the PRGM

predictors of the population mean γ1(y) =
1
N

∑N
i=1 yi under the SE loss function

and two classes of prior distributions for θ. Let θ ∼ Γ(a, b), with known a and b,

C =
∑

i∈s yi + b, and Ci =
∑

j∈s yj + bi, for i = 0, 1, 2. It is easily shown that

f(T = t|ys) =
Γ((N − n)α + nα + a)

Γ((N − n)α)Γ(nα + a)

(C
t
)nα+a+1

C(1 + C
t
)(N−n)α+nα+a

.

Using the change of variable U = (1+ T
C
)−1, we obtain the distribution of U given ys

as Beta(nα + a, (N − n)α); thus, E(T |ys) = CE(1−U
U

|ys) = C (N−n)α
nα+a−1

. Hence, the

Bayes predictor of γ1(y) under the SE loss function is as given as follows:

δπ(ys) =
1

N

∑

i∈s
yi +

1

N
C

(N − n)α

nα + a− 1
. (4.26)

We consider the following classes of prior distributions for θ in (4.25):

Γa = {π : π is Γ(a, b0); a1 ≤ a ≤ a2, b0 is a known constant},

Γb = {π : π is Γ(a0, b); b1 ≤ b ≤ b2, a0 is a known constant}.

Over Γa, the Bayes predictor of γ1(y) under the SE loss function is given by (4.26)

when C is replaced with C0 =
∑

j∈s yj + b0. The PRGM predictor of γ1(y) is then

obtained as follows:

δPRGM
a (ys) =

1

N

∑

i∈s
yi +

1

N
C0

(N − n)α

nα + a∗ − 1
, (4.27)
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where a∗ =
a1a2+nα

a1+a2
2

− a1+a2
2

nα+
a1+a2

2
−1

. Note that δPRGM
a (ys) is a Bayes predictor of γ1(y)

w.r.t. πα∗ ∈ Γa. Under the class Γb of priors, the Bayes predictor of γ1(y) is given

by (4.26), with a replaced with a0. In addition, the PRGM predictor of γ1(y)

is given by δPRGM
b (ys) =

1
N

∑

i∈s yi +
1
N
C∗ (N−n)α

nα+a0−1
, where C∗ =

∑

i∈s yi + b∗ and

b∗ = b1+b2
2

. Here again, δPRGM is a Bayes predictor of γ1(y) w.r.t. πb∗ ∈ Γb∗ .

5 Real-data applications and simulation studies

In this section, we study the performance of the PRGM predictors of the popu-

lation mean and/or variance with respect to several classes of prior distributions

compared with their corresponding Bayes predictors under the commonly used SE

loss function and different superpopulation models. To this end, we consider three

data sets for the prediction:

(1) the average and the variance of the weight loss of 579 participants in a special

diet program in a clinical study in Iran;

(2) the average weight of 224 seven-month-old sheep at the Research Farm of

Ataturk University, Erzurum, Turkey (Ozturk et al., 2005; Jafaraghaie and

Nematollahi, 2018); and

(3) the average remission time (in months) of 128 patients with bladder cancer

from a study conducted by the American Cancer Society (Lee and Wang,

2003; Lemonte and Cordeiro, 2013).

The first study deals with model (4.1), associated with a normal superpopula-

tion model without auxiliary information, while the second study considers model

(4.14), using an auxiliary variable. Finally, our third study deals with model (4.25),

based on a gamma distribution as an example of a non-normal superpopulation
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model. We present the results for the first application in this paper; details of

the second and third applications are presented in the Supplementary Material.

In our first application, we study a finite population consisting of the weight loss

measurements of 579 participants enrolled in a special diet program in a clinical

study in Isfahan city of Iran in 2006. The weight loss is computed as the difference

between the weight of each person before starting the program and after finishing

it. Because the normality assumption for the weight loss was not rejected using

the Kolmogorov-Smirnov test with a p-value = 0.514, we assume that our data set

is a realization of a normal superpopulation model N(θ, σ2), with θ = 3.82295 and

σ2 = 6.499586, which are obtained using the maximum likelihood approach.

We would like to predict the average and variance of the weight loss due to the

special diet. The doctors who are involved with this study have previous informa-

tion from similar research conducted by the clinic, and they want to incorporate

this information in the prediction process. The Bayesian methodology can be used

to express a doctor’s previous experience as suitable classes of prior distributions

in the analysis. We do this by incorporating their information in the prediction

process using Bayesian and robust Bayesian approaches. For the PRGM predic-

tion of the population mean and variance, we choose reasonable classes of prior

distributions for θ and σ2, instead of working with completely determined prior

distributions, and obtain the PRGM predictors of the mean and the variance of the

weight loss. We also obtain the bias and variance associated with each prediction

using simulation studies.
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5.1 Predicting the average weight loss

To predict the finite-population mean, we consider a single prior distribution

N(µ0 = 6, τ 20 = 0.5), as well as three classes of prior distributions for θ, denoted

by Γµ = {N(µ, τ 20 ) : µ ∈ [2, 8]}, Γτ2 = {N(µ0, τ
2) : τ 2 ∈ [0.1, 0.7] ⊆ R

+}, and

Γǫ = {π = (1− ǫ)π0+ ǫ q : π0 ∼ N(6, 0.5), q ∼ N(8, 0.3)}, ǫ = 0.5}. We obtain the

usual Bayes predictor (δ
π
µ0,τ

2
0 with µ0 = 6 and τ 20 = 0.5), the PRGM predictor over

the class Γµ (δPRGM
Γµ

), the PRGM predictor over the class Γτ2 (δPRGM
Γ
τ2

), and the

Bayes and PRGM predictors over the class Γǫ (δ
π
Γǫ
, δPRGM

Γǫ
). Table 2 summarizes

the predicted values under the SE loss function for a fixed sample size n = 50.

As shown the PRGM predicted values are closer to the true mean weight loss,

that is, 3.82295, than are their corresponding Bayes predictors. To obtain the bias

Table 2: The PRGM predicted values of the finite-population mean over Γµ, Γτ2 , and Γǫ under the SE loss

function. Corresponding Bayes predictions are obtained under a N(6, 0.5) prior distribution.

δ
π
µ0,τ2

0 δPRGM
Γµ

δPRGM
Γ
τ2

δπΓǫ
δPRGM
Γǫ

4.753405 4.564885 4.68362 4.239414 3.972537

and precision associated with each prediction, we perform simulation studies. To

this end, by considering the weight loss data as a realization of a superpopula-

tion model, we extract samples from the underlying model in order to compute

the predictors, MSEs, and biases. We repeat this process 10000 times, and cal-

culate the estimated MSE (EMSE) and absolute bias (EAB) of each predictor.

To study the effect of the sample size, we repeat our study with different sample

sizes, n = 20, 30, and 50, for comparison. In addition, we study the effect of µ0

and τ 20 on the performance of the Bayes predictors compared with their corre-

sponding PRGM predictors under the Γµ, Γτ2, and Γǫ classes of priors. To this

end, we consider π0 ∼ N(µ0, τ
2
0 ), with µ0 = 2, 4, 6, and 8 and τ 20 = 0.1, 0.3, 0.5,
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and 0.7. Furthermore, we use the following four ǫ-contaminated classes of prior

distributions corresponding to different choices of π0 and q, and study the PRGM

prediction with different values of contamination ǫ ∈ {0, 0.2, . . . , 0.8, 1}:

1. Γ1
ǫ = {π : π = (1− ǫ)N(6, 0.3) + ǫN(5, 0.2)},

2. Γ2
ǫ = {π : π = (1− ǫ)N(6, 0.3) + ǫN(8, 0.3)},

3. Γ3
ǫ = {π : π = (1− ǫ)N(6, 0.5) + ǫN(5, 0.2)},

4. Γ4
ǫ = {π : π = (1− ǫ)N(6, 0.5) + ǫN(8, 0.3)},

To calculate the PRGM predictors, we use the necessary expressions developed in

Example 4.1, where Γi
ǫ, i = 1, . . . , 4, and the necessary values of νl and νu are

obtained numerically as solutions to the corresponding nonlinear equations (4.7).

We perform simulation studies using the following steps in order to calculate the

precision and bias associated with each prediction:

1. Generate ǫ∗1, ǫ
∗
2, . . . , ǫ

∗
n from a N(0, 6.499586) distribution.

2. Create y∗i = 3.822954 + ǫ∗i and consider y∗i , for i = 1, . . . , n, as samples

generated from the underlying superpopulation model.

3. Calculate the Bayes and PRGM predictors.

4. Repeat steps 1–3 b = 104 times, and calculate the values of EMSE and

EAB for each predictor using the following formula:

EMSE =
1

b

b
∑

i=1

(δ̂ki − Ȳ )2, EAB = |
1

b

b
∑

i=1

(δ̂ki − Ȳ )|, k = Bayes, PRGM,

where δ̂ki is the predictor in the ith repetition of the sampling, and Ȳ is the

population mean.
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Tables 3 and 4 present the EMSEs and EABs of the Bayes and the corresponding

PRGM predictors under Γµ and Γτ2 , respectively. From Table 3, we observe that

for small and large values of µ0 (µ0 = 2, 6, 8) [moderate values of µ0 (µ0 = 4)] and

all values of τ 20 , the PRGM predictors [the Bayes predictors] perform reasonably

well compared with their corresponding Bayes predictors [the PRGM predictors]

in terms of the EMSE and EAB. This is a useful observation, because for the

Bayesian prediction, one needs to specify a prior distribution, which might be

difficult to do in practice. However, the PRGM predictor works with a class of

plausible priors, and still performs as well as the Bayesian approach. From Table

4, we observe that for all values of τ 20 and large values of µ0 (µ0 = 6, 8), and for

large values of τ 20 and moderate values of µ0 (τ
2
0 = 0.5, 0.7 and µ0 = 4), the PRGM

predictors perform reasonably well compared with the Bayes predictors in terms

of the EMSE and absolute bias. We have the opposite result for other values of

τ 20 and µ0. Note that the estimated values of the MSE and bias decrease as the

sample size increases. Tables 5 and 6 present the EMSEs and EABs of the Bayes

and PRGM predictors under the class Γi
ǫ, for i = 1, . . . , 4, of priors for different

values of ǫ. According to these tables, the PRGM predictors perform reasonably

well compared with their corresponding Bayes predictors in terms of the EMSE and

EAB under the Γ2
ǫ and Γ4

ǫ classes of priors. In addition, under Γ1
ǫ and Γ3

ǫ , for large

values of ǫ, the PRGM predictors are better than the Bayes predictors, and for

small values of ǫ, the Bayes predictors are better than the PRGM predictors. Thus,

when the contaminated distribution is far from the π0 distribution (Γ2
ǫ and Γ4

ǫ), the

PRGM predictor performs reasonably well compared with the Bayes predictor, and

when these two distributions are close (Γ1
ǫ and Γ3

ǫ), the PRGM predictor (Bayes

predictor) is preferred for large (small) values of ǫ. Note that in these tables, for

ǫ = 0, the PRGM predictor is equal to the Bayes predictor.
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Table 3: Simulated MSE and absolute bias for the Bayes and PRGM predictors for µ0 = 2, 4, 6, 8, τ20 =

0.1, 0.3, 0.5, 0.7, and µ ∈ [2, 8] over Γµ (losing weight data).

δπ δPRGM

n µ0 = 2 µ0 = 4 µ0 = 6 µ0 = 8

τ20 = 0.1 20 1.8300 0.0394 2.6092 9.5396 0.7793

30 1.4227 0.0387 2.0217 7.3716 0.6093

EMSE 50 0.9089 0.0366 1.2975 4.6918 0.4004

20 1.3446 0.1619 1.6085 3.0851 0.8702

EAB 30 1.1821 0.1592 1.4129 2.7104 0.7641

50 0.9387 0.1529 1.1268 2.1596 0.6104

τ20 = 0.3 20 0.9129 0.0879 1.2792 4.4867 0.4315

30 0.5986 0.0797 0.8255 2.8361 0.2945

EMSE 50 0.3118 0.0649 0.4285 1.4024 0.1708

20 0.9130 0.2363 1.0953 2.0993 0.5968

EAB 30 0.7246 0.2259 0.8667 1.6618 0.4782

50 0.5041 0.2031 0.6063 1.1577 0.3501

τ20 = 0.5 20 0.5999 0.1282 0.8136 2.6562 0.3263

30 0.3765 0.1073 0.4955 1.5409 0.2192

EMSE 50 0.1933 0.0796 0.2503 0.7053 0.1294

20 0.6979 0.2853 0.8332 1.5915 0.4824

EAB 30 0.5356 0.2620 0.6313 1.1985 0.3876

50 0.3709 0.2248 0.4311 0.7922 0.2913

τ20 = 0.7 20 0.4623 0.1579 0.6030 1.7978 0.2867

30 0.2897 0.1255 0.3630 1.0024 0.1940

EMSE 50 0.1528 0.0881 0.1872 0.4500 0.1171

20 0.5844 0.3166 0.6832 1.2819 0.4379

EAB 30 0.4496 0.2833 0.5151 0.9382 0.3569

50 0.3201 0.2366 0.3581 0.6066 0.2738
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Table 4: Simulated MSE and absolute bias for the Bayes and PRGM predictors for τ20 = 0.1, 0.3, 0.5, 0.7,

µ0 = 2, 4, 6, 8, and τ2 ∈ [0.1, 0.7] over Γτ2 (losing weight data).

δπ δPRGM

µ0 n τ20 = 0.1 0.3 0.5 0.7

2 20 1.8300 0.9129 0.5999 0.4623 1.8302

30 1.4227 0.5986 0.3765 0.2897 1.4227

EMSE 50 0.9089 0.3118 0.1933 0.1528 0.9089

20 1.3446 0.9130 0.698 0.5844 1.3447

EAB 30 1.1821 0.7246 0.53556 0.4496 1.1821

50 0.9387 0.5041 0.3709 0.3201 0.9387

4 20 0.0394 0.0879 0.1282 0.1579 0.0946

30 0.0387 0.0797 0.1073 0.1255 0.0840

EMSE 50 0.0366 0.0649 0.07961 0.0881 0.0662

20 0.1619 0.2363 0.2853 0.3166 0.2519

EAB 30 0.1592 0.2259 0.2620 0.2833 0.2378

50 0.1529 0.2031 0.2248 0.2366 0.2109

6 20 2.6092 1.2792 0.8136 0.6030 0.6029

30 2.0217 0.8255 0.4955 0.3630 0.3630

EMSE 50 1.2975 0.4285 0.2503 0.1872 0.1872

20 1.6085 1.0953 0.8332 0.6832 0.6832

EAB 30 1.4129 0.8667 0.6313 0.5151 0.5151

50 1.1268 0.6063 0.4311 0.3581 0.3581

8 20 9.5396 4.4867 2.6562 1.7978 1.7978

30 7.3716 2.8361 1.5409 1.0024 1.0024

EMSE 50 4.6918 1.4024 0.7053 0.4500 0.4500

20 3.0851 2.0993 1.5915 1.2812 1.2819

EAB 30 2.7104 1.6618 1.1985 0.9382 0.9382

50 2.1596 1.1577 0.7922 0.6066 0.6066
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Table 5: Simulated MSE and absolute bias for the Bayes and PRGM predictors over Γǫ (losing weight data).

Γ1
ǫ π0 ∼ N(6, 0.3) q ∼ N(5, 0.2)

n ǫ 0 0.2 0.4 0.6 0.8 1

20 δPRGM 1.284 0.894 0.755 0.623 0.508 0.314

δπ 1.284 0.741 0.645 0.592 0.567 0.545

EMSE 30 δPRGM 0.833 0.529 0.425 0.354 0.289 0.218

δπ 0.833 0.484 0.429 0.411 0.396 0.393

50 δPRGM 0.432 0.244 0.195 0.175 0.149 0.13

δπ 0.432 0.260 0.243 0.238 0.233 0.233

20 δPRGM 1.097 0.83 0.738 0.655 0.578 0.448

δπ 1.097 0.809 0.758 0.728 0.714 0.703

EAB 30 δPRGM 0.869 0.613 0.533 0.479 0.429 0.374

δπ 0.869 0.641 0.605 0.593 0.583 0.582

50 δPRGM 0.605 0.401 0.353 0.332 0.306 0.287

δπ 0.605 0.452 0.439 0.433 0.429 0.43

Γ3
ǫ π0 ∼ N(6, 0.5) q ∼ N(5, 0.2)

n ǫ 0 0.2 0.4 0.6 0.8 1

20 δPRGM 0.819 0.707 0.643 0.561 0.479 0.314

δπ 0.819 0.662 0.614 0.578 0.562 0.545

EMSE 30 δPRGM 0.504 0.439 0.384 0.337 0.285 0.218

δπ 0.504 0.44 0.412 0.403 0.394 0.393

50 δPRGM 0.256 0.223 0.194 0.179 0.153 0.13

δπ 0.256 0.241 0.236 0.235 0.231 0.233

20 δPRGM 0.836 0.738 0.686 0.626 0.566 0.448

δπ 0.836 0.759 0.737 0.719 0.71 0.703

EAB 30 δPRGM 0.634 0.565 0.515 0.474 0.432 0.374

δπ 0.634 0.605 0.59 0.587 0.58 0.582

50 δPRGM 0.434 0.391 0.358 0.341 0.313 0.287

δπ 0.434 0.43 0.43 0.429 0.427 0.43
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Table 6: Simulated MSE and absolute bias for the Bayes and PRGM predictors over Γǫ (losing weight data)

continued.

Γ2
ǫ π0 ∼ N(6, 0.3) q ∼ N(8, 0.3)

n ǫ 0 0.2 0.4 0.6 0.8 1

20 δPRGM 1.284 0.894 0.755 0.623 0.508 0.314

δπ 1.284 1.264 1.275 1.268 1.277 4.472

EMSE 30 δPRGM 0.833 0.529 0.425 0.354 0.289 0.218

δπ 0.833 0.831 0.822 0.826 0.822 2.839

50 δPRGM 0.432 0.244 0.195 0.175 0.149 0.13

δπ 0.432 0.43 0.429 0.429 0.426 1.4

20 δPRGM 1.097 0.83 0.738 0.655 0.578 0.448

δπ 1.097 1.088 1.093 1.09 1.093 2.096

EAB 30 δPRGM 0.869 0.613 0.533 0.479 0.429 0.374

δπ 0.869 0.868 0.863 0.865 0.862 1.661

50 δPRGM 0.605 0.401 0.353 0.332 0.306 0.287

δπ 0.605 0.603 0.603 0.601 0.6 1.154

Γ4
ǫ π0 ∼ N(6, 0.5) q ∼ N(8, 0.3)

n ǫ 0 0.2 0.4 0.6 0.8 1

20 δPRGM 0.819 0.707 0.643 0.561 0.479 0.314

δπ 0.819 0.799 0.81 0.803 0.812 4.472

EMSE 30 δPRGM 0.504 0.439 0.384 0.337 0.285 0.218

δπ 0.504 0.502 0.494 0.497 0.494 2.839

50 δPRGM 0.256 0.223 0.194 0.179 0.153 0.13

δπ 0.256 0.254 0.253 0.254 0.251 1.4

20 δPRGM 0.836 0.738 0.686 0.626 0.566 0.448

δπ 0.836 0.824 0.831 0.827 0.83 2.096

EAB 30 δPRGM 0.634 0.565 0.515 0.474 0.432 0.374

δπ 0.634 0.633 0.629 0.631 0.627 1.661

50 δPRGM 0.434 0.391 0.358 0.341 0.313 0.287

δπ 0.434 0.432 0.431 0.432 0.429 1.154
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5.2 Predicting the variance of weight loss

For the prediction of the finite-population variance, we consider a single prior

IΓ(α0 = 10, β0 = 3), as well as two classes of prior distributions, IΓβ = {IΓ(α0, β) :

β ∈ [1, 7] ⊆ R
+} and IΓα = {IΓ(α, β0) : α ∈ [4, 10] ⊆ R

+} for σ2. We obtain the

Bayes predictor (δπα0,β0 with α0 = 10 and β0 = 3), the PRGM predictor over the

class IΓα (δPRGM
IΓα

), and the PRGM predictor over the class ΓIΓβ
(δPRGM

IΓβ
). Table

7 summarizes the predicted values under the SE loss function for a fixed sample

size n = 50. As shown the PRGM predicted values are closer to the variance of

the weight loss, that is, 6.499586, than are their corresponding Bayes predictions.

To evaluate the performance of the Bayes and PRGM predictors of the population

Table 7: The PRGM predicted values of the finite population variance over IΓβ and IΓα under the SE loss

function. Bayes prediction of the variance is obtained under the IΓ(10, 3) prior distribution.

δπα0,β0 δPRGM
IΓβ

δPRGM
IΓα

5.650688 5.67791 6.198716

variance, we performed a simulation study similar to that presented for the mean

(using the variance instead of the mean). Then we calculated the EMSE and EAB

of each PRGM predictor for different sample sizes n = 20, 30, and 50 over the IΓα

and IΓβ classes of priors, with α0 = 4, 6, 8, 10, and β0 = 1, 3, 5, 7. We compare

the performance of the PRGM predictors of the population variance with their

corresponding Bayes predictors with respect to their associated inverse gamma

prior distributions, with α0 = 4, 6, 8, 10, β0 = 1, 3, 5, 7. The EMSE and bias of

each predictor under IΓβ and IΓα are presented in Tables 8 and 9 . From Table

8, we observe that the PRGM predictors perform satisfactorily compared with the

Bayes predictor in terms of the EMSE and the associated bias for small values of β0

(β0 = 1, 3) and all values of α. However, we have the opposite result for moderate
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to large values of β0 (β0 = 5, 7). Note that the MSE and the bias decrease as the

sample size increases. From Table 9, we observe that for all values of β0 and large

(small to moderate) values of α0, the PRGM predictors (the Bayes predictors) are

preferred to the Bayes predictors (the PRGM predictors) in terms of the EMSE

and bias. Furthermore, the MSE and the bias decrease as the sample size increases.

6 Discussion

We have examined the PRGM prediction of population parameters under general

classes of loss functions and prior distributions. In particular, we studied PRGM

predictions in finite populations, and developed a unified approach to calculate

these predictions under a very general setting. Under two different normal super-

population models and different classes of prior distributions on the parameter of

the underlying superpopulation model, we obtained the PRGM predictors of the

finite-population mean under the LINEX and SE loss functions. Furthermore, we

obtained the PRGM predictor of the finite-population variance under the SE loss

function in a normal superpopulation model. We also considered a non-normal

model, and derived the Bayes and PRGM predictors of the finite-population mean

under the SE loss function. Then, we applied the results to different real data sets

to illustrate the practical utility of the Bayes and PRGM procedures. We provided

real-world data to predict finite-population means and variances under normal and

non-normal models. We compared the estimated risk and bias of the obtained pre-

dictors under the SE loss function using simulation studies. In some cases, the

Bayes predictors have smaller risk and bias than those of the robust Bayes pre-

dictors. However, we recommended using the robust Bayes predictors, owing to a

lack of confidence in δπ under π = π(µ0, τ
2
0 ), especially if it is difficult to specify

a single prior distribution for the parameters of the underlying superpopulation
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Table 8: Simulated MSE and absolute bias for the Bayes and PRGM predictors of the finite-population

variance for α0 = 4, 6, 8, 10, β0 = 1, 3, 5, 7, and β ∈ [1, 7] over IΓβ (losing weight data).

δπ δPRGM

n β0 = 1 β0 = 3 β0 = 5 β0 = 7

α0 = 4 20 4.496 4.074 3.699 3.372 3.881

EMSE 30 2.888 2.675 2.485 2.318 2.577

50 1.611 1.529 1.455 1.391 1.491

20 1.804 1.706 1.616 1.532 1.660

EAB 30 1.418 1.358 1.304 1.254 1.330

50 1.043 1.013 0.986 0.962 0.999

α0 = 6 20 6.284 5.738 5.229 4.754 5.479

EMSE 30 3.933 3.637 3.361 3.103 3.497

50 2.067 1.946 1.832 1.726 1.888

20 2.225 2.112 2.002 1.897 2.057

EAB 30 1.715 1.639 1.567 1.497 1.603

50 1.208 1.167 1.128 1.091 1.147

α0 = 8 20 8.290 7.690 7.118 6.573 7.401

EMSE 30 5.219 4.875 4.546 4.232 4.708

50 2.685 2.535 2.391 2.255 2.462

20 2.653 2.542 2.433 2.325 2.487

EAB 30 2.048 1.969 1.891 1.814 1.929

50 1.419 1.372 1.326 1.281 1.349

α0 = 10 20 10.256 9.637 9.040 8.464 9.335

EMSE 30 6.584 6.210 5.850 5.503 6.028

50 3.399 3.227 3.061 2.902 3.144

20 3.026 2.923 2.821 2.720 2.872

EAB 30 2.370 2.292 2.215 2.138 2.253

50 1.644 1.595 1.547 1.499 1.571
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Table 9: Simulated MSE and absolute bias for the Bayes and PRGM predictors of the finite-population

variance for β0 = 1, 3, 5, 7, α0 = 4, 6, 8, 10, and α ∈ [4, 10] over IΓα (losing weight data).

δπ δPRGM

n α0 = 4 α0 = 6 α0 = 8 α0 = 10

β0 = 1 20 4.496 6.284 8.290 10.256 6.699

EMSE 30 2.888 3.933 5.219 6.584 4.278

50 1.611 2.067 2.685 3.399 2.271

20 1.804 2.225 2.653 3.026 2.318

EAB 30 1.418 1.715 2.048 2.370 1.807

50 1.043 1.208 1.419 1.644 1.279

β0 = 3 20 4.074 5.738 7.690 9.637 6.138

EMSE 30 2.675 3.637 4.875 6.210 3.966

50 1.529 1.946 2.535 3.227 2.138

20 1.706 2.112 2.542 2.923 2.204

EAB 30 1.358 1.639 1.969 2.292 1.730

50 1.013 1.167 1.372 1.595 1.236

β0 = 5 20 3.699 5.229 7.118 9.040 5.611

EMSE 30 2.485 3.361 4.546 5.850 3.673

50 1.455 1.832 2.391 3.061 2.013

20 1.616 2.002 2.433 2.821 2.093

EAB 30 1.304 1.567 1.891 2.215 1.655

50 0.986 1.128 1.326 1.547 1.193

β0 = 7 20 3.372 4.754 6.573 8.464 5.117

EMSE 30 2.318 3.103 4.232 5.503 3.396

50 1.391 1.726 2.255 2.902 1.895

20 1.532 1.897 2.325 2.720 1.985

EAB 30 1.254 1.497 1.814 2.138 1.582

50 0.962 1.091 1.281 1.499 1.153
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models.

The proposed methodology was used to study the impact of the prior dis-

tribution as an input to the Bayesian prediction process on the predicted values

when the prior distribution ranges in certain classes of priors. If the impact is

considerable, there is sensitivity, and one should use a robust Bayesian prediction,

which is relatively insensitive to the uncertainty in determining the prior distri-

bution. Note that a Bayesian analysis depends on other subjective inputs, such

as the loss function and/or the model. A future research direction is to study

the sensitivity of the Bayesian prediction jointly with respect to the prior and

the loss function. Another important research direction is to study the effects of

model-misspecification or imprecise probability models on the Bayesian prediction

of the parameters of interest. One can also use other classes of prior distributions

to obtain a robust Bayesian analysis. These include classes of priors with given

marginals when dealing with multi-parameter cases, classes of ǫ-contaminated pri-

ors with shape constraints, or generalized moment classes of priors in which one

considers classes of prior distributions that satisfy some moment conditions with

a priori specified moments (e.g., Berger (1990)).

Supplementary Material

The online Supplementary Material provides derivations of the results pre-

sented in this paper. It also contains a comprehensive account of the real-data

applications associated with our second and third studies, discussed in Section 5.

Lastly, it provides complementary numerical results that show how the PRGM pre-

dictors of the finite population mean perform compared with their corresponding

Bayes predictors.
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