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Abstract: In applied settings, hypothesis testing when a nuisance parameter is

identifiable only under the alternative often reduces to a problem of testing one

hypothesis multiple times (TOHM). Specifically, a fine discretization of the space

of the nonidentifiable parameter is specified, and the null hypothesis is tested

against a set of sub-alternative hypotheses, one for each point of the discretiza-

tion. The resulting sub-test statistics are then combined to obtain a global p-

value. We propose a computationally efficient inferential tool to perform TOHM

under stringent significance requirements, such as those typically required in the

physical sciences, (e.g., a p-value < 10−7). The resulting procedure leads to

a generalized approach to performing inferences under nonstandard conditions,

including non-nested model comparisons.

Key words and phrases: Multiple hypothesis testing, bump hunting, non-identifiabily

in hypothesis testing, non-nested models comparison.

1. Introduction

A fundamental statistical challenge in scientific discoveries is the so-called

“bump-hunting” problem (Choudalakis, 2011), where researchers aim to
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distinguish peaks due to a signal of interest (the new discovery) from peaks

due to random fluctuations of the background. In the framework of hypoth-

esis testing, the null model specified by H0 is typically the background-only

model, and a signal bump is added in the alternative model specified by H1.

Consider, for example, a dark matter search. Here, we aim to distinguish

events from a background that follows a power-law (Pareto type-I) distribu-

tion from the signal of a dark matter source, modeled as a narrow Gaussian

bump, with an unknown location, over the search area Θ ≡ [L,U ] ⊂ R. We

can specify the model of interest using a mixture model,

(1− η)
1

kφyφ+1
+

η

kθ
exp

{
−(y − θ)2

0.02θ2

}
for y ≥ 1, (1.1)

where kφ and kθ are normalizing constants, for y ≥ 1, φ > 0, and θ ≥ 1.

Note that the parameter θ characterizes both the location of the signal

over the search region and its standard deviation. Specifically, the bump

becomes wider as its position moves further into the tail of the background

distribution. The model in (1.1) simplifies those models involved in searches

for γ-ray emissions in a cluster of galaxies (Anderson et al., 2016), where,

for example, the width of the signal may be a more complex function of

its location. Despite its simplicity, the model in (1.1) introduces the key
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statistical issues arising in the context of dark matter searches, as described

below.

In order to assess the evidence in favor of the signal, we test

H0 : η = 0 versus H1 : η > 0. (1.2)

where η is the proportion of events due to the dark matter emission and,

typically, 0 ≤ η ≤ 1. Despite its straightforward formulation, testing (1.2)

is nontrivial. Difficulties arise because θ is not defined under H0. Conse-

quently, the classical asymptotic properties of, for example, the maximum

lixelihood estimates (MLE) and the likelihood ratio test (LRT) fail. Analo-

gously, complications may arise when using resampling techniques, such as

bootstrapping (Efron and Tibshirani, 1994), to derive the null distribution

of the test statistic in the presence of stringent significance requirements.

For searches in high energy physics, for instance, the significance level nec-

essary to claim a discovery can be in the order of 10−7 (see Lyons, 2013,

Table 1). Hence, a large (e.g., O(108)) simulation may be infeasible when

dealing with complex models. This is a key motivation for a computation-

ally efficient inferential solution.

To address these difficulties, we consider the bump-hunting problem
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as a special case of what is known in the statistical literature as “test-

ing statistical hypotheses when a nuisance parameter is present only under

the alternative.” In addition to bump-hunting, classical examples may in-

clude regression models in which structural changes, such as break-points

and threshold-effects, occur (Andrews, 1993; Hansen, 1992b, 1999; Davies,

2002).

The general problem is well documented, starting at least from the

seminal works of Hotelling (1939) and Davies (1977, 1987), and investi-

gated further in the econometrics literature by several authors, including

Andrews and Ploberger (1994) and Hansen (1991, 1992a, 1996). In their

practical implementations, these methods reduce the problem of testing

with unidentifiable parameters under H0 to one of testing one hypothesis

multiple times (TOHM). Here, a single null hypothesis H0 is tested against

different sub-alternative hypotheses of the form H1(θ), one for each fixed

θ in Θ, and a corresponding ensemble of sub-test statistics, indexed by θ,

namely W (θ), is specified. The goal is to provide a global p-value as the

standard of evidence for comparing H0 and the global alternative hypothesis

H1, of which each H1(θ) is a special case. Unfortunately, existing methods

often require case-by-case mathematical computations (e.g., Davies, 1977),

estimating the covariance structure (e.g., Hansen, 1991), choosing weight-
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ing functions (e.g., Andrews and Ploberger, 1994), or full simulations of the

empirical process (e.g., Hansen, 1992a, 1996).

As such, we propose a computationally efficient method to perform

TOHM that overcomes these limitations. Specifically, as in Davies (1977,

1987), we consider a stochastic process, {W (θ)}, indexed by θ ∈ Θ ≡ [L,U ],

and with covariance function ρ(θ, θ†). We consider the global p-value

P

(
sup
θ∈Θ
{W (θ)} > c

)
, (1.3)

where c is the observed value of the global test statistic, supθ∈Θ{W (θ)}. The

central difficulty of this approach is to derive or approximate (1.3). One

option is to employ extreme value theory (EVT), as in Cramér and Lead-

better (2013, p. 272), where a bound for (1.3) is obtained by considering

the upcrossings of c by {W (θ)} (see Figure S.1). Specifically, {W (θ)} has

an upcrossing of a threshold c ∈ R at θ0 ∈ Θ if, for some ε > 0, W (θ) ≤ c

in the interval (θ0 − ε, θ0), and W (θ) ≥ c in the interval [θ0, θ0 + ε) (Adler,

2000). Let Nc be the number of upcrossings of c by {W (θ)}. Using Markov’s

inequality, Cramér and Leadbetter (2013, p. 272) show that (1.3) can be
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bounded as in (1.4),

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) + E[Nc], (1.4)

where P (W (L) > c) is typically known. Davies (1977, 1987) considers cases

where {W (θ)} is a Gaussian or a χ2 process, estimates E[Nc] using total

variation, and shows that (1.4) becomes sharp as c→∞ (under long-range

independence, i.e., if ρ(θ, θ†)→ 0 as |θ− θ†| → ∞). Unfortunately, Hansen

(1991) points out that situations exist where the total variation diverges.

An alternative solution can overcome this problem, and has had a sig-

nificant impact in physics (Gross and Vitells, 2010). Consider a set of

observations y1, . . . , yn, and let Tn(θ) be the LRT statistic used to test

(1.2), evaluated on y1, . . . , yn when θ is fixed. We denote the LRT process

indexed by different values of θ as {Tn(θ)}. Under H0 and suitable unifor-

mity conditions (Hansen, 1991), {Tn(θ)} d−−−→
n→∞

{Wχ(θ)}, where Wχ(θ) is

a χ2 process with components Wχ(θ) ∼ χ2
s, for each θ ∈ [L,U ] fixed. Let

E[Nχ
c ] be the expected number of upcrossings of c by {Wχ(θ)} over Θ. One

possible way to compute (1.4) is to estimate E[Nχ
c ] using Monte Carlo sim-

ulations. However, when dealing with stringent significance requirements,

the corresponding significance threshold c is typically very large. Hence,
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upcrossings of c are expected to occur infrequently when simulating under

H0 and, thus, a massive simulation is required to estimate E[Nχ
c ] directly.

Gross and Vitells (2010) exploit the χ2 distribution of {Wχ(θ)} to rewrite

E[Nχ
c ] as a function of E[Nχ

c0
] for some c0 << c:

P

(
sup
θ∈Θ
{Wχ(θ)} > c

)
≤ P (Wχ(L) > c) +

(
c

c0

) s−1
2

e−
c−c0

2 E[Nχ
c0

]. (1.5)

where E[Nχ
c ] =

(
c
c0

) s−1
2

e−
c−c0

2 E[Nχ
c0

]. This allows a drastic reduction in the

computational effort needed to compute E[Nχ
c ]. Specifically, upcrossings

of c0 << c are expected to occur often, thus, E[Nχ
c0

] can be estimated

accurately using a small Monte Carlo simulation.

Gross and Vitells (2010) do not formally justify (1.5). In Section 2, we

derive (1.5), generalize it to any process {W (θ)}, and clarify the conditions

under it and its generalization hold. Efficient choices of c0 are discussed in

Section 3, and a simple graphical tool is proposed to validate the adequacy

of the number of sub-tests conducted.

The resulting procedure leads to a generalized approach for performing

inferences under nonstandard regularity conditions, including, as discussed

in Section 3, comparisons of non-nested models. This can be done by spec-

ifying a comprehensive model that includes the two (non-nested) models
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being compared as special cases. We then perform two hypothesis tests of

hypothesis where a nuisance parameter is present only under the alternative

to evaluate the two models (Algeri et al., 2016).

In principle, the problem of testing in the presence of a nuisance pa-

rameter that is present only under the alternative can be formulated as a

multiple hypothesis testing (MHT) problem. Here, several tests are con-

ducted over a grid of possible values of θ, and corrected using Bonferroni’s

correction (Bonferroni, 1935, 1936), or similar methods, to control for the

probability of a type-I error. Although the Bonferroni correction is easy

to implement, it is often dismissed by practitioners because of its stringent

control of the overall false detection rate and its artificial dependence on

the number of tests conducted. In Section 4, we compare TOHM and Bon-

ferroni’s correction using numerical studies and data applications. Here, we

discuss how the proposed tools can be used to identify situations where,

by virtue of its relationship with TOHM, Bonferroni can be used without

being concerned about obtaining an overly conservative result.

The remainder of the paper is organized as follows. In Section 2, we

define the TOHM framework, and derive a computable upper bound for

(1.3) by generalizing (1.5). In Section 3, we illustrate how TOHM can be

used to distinguish between non-nested models, validate our results using
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simulation studies, and discuss graphical tools for selecting the necessary

quantities in the computation of the bound proposed in Section 2. In Sec-

tion 4, we investigate the relationship between TOHM and the classical

Bonferroni correction, and apply both methods to several realistic data

sets. Section 5 concludes the paper. Additional figures, data, and proofs

are collected in the online Supplementary Material.

2. TOHM via EVT

2.1 Definition and formalization

In this section, we generalize the testing procedure of Gross and Vitells

(2010) beyond the LRT and the χ2 case to formalize it in statistical terms.

This allows us to establish a general theoretical framework to efficiently

bound/approximate the global p-value in (1.3).

Recall that {W (θ)} is a generic stochastic process indexed by θ ∈ Θ ≡

[L;U ], with covariance function ρ(θ, θ†). Following Davies (1987), we stip-

ulate the following condition.

Condition 1. {W (θ)} has continuous sample paths, it has a continuous

first derivative, except possibly for a finite number of jumps, and its com-

ponents W (θ) are identically distributed, for all θ ∈ Θ.

To exploit (1.4), we aim to conveniently estimate E[Nc] and bound or

approximate (1.3). Results 2 and 3 allow this.
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2.1 Definition and formalization

Result 2. Let c ∈ R be an arbitrary threshold, let a(c) be a function that

depends on c, but not on θ, and let b(Θ) be a function calculated over Θ

that does not depend on c. Under Condition 1, if E[Nc] can be decomposed

as

E[Nc] = a(c)b(Θ), (2.6)

then

E[Nc] =
a(c)

a(c0)
E[Nc0 ] ∀c0 ≤ c, c0 ∈ R. (2.7)

The function b(Θ) typically involves integration over the interval Θ,

and should not be confused with a function of θ. Deriving a closed-form

expression of b(Θ) in (2.6) may be challenging, and may require knowledge

of ρ(θ, θ†). Conversely, the form of a(c) typically depends on the marginal

distribution of the components W (θ) of {W (θ)}, hence the requirement of

an identical distribution in Condition 1. The continuity assumptions on

{W (θ)} and its first derivative prevent E[Nc] from diverging.

Equation (2.7) offers a simple way to compute E[Nc], provided that, as

discussed below, E[Nc0 ] can be estimated accurately. Result 3 follows from

(1.4), (2.6), and (2.7).
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2.2 TOHM bounds for Gaussian-related processes

Result 3. Under Condition 1, if (2.6) holds, (1.3) can be bounded by

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) +

a(c)

a(c0)
E[Nc0 ], (2.8)

for all c0 ≤ c, c0 ∈ R. In addition, if ρ(θ, θ†) → 0 as |θ − θ†| → ∞, the

difference between the left- and the right-hand side of (2.8) approaches zero

as c→∞.

2.2 TOHM bounds for Gaussian-related processes

The bound in (1.5) and analogous bounds for Gaussian and related pro-

cesses, such as F and t processes, can be derived using results from random

fields theory, as discussed in Algeri and van Dyk (2019). In this setting,

it can be shown that, under mild smoothness conditions (see Taylor and

Adler (2003, p. 547)), E[Nc] enjoys the decomposition in (2.6). Here, a(c)

depends only on the distribution of the marginals of {W (θ)}, whereas b(Θ)

corresponds to the so-called Lipschitz Killing curvature of first order (e.g.,

Adler and Taylor, 2009), and is typically difficult to compute. We report

explicit forms of the right-hand side of (2.8) for the Gaussian, F , and t

processes obtained from these results (see Taylor and Worsley, 2008; Adler

and Taylor, 2009; Algeri and van Dyk, 2019, for more details).
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2.2 TOHM bounds for Gaussian-related processes

Gaussian process. Let {Z(θ)} be a mean zero and variance one Gaussian

process, such that Z(θ) ∼ N(0, 1), for all θ ∈ Θ, and let NZ
c be the process

of upcrossings of c0 by {Z(θ)} over Θ ≡ [L,U ]. The TOHM bound in

equation (2.8) takes the form

P

(
sup
θ∈Θ
{Z(θ)} ≥ c

)
≤ Φ(−c) + e−

c2−c20
2 E[NZ

c0
], (2.9)

where Φ(−c) is the cumulative density function of a standard normal ran-

dom variable evaluated at −c, and the ratio a(c)
a(c0)

is given by e−
c2−c20

2 . For

the stationary case, the same result can be obtained by expressing E[NZ
c ]

using Rice’s formula (Rice, 1944), that is,

E[NZ
c ] =

|L − U|
2π

√
ρ′′(θ, θ)e−

c2

2

where ρ′′(θ, θ) = ∂θ
∂θ∂θ†

ρ(θ, θ†)
∣∣
θ†=θ

is the second spectral moment of {Z(θ)}

and is assumed to be finite, and |L−U| is the length of Θ. As discussed in

Davies (1987), for a two-sided test, the excursion probability of interest is

P (supθ∈Θ |{Z(θ)}| ≥ c), the bound of which is twice the right-hand side of

(2.9).

The rates of convergence of the difference between the right- and left-

hand sides of (1.5) and (2.9) are discussed in Section S.1 of the Supplemen-
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2.3 TOHM in practice

tary Material. In Section 3, we further study the sharpness of the bounds

in (1.5) and (2.9) as c→∞ using simulation studies.

F process. Consider an F process {F (θ)} with s and v degrees of free-

dom, such that F (θ) ∼ Fs,v, for all θ ∈ Θ. Let E[NF
c0

] be the expected

number of upcrossings of c0 by {F (θ)}. Then the TOHM bound in equa-

tion (2.8) takes the form

P

(
sup
θ∈Θ
{F (θ)} ≥ c

)
≤ P (F (L) ≥ c) +

(
c

c0

) s−1
2
(
v + s · c
v + s · c0

)− s+v−2
2

E[NF
c0

],

(2.10)

for all c0 ≤ c, c0 ∈ R, and with a(c) = c
s−1
2 (v + s · c)− s+v−2

2 .

t process. Consider a t process {V (θ)} with s degrees of freedom, such

that V (θ) ∼ ts. Let E[NV
c0

] be the expected number of upcrossings of c0 by

{V (θ)}. Then the TOHM bound in equation (2.8) takes the form

P

(
sup
θ∈Θ
{V (θ)} ≥ c

)
≤ P (V (L) ≥ c) +

(
1 + c2

1 + c2
0

)− s−1
2

E[NV
c0

], (2.11)

for all c0 ≤ c, c0 ∈ R, and with a(c) = (1 + c2)−
s−1
2 .

2.3 TOHM in practice
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2.3 TOHM in practice

In practice, we evaluate {W (θ)} on a fine grid of points, namely ΘR =

{θ1, . . . θR} ⊆ Θ, with R being the typically large number of grid points. Let

{W (θr)} be the random sequence that coincides with {W (θ)} at each θr ∈

ΘR, and let {w(θr)} be its observed value. We approximate supθ∈Θ{W (θ)}

using its discrete counterpart maxθr∈ΘR{W (θr)}, the observed value of which

is given by

cR = max
θr∈ΘR

{w(θr)}. (2.12)

Let the process of upcrossings of cR by {W (θr)}, namely ÑcR , be events of

the type {W (θr−1) ≤ cR,W (θr) > cR}. We assume ΘR is sufficiently dense,

such that the right-hand side of (2.8) can be approximated by (2.13), as

R→∞,

P (W (L) > cR) +
a(cR)

a(c0)
E[Ñc0 ] ∀c0 ≤ cR, c0 ∈ R, (2.13)

where E[Ñc0 ] can be replaced by its Monte Carlo estimate, namely Ê[Ñc0 ].

Note that the null hypothesis, H0, is tested versus an ensemble of alter-

native hypotheses H1r, one for each value of θr fixed. The observed sub-test

statistics {w(θ1), . . . , w(θR)}, realizations of {W (θ)}, are combined into the

global test statistic cR, and an approximated bound for the global p-value

is computed using (2.13). Thus, the problem of testing (1.2) is reduced to
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2.3 TOHM in practice

testing H0 versus the R sub-alternative hypotheses H1r, that is, testing one

hypothesis multiple times.

Cramér and Leadbetter (2013, p. 63 and 195) discuss adequate choices

of ΘR for which c, Nc, and supθ∈Θ{W (θ)} are well approximated by cR,

ÑcR , and maxθr∈ΘR{W (θr)}, respectively. However, in practice ΘR may be

determined by experiment. Therefore, in Section 3, we discuss graphical

tools that can be used to assess whether these approximations hold.
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Figure 1: Data and fitted models. Left panel: histogram of the Fermi-LAT real-
istic data simulation for Example 1 (on log-scale), the null model (blue dashed
curve) fitted under the assumption of background-only counts (φ̂ = 1.350), and
the fitted alternative model (red solid curve) with η̂ = 0.045 and φ̂ = 1.406. The
green dotted vertical line indicates the location of the observed Gaussian bump,
i.e., θ̂ = 3.404. Central panel: histogram of the Fermi-LAT realistic data simula-
tion for Example 2 (log-scale), the null model when testing whether (1.2) is fitted
as a power-law distributed cosmic source with φ̂ = 1.395 (blue dashed curve). The
null model when testing (3.16) is the dark matter model in (3.14) with θ̂ = 27.89
obtained via MLE (red solid curve). Right panel: Down syndrome data and fitted
regression model (red piecewise-linear solid lines), with break-point (green trian-
gle) at θ̂ = 31.266.
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3. Practical matters

3.1 Case studies: Description

Here, we illustrate the implementation of TOHM in the context of three case

studies: the “bump hunting” problem introduced in Section 1, a non-nested

models comparison, and a logistic model with a break point. Hereafter, we

refer to these as Examples 1, 2, and 3, respectively. The data for Examples 1

and 2 were generated using simulations of the Fermi Large Area Telescope

(LAT), obtained using the gtobssim package, and include representations of

detector effects and systematic errors. The Fermi-LAT is a γ-ray telescope

on the orbiting Fermi satellite (Atwood et al., 2009).

In Example 1, our data analysis aims to properly distinguish between

γ-ray signals induced by dark matter annihilations and those induced by the

astrophysical background. As in (1.1), dark matter events are modeled as a

Gaussian bump, with mean energy θ and standard deviation varying with

θ. The astrophysical background is power-law (Pareto type-I) distributed,

with index φ. In our simulation, we set θ = 3.5 GeV (where GeV denotes

Giga electron-volt), φ = 1.4 and η = 0.02, and we consider the energy

band y ∈ [1; 35]. This setup resulted in 64 dark matter events and 2274

background events. For more physics details, see Algeri et al. (2016).

http://fermi.gsfc.nasa.gov/ssc/data/analysis/software
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3.1 Case studies: Description

In Example 2, the non-nested models to be compared are a dark matter

emission with probability density given by

g(y, θ) ∝ y−1.5 exp

{
−7.8

y

θ

}
, (3.14)

with y ≥ 1, φ > 0, and θ ≥ 1 (see Bergström et al., 1998), and a power-law

distributed cosmic source with density f(y, φ) ∝ 1
kφyφ+1 . In our simulation,

we set the putative dark matter emission to occur at θ = 35 GeV, and the

power-law index to φ = 1.4. In this way, we obtained 200 dark matter

events over the energy band y ∈ [1; 100].

Because the models f(y, φ) and g(y, θ) are non-nested, the classical

asymptotic properties of the MLE and LRT fail. However, as shown in

Algeri et al. (2016), the framework of Section 2 can be extended to compare

non-nested models by reformulating this comparison as a test in which a

nuisance parameter is identified only under H1. Specifically, following Cox

(1962) and Atkinson (1970), we specify a comprehensive model that embeds

two non-nested models,

(1− η)f(y, φ) + ηg(y, θ) 0 ≤ η ≤ 1. (3.15)

This reduces the problem to a nested models comparison, and we test (1.2).
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3.1 Case studies: Description

However, in contrast to the bump-hunting example in (1.1), η has no phys-

ical interpretation in this case. Rather, as in Quandt (1974), η is an auxil-

iary parameter that allows us to exploit the normality of its MLE to apply

well-known asymptotic results. In addition to (1.2), the hypotheses

H0 : η = 1 versus H1 : η < 1 (3.16)

should be tested to exclude intermediate situations (e.g., Cox, 1962, 2013).

That is, we want to avoid treating (3.15) as a mixture, and focus instead

on comparing the two models. Testing both (1.2) and (3.16) is particularly

suited to particle physics searches, where researchers typically assign differ-

ent degrees of belief to the models being tested. Specifically, as described in

van Dyk (2014), the most stringent significance requirements (e.g., Lyons,

2013, Table 1) are typically used only in the detection stage, that is, when

testing (1.2) to assess the presence of a new signal. Conversely, in the ex-

clusion stage, that is, when testing (3.16) to exclude the hypothesis of a

signal being present, a significance level of 0.05 is typically sufficient. The

Fermi-LAT data sets for Examples 1 and 2 are plotted in the first two panels

of Figure 1. Both simulations are available in the Supplementary Material.

Finally, in Example 3 we consider the Down syndrome dataset available
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3.1 Case studies: Description

in the R package segmented (Muggeo et al., 2008). The data set records

whether babies born to 354,880 women are affected by Down syndrome.

We use (3.17) to model the probability, πi, that a woman of age xi has a

baby with Down syndrome, where xi ∈ [17; 47], and we let θ ∈ [20; 44]. The

logit of the ratio between the number of Down syndrome cases and number

of births by age group is plotted in the right panel of Figure 1.

log

(
πi

1− πi

)
= φ1 + φ2xi + ξ(xi − θ)1{xi≥θ} ∀i = 1, . . . , n, (3.17)

where θ ∈ R is the location of the unknown break-point. In this case, we

test H0 : ξ = 0 versus H1 : ξ 6= 0.

In Example 1 and 2, we use the LRT, Tn(θ), as the sub-test statistic.

Because both tests are of the form in (1.2), the test is on the boundary

of the parameter space and, for each θ fixed, the asymptotic distribution

under H0 is a mixture of χ2
1 and zero (Chernoff, 1954; Self and Liang, 1987),

also known as a χ̄ distribution, which we dentote as χ̄2
01. It can be shown

(Algeri and van Dyk, 2019) that in this setting, the bound in (2.8) has the

same form as that in the χ2
1 case; that is, it is given by (1.5), with s = 1. In

Example 3, we use the signed-root of the LRT Qn(θ) = sign(η̂θ−η0)
√
Tn(θ);

hence, the sub-test statistics are asymptotically normally distributed under
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3.2 The choices of c0 and R

H0 (e.g., Davies, 1977).

3.2 The choices of c0 and R

One way to select an appropriate threshold c0 is to perform a sensitivity

analysis based on few Monte Carlo simulations of the traces of the underly-

ing processes under H0. As discussed in Section 2, under suitable regularity

conditions and when H0 is true, the LRT and signed-root LRT processes

{Tn(θ)} and {Qn(θ)}, respectively, converge uniformly to {Wχ(θ)} and

{Z(θ)}, as n→ +∞. More generally, given a test statistic Wn(θ) to be eval-

uated on the data y1, . . . , yn for each θ fixed, we write {Wn(θ)} d−→ {W (θ)}.

Consequently, for each sample generated under H0, we compute {Wn(θ)}

over a fine grid of values of θ, which approximates {W (θ)} when n is large.

In all our simulations, the nuisance parameters under the null model are

estimated via MLE, and each simulated sample under H0 is obtained using

a parametric bootstrap (Efron and Tibshirani, 1994). We plot the results

of our simulation in order to visualize the traces of {Wn(θ)}, as shown in

Figure 2 for Example 1. (Analogous plots for Examples 2 and 3 appear in

Figure S.2.) In order to calculate (2.8), it is important to provide an accu-

rate estimate of E[Nc0 ]. Hence, we choose c0 to be at a level (on the y-axis)

around which the process {Wn(θ)} oscillates often and, thus, with respect

to which the upcrossings occur with high frequency. For Examples 1, 2, and
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3.2 The choices of c0 and R
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Figure 2: Left panel: simulated sample paths of the LRT process, {Tn(θ)}, under
H0 in Example 1. Both plots consider different widths of the Gaussian bump.
Right panel: upcrossings plot showing Monte Carlo estimates of E[Ñc0 ] and
standard errors (whiskers), under H0, for Example 1, evaluated over grids of
R = 15, 30, 50, 100, 200, 500 points, and for three choices of the Gaussian width,
σ = 0.1θ, σ = 0.5θ, and σ = θ.

3, this leads to values of c0 equal to 0.1, 0.3, and 0, respectively. Inspecting

the smoothness of the trace plots allows us to qualitatively assess Condition

1 and verify the goodness of the approximation of E[Nc0 ] by E[Ñc0 ], which

is necessary for the validity of the results of Section 2.

As discussed in Section 1, the implementation of our procedure requires

that we specify of a grid ΘR over Θ ≡ [L;U ], where R is the number of

times H0 is tested versus the ensemble of sub-alternatives H11, . . . , H1R.

In practice, R must either be chosen arbitrarily by the researcher or be

determined by the nature of the experiment. In either case, R must be

sufficiently large to guarantee the robustness of the results, yet small enough
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3.2 The choices of c0 and R

to ensure computational efficiency when calculating (2.13). One possibility

is to choose R large enough so that, for a given c0, E[Ñc0 ] converges to a

finite limit, which we expect, for sufficiently dense ΘR, to correspond to

E[Nc0 ]. This strategy requires us to set c0 before setting R.

In order to identify the value of R that best negotiates the trade-off

between accuracy and computational efficiency, one can consider different

values of R, and for each of them, compute an estimate of E[Nc0 ] using

a small Monte Carlo simulation. The results can then be summarized in

an upcrossing plot, where the values for R are reported on the x-axis, and

the respective Ê[Ñc0 ] estimates of E[Nc0 ] are reported on the y-axis. The

upcrossing plot in the right panel of Figure 2 displays Monte Carlo estimates

Ê[Ñc0 ] for the LRT in Example 1, under H0, as a function of R (with

R = 15, 30, 50, 100, 200, 500, 1000). For each value of R considered, the grid

points have been chosen to be equally spaced over Θ. Analogous plots for

Examples 2 and 3 appear in Figure S.2. For eachR considered, we computed

100 Monte Carlo simulations, each of size 1000. In all our examples, 100

simulations are sufficient to achieve small Monte Carlo errors.

As a rule of thumb, if the number of upcrossings increases with R, but

does not converge, either the resolution is not sufficiently high to catch

all the crossings, or the underlying process is not sufficiently smooth to
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3.2 The choices of c0 and R

guarantee E[Nc0 ] <∞. Conversely, if the number of upcrossings converges,

as in the well-known scree plot used for a principal component analysis

(PCA) (e.g., James et al., 2013, p. 383), we look for an “elbow” in the

plot of Ê[Ñc0 ]. The value of R corresponding to the elbow is the smallest

value for which Ê[Ñc0 ] converges to its limit, E[Nc0 ], up to the Monte

Carlo error. In physics terms, this corresponds to the minimal value of

R for which Ê[Ñc0 ] well approximates the number of upcrossings of the

underlying continuous time process.
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Figure 3: Estimated bound/approximation in (2.13) (blue solid line), simulated
global p-values (on log10-scale), Monte Carlo estimates of P (supθ∈Θ{W (θ)} > c)
(red dashed line), and Monte Carlo errors (pink areas) for increasing values of the
threshold c, for Example 1 (left panel), Example 2 (central panel), and Example 3

(right panel). Monte Carlo errors associated with Ê[Ñc0 ] on the bound in (2.13)
are plotted in gray, but are too small to be visible.

We also investigate the relationship between the width of the signal in

the bump-hunting example and the grid resolution. In particular, we repli-

cate the simulation for three choices of the Gaussian width, σ = 0.1θ, σ =
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3.2 The choices of c0 and R

0.5θ and σ = θ. (In our actual analysis, σ = 0.1θ.) As expected, wider

signals correspond to smoother underlying processes (Figure 2, left panel),

and Ê[Ñc0 ] converges (Figure 2, right panel) at a lower grid resolution.

In general, R affects the upper bound/approximation for the global p-

value in (2.8) and the observed value of the test statistic, cR, which we

assume converges to c as R → ∞. Specifically, if the gap between θr and

θr+1 is wider than the signal width, cR may underestimate c, and the signal

may be missed. Thus, if the signal is suspected to be localized over a small

region of the search interval, a higher resolution is required to accurately

estimate (2.13) and avoid false negatives. This would, in turn, adversely

affect the power of the test.

Conversely, in Examples 2 and 3, the signal is spread either over the

whole parameter space or over a large portion of it. In these cases, the

choice of R should be based on the desired level of accuracy of both cR, as

an estimate for the maximum of the underlying process, and θ, at which

the maximum occurs; that is,

θ̃ = argmaxθr∈ΘR
{W (θr)}. (3.18)

Finally, based on the elbow in the upcrossing plots in Figures 2 and S.2,
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the values of R we select are R = 100 in Example 1 (with σ = 0.1θ, as in

(1.1)), R = 50 in Example 2, andR = 30 in Example 3. However, in order to

guarantee accuracy of at least 0.5 for the identified location, θ̃, of the break-

point, we set R = 50 in Example 3. For each of the models considered, we

computed (2.13) using the R and c0 selected above. The results obtained are

compared in Figure 3 with the Monte Carlo estimates of P (supθ∈Θ{W (θ)} >

c) for increasing values of c, obtained using 100,000 simulations, each of size

10,000. The pink areas correspond to the respective Monte Carlo errors.

The Monte Carlo errors associated with the estimate Ê[Ñc0 ] of E[Ñc0 ] in

(2.13) (and displayed on a lower scale in the upcrossing plots) are also

incorporated in Figure 3, but they are too small to be visible. As expected,

the estimated TOHM bounds approach the “truth” as c→∞. Convergence

appears to be slower for Example 1. However, the plots are presented on

a log10-scale and, thus, in all cases, we obtain good approximations of the

global p-values.

4. Comparing TOHM and Bonferroni’s bounds

In fields such as high energy physics and astrophysics, experiments are often

characterized by a search of one signal over a wide pool of possibilities. The

simplest possible way to tackle this problem using classical MHT is to use

Bonferroni correction (Bonferroni, 1935, 1936). The Bonferroni bound for
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the global p-value is

pBF = R · min
θr∈ΘR

P (W (L) ≥ w(θr)) = R · P (W (L) ≥ cR). (4.19)

The standard Bonferoni correction, pBF , used to bound statistical signifi-

cance in multiple testing also yields a bound on P (maxθr∈ΘR{W (θr)} ≥ cR).

Specifically,

P

(
max
θr∈ΘR

{W (θr)} ≥ cR

)
= P

(
∪θr∈ΘR{W (θr) > cR}

)
≤
∑
θr∈ΘR

P (W (θr) > cR)

= R · P (W (L) > cR) = pBF .

In this section, we investigate the relationship between the TOHM and

Bonferroni bounds using simple constructs from EVT in order to individu-

ate situations where the latter can be used without leading to overly con-

servative results.

First, we introduce a distinction between upcrossings and exceedances

of {W (θr)}. Specifically, an exceedance of cR by {W (θr)} occurs at θr

if {W (θr) > cR}. An illustration of the difference between upcrossings

and exceedances is given in Figure S.1. We denote by ÑcR the process of
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Figure 4: Ratio of Bonferroni and TOHM bounds at increasing values of c
(and corresponding significance for TOHM), and considering different resolu-
tions (gray curves). The left, central, and right panels correspond to Example 1,
2, and 3, respectively.

exceedances of cR by {W (θr)}, and let ṄcR be the process of upcrossings,

as defined in 2.3. Note that

E[ṄcR ] =
R∑
r=1

P

(
W (θr) ≥ cR

)
=

R∑
r=1

P

(
W (θr) ≥ max

θr′∈ΘR
{w(θr′)}

)
(4.20)

= R min
θr∈ΘR

P (W (L) ≥ w(θr)) = pBF . (4.21)

Because each upcrossing requires at least one exceedance, E[ṄcR ] ≥

E[ÑcR ]. Moreover, we expect the clusters of exceedances corresponding to

each upcrossing to become smaller and, consequently, for E[ṄcR ] to ap-

proach E[ÑcR ] as cR increases. Here, E[ṄcR ] can be computed easily using

pBF in (4.20)-(4.21); whereas, when {W (θ)} satisfies Condition 1, E[ÑcR ] is
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approximately equal to the second term in (2.13), for large R. Furthermore,

E[ÑcR ] dominates the first term in (2.13) as cR → ∞. Thus, it is natural

to consider if there are situations where (2.13) and pBF are approximately

equivalent bounds on P (maxθr∈ΘR{W (θr)} ≥ cR), that is

P (W (L) > cR) +
a(cR)

a(c0)
E[Ñc0 ] ≈ pBF , (4.22)

for c0 ≤ cR, cR → +∞, and R → +∞. Unfortunately, simultaneously

quantifying the rates at which cR and R must increase in order for (4.22)

to hold is not an easy task. Hence, we investigate the approximation in

(4.22) using a numerical simulation, where we compare the performance

of the Bonferroni and TOHM bounds with respect to the number of tests

considered and the level of significance for Examples 1, 2, and 3.

The results are reported in Figure 4, where we plot the ratio of the

two bounds for increasing values of c using different grid sizes R. Because

we use the signed-root LRT, {Qn(θ)}, in Example 3 rather than using the

LRT, smaller values of c correspond to equally significant results. In the

horizontal axes, the statistical significance is reported in terms of the σ-

significance, that is, the number of standard deviations from the mean

of a standard normal distribution that correspond to the tail probability
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expressed by the one-sided p-value. In other words,

#σ = Φ−1(1− p-value),

where Φ is the standard normal cumulative function.

In Examples 2 and 3, Bonferroni is always more conservative than the

TOHM bound when at least 30 tests are performed. For R = 15, Bonferroni

becomes less conservative only when the level of significance achieved is of

the order of 6σ and 11σ, respectively.

A more interesting situation is observed in Example 1. Here, the equiv-

alence of pTOHM and pBF occurs for values of c much smaller than those for

which the same limit is achieved in Examples 2 and 3. Furthermore, when

R ≤ 50, Bonferroni quickly becomes less conservative than the TOHM

bound as c increases. For R = 50, for instance, Bonferroni outperforms

TOHM when c > 30 (∼ 4.5σ significance).

Finally, the plots in Figure 4 all suggest that the TOHM bound is

preferable to Bonferroni with very high resolutions (i.e., R ≥ 500) for all of

the significance levels considered (up to ∼ 10σ).

Note that the value of R selected using the upcrossing plots discussed in

Section 3.2 is the minimum number of grid points (among those considered)
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for which Ê[Ñc0 ] converges to its limit. As R increases beyond this point,

the estimated TOHM bound remains constant, whereas Bonferroni’s bound

continues to increase. Thus, when the number of tests to be conducted

can be selected arbitrarly, Bonferroni will not be overly conservative if the

“elbow” in the upcrossings plot appears at a relatively small value of R and

the observed value of c is large. However, practitioners should keep in mind

that when attempting to identify the signal location, θ̃, a higher resolution

is typically required and, thus, TOHM is preferable.

Example Test Method R cR θ̃ p-value
(Significance)

Example 1
H0 : η = 0 Bonferroni

100 38.326 3.404
2.99 · 10−8 (5.42σ)

H1 : η > 0 TOHM 2.11 · 10−8 (5.48σ)

Example 2

H0 : η = 0 Bonferroni
50 21.021 27.265

1.14 · 10−4 (3.69σ)
H1 : η > 0 TOHM 2.51 · 10−5 (4.06σ)
H0 : η = 1 Bonferroni

50 0.606 27.890
> 1 (0.00σ )

H1 : η < 1 TOHM 7.201 · 10−1 (0.58σ)

Example 3
H0 : ξ = 0 Bonferroni

50 11.826 31.266
1.43 · 10−30 (11.43σ)

H1 : ξ 6= 0 TOHM 5.06 · 10−31 (11.52σ)

Table 1: Summary of the results of TOHM and MHT via Bonferroni on real data
for Examples 1, 2, and 3.
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4.1 Data analyses

4.1 Data analyses

In this section, we compare the TOHM and Bonferroni bounds for Examples

1, 2, and 3. The results are summarized in Table 1. In the dark matter

search problem of Example 1, we obtain significance in favor of the presence

of a dark matter emission of about 5.4σ using both TOHM and MHT. This

result is not surprising because cR = 38.326 and, as shown in the central

panel of Figure 4, at c ≈ 40, the gray line associated with R = 100 is very

close the red dashed line. The signal location selected is close to the truth

(3.5 GeV), and the estimated model is plotted as a solid red line in the left

panel of Figure 1; the signal location selected, θ̃ = 3.404, is indicated by

the green dotted vertical line.

In Example 2, both TOHM and Bonferroni reject the hypothesis that

the observed emission is due to a power-law distributed cosmic source at

4.06σ and 3.69σ, respectively. Because this example involves a non-nested

model comparison, we invert the null of the hypotheses to avoid meaningless

results (see Section 3.1 for more details). In the inverted test, the power-

law model cannot be rejected. Both the fitted dark matter model and the

fitted power-law cosmic source model are displayed in the central panel

of Figure 1. In Example 2, when testing (1.2), the value of θ (i.e., the

signal annihilation of the dark matter model) selected by TOHM is θ̃ =
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27.265 GeV. This is somewhat off from the true value used to simulate

the data (θ = 35 GeV), perhaps because our analysis does not account for

instrumental errors. Our analysis also only uses the spectral energy of the

γ-ray signals, whereas, in practice, the directions of the γ-ray would also

be used, thus increasing the statistical power.

Finally, for the break-point regression model in Example 3, both TOHM

and MHT give similar inferences (11.52σ and 11.43σ, respectively) when

rejecting the hypothesis of a linear model with no break-point. The equiv-

alence between the two procedures is likely due to the high statistical sig-

nificance and the moderately large number of tests conducted (R = 50).

The fitted model is displayed in Figure 1, where the green triangle corre-

sponds to the optimal break-point location; that is, the maximum of the

signed-root LRT process occurs at a mother’s age of 31.266 years.

5. Conclusion

We have proposed a highly generalizable method to efficiently conduct sta-

tistical tests under nonstandard conditions, including bump-hunting, struc-

tural change detection, and a non-nested model comparison.

The main advantages of the proposed method are its easy implemen-

tation and its efficiency in providing an accurate inference, while control-

ling for very small type-I errors rates. Following Davies (1987) and Gross
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and Vitells (2010), we combine the theoretical framework of EVT with the

practical simplicity of Monte Carlo simulations, and generalize their results

beyond the LRT and χ2. Using several simulation studies, we show that as

few as 100 Monte Carlo simulations are often sufficient to achieve a high

level of accuracy. Although we do not investigate the power of TOHM here,

interested readers are directed to Davies (1977) for a formal derivation of

the lower and upper bounds of the power function in the normal case, and

to the simulation studies conducted in Algeri et al. (2016) and Algeri et al.

(2016) for the χ̄2
01 case.

From a practical perspective, we propose simple graphical tools for

selecting the threshold c0 and for specifying an appropriate number of sub-

tests R to guarantee the robustness of the resulting inference. Finally, we

investigated the relationship between the TOHM and Bonferroni bounds,

and implemented both procedures on our running examples. In future work,

we will extend our results to the case where the nuisance parameter specified

only under the alternative, θ, is multi-dimensional (Algeri and van Dyk,

2019).

Note that the stringent significance requirements play a critical role

both in the theory discussed in Section 2 and in practical applications.

Specifically, this setup is particularly well suited to searches in high energy
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physics, where the significance level necessary to claim a discovery is at

least 5σ. However, in light of the recent “p-value crisis,” culminating in the

journal Basic and Applied Social Psychology banning the use of the p-value

in future submissions (Wasserstein and Lazar, 2016; Leek and Peng, 2015),

stringent significance criteria may become more popular in other scientific

communities.

Supplementary Material In Section S.1, we discuss the error rate

of (2.8) for Gaussian, χ2, and χ̄2
01 processes. The proofs of Result 2 and

Result 3 are collected in Section S.2. Additional figures are reported in

Section S.3. Lastly, the data used in Examples 1 and 2 are provided.
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