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Abstract: Existing regression dimension-reduction methods estimate a subspace

in the primal predictor-based space, and then obtain the set of reduced predictors

by projecting the original predictor vector onto this subspace. We propose a

principled method for estimating a sufficient reduction in the dual sample-based

space, based on a supervised inverse regression model. The reduction is performed

without needing to estimate the subspace. Our method extends the duality

between principal component analysis and principal coordinate analysis. We

study the asymptotic behavior of the proposed method, and demonstrate that

it is robust to model misspecification. We present simulation results to support

the theoretical conclusion, and show how to apply the method by means of a

real-data analysis.
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1 INTRODUCTION

1. Introduction

Dimension reduction is a long-standing and prominent problem in regression

analysis (Cook, 2007). Classical methods transform the predictors, and then

fit a least squares model using the transformed variables. For example, the

widely used principal component regression extracts the first few principal

components of the predictors, and then uses these components as the predictors

in a linear model. However, one of the main concerns with this approach is

that the directions in which the predictors show the most variation are not

necessarily the directions associated with the response. Many methods have

been proposed to deal with this issue, including the partial least squares

and sliced inverse regression (Li, 1991) methods. A common goal of such

methods is to reduce the dimensionality of the predictors without losing

any information about the response.

Suppose we have a response Y ∈ R and a vector of predictors X ∈ Rp.

Formally, the aim is to estimate a reduction R : Rp → Rd, for d ≤ p, such

that

Y⊥⊥X | R(X ), (1.1)

where⊥⊥ indicates independence. Here,R(X ) is called a sufficient reduction

for the regression of Y onto X (Cook, 1998). Sufficient dimension reduction
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1 INTRODUCTION

has been an active research area since the introduction of the sliced inverse

regression and sliced average variance estimation methods (Cook and Weisberg,

1991). In this study we focus on linear reductions that are linear combinations

of the predictors: R(X ) = η⊤X , for some p× d matrix η.

Depending on the stochastic nature of Y andX , there are three paradigms

for determining a sufficient reduction: forward reduction, inverse reduction,

and joint reduction, which are equivalent when Y andX are jointly distributed

(Cook, 2007). Without requiring a pre-specified model for Y | X , inverse

reduction is promising in regressions with many predictors. To estimate

a reduction inversely, methods such as the sliced inverse regression exploit

properties of the conditional moments of X | Y . These inverse moment-

based methods impose constraints on the marginal distribution ofX . Alternatively,

inverse model-based approaches directly specify a model for the inverse

regression of X onto Y . Much of the existing work relies on normal models.

See Adragni and Cook (2009) for a recent review of inverse reduction methods.

Sufficient reduction permits us to restrict attention to a few new predictors

η⊤X , upon which subsequent modeling and prediction can be built. Indeed,

the original intent behind (1.1) is to provide a framework for dimension

reduction to facilitate graphical analyses (Cook, 1998). Previous studies

have largely focused on properties of estimators of the subspace spanned by

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0532



1 INTRODUCTION

the columns of η. However, the inference object more relevant to subsequent

data analyses is not the subspace, but the reduction itself. Estimating

sufficient reductions is relatively new. Cook et al. (2012) proposed an inverse

model-based method after studying the asymptotic behavior of a class of

methods for sufficient reduction in large abundant regressions, where most

predictors contribute some information on the response. In the modern

“small n and large p” setting, Wang et al. (2018) recently proposed an

inverse moment-based method for estimating sparse reductions using a novel

representation of a sliced inverse regression.

We propose a new approach for estimating a sufficient reduction, motivated

by the well-known duality between principal component analysis and principal

coordinate analysis (Gower, 1966), also known as classical multidimensional

scaling (CMDS; Hastie et al., 2009). Let X = (x 1, . . . ,xn)
⊤ ∈ Rn×p be a

data matrix of predictor values. Without loss of generality, assume that

each column of X has been centered to have mean zero. A singular value

decomposition offers a way of expressing a principal component analysis.

Let X = UDV⊤ be the singular value decomposition of X; that is, U =

(U1, . . . ,Up) is n× p with orthonormal columns, V = (V1, . . . ,Vp) is p× p

orthogonal, andD is a p×p diagonal matrix with diagonal entries d1 ≥ d2 ≥

· · · ≥ dp ≥ 0. Here, Vj is called the jth principal component direction, and
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djUj is the jth principal component score vector. In the terminology of

regression dimension reduction, UD = XV are linear reductions used in a

principal component regression. Geometrically, each row of UD represents

the coordinates of the corresponding row ofX with respect to the orthonormal

basis V. In this sense, a principal component analysis can be viewed as an

ordination method. Indeed, it is equivalent to CMDS, and an alternative

way of obtaining principal components is to perform an eigen-decomposition

of the Gram matrix XX⊤ = UD2U⊤.

Instead of estimating the directions, one can directly determine the

projection coordinates of the predictor vector onto the subspace spanned

by these directions. In the context of a moment-based inverse reduction,

Zhang et al. (2008) calculated projection coordinates by applying CMDS to

slice means, and then interpolated the projection of a new predictor vector

using these coordinates. This method can be thought of as a dual version of

a sliced inverse regression. At the population level, however, it is not clear

what quantity is being treated as the target. Here, we propose a principled

method for estimating a sufficient reduction under the inverse model-based

reduction scheme. The reduction is performed without needing to estimate

the subspace. To the best of our knowledge, this study is the first time to

examine the asymptotics of predictor reduction in terms of prediction and

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0532



2 A NAIVE INVERSE REGRESSION MODEL

under model misspecification.

To express the projection coordinates explicitly, an inverse regression

model is introduced in Section 2, without requiring normal errors. Because

the coordinates are unconstrained, sufficient reduction is achieved using

CMDS, or a principal component analysis by duality. To perform a supervised

reduction, we model the coordinates in a parametric way in Section 3,

extending the method of Section 2 for a known error structure. A reduction

with an unknown error structure is considered in Section 4, and our theoretical

conclusions are presented. Simulation results and a real-data application

are presented in Section 5. Section 6 concludes the paper. All proofs are

available in the online Supplementary Material.

2. A naive inverse regression model

The subspace spanned by the columns of η is called a dimension-reduction

subspace. The parsimonious target of sufficient dimension reduction is the

central subspace SY |X , defined as the intersection of all dimension-reduction

subspaces (Cook, 1998). Let Y denote the sample space of Y , and let

SE(X |Y ) = span{E(X | Y = y)− E(X ), y ∈ Y}

denote the subspace spanned by the centered inverse regression curves. We

have the following proposition.

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0532



2 A NAIVE INVERSE REGRESSION MODEL

Proposition 1. Assume (C1) SE(X|Y ) ⊆ Var(X)SY |X and (C2) Var(X | Y )

is positive definite and nonrandom. Then,

Var(X | Y )SY |X = Var(X)SY |X.

Conditions (C1) and (C2) are generally regarded as mild in the sufficient

dimension reduction literature. Condition (C1) holds if E(X | η⊤X ) is

a linear function of η⊤X , where η is a basis matrix for SY |X . A slightly

stronger condition is given by (C1′) SE(X |Y ) = Var(X )SY |X ; see Li and Wang

(2007) for a good recent discussion.

Throughout this paper, conditions (C1′) and (C2) are assumed to be

true. Then, by Proposition 1,

SE(X |Y ) = ∆SY |X ,

where ∆ = Var(X | Y ). This implies that SY |X = span(∆−1Γ), where

Γ ∈ Rp×d is a basis matrix for SE(X |Y ). Let X y denote a random vector

distributed as X | (Y = y). The above argument motivates the inverse

regression model

X y = µ+ Γv y + ϵ, (2.2)

where µ = (µ1, . . . , µp)
⊤ ∈ Rp, v y ∈ Rd is an unknown vector-valued

function of y, ϵ is a p-dimensional random vector with mean vector zero and
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covariance matrix ∆, and ϵ is independent of Y . Because Γ is not usually

identifiable, we require that ∆−1/2Γ be a p × d matrix with orthonormal

columns; that is, Γ⊤∆−1Γ is the d× d identity matrix. Let µy = E(X y) =

E(X | Y = y). Then, v y = Γ⊤∆−1(µy − µ). We assume that Var(vY ) is

positive definite.

2.1 Reduction via CMDS

Assume for the moment that ∆ is known. Without loss of generality,

assume that ∆ = Ip, the p × p identity matrix. This implies that Γ

is a semi-orthogonal matrix, and SY |X = span(Γ). Otherwise, multiply

both sides of equation (2.2) by ∆−1/2 and replace (X y,µ,Γ, ϵ,SY |X ) with

(∆−1/2X y,∆
−1/2µ,∆−1/2Γ,∆−1/2ϵ,∆1/2SY |X ).

Suppose the data consist of n independent observations, x y1 , . . . ,x yn .

For two observations indexed by y and y′, define dyy′ = ∥µy − µy′∥22. We

have

dyy′ = ∥Γv y − Γv y′∥22 = v⊤
y v y − 2v⊤

y v y′ + v⊤
y′v y′ .

Let D = (dyy′) ∈ Rn×n,w = (v⊤
y1
v y1 , . . . , v

⊤
ynv yn)

⊤ ∈ Rn, and V =

(v y1 , . . . , v yn)
⊤ ∈ Rn×d. In matrix notation, we have

D = w1⊤
n + 1nw

⊤ − 2VV⊤,
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where 1n is an n-vector of ones. Let Pn = In − n−11n1
⊤
n . Then,

PnDPn = −2PnVV⊤Pn = −2VV⊤,

and hence

VV⊤ = −1

2
PnDPn.

Here, without loss of generality, we assume that the columns of V are

centered; that is,
∑n

i=1 v yi is the d-vector of zeros.

Because dyy′ is actually unknown, we replace it with d̂yy′ = ∥x y −

x y′∥22 − 2p. It is easy to show that d̂yy′ is an unbiased estimate of dyy′ . Let

D̂ = (d̂yy′) and X = (x y1 , . . . ,x yn)
⊤ ∈ Rn×p. Then,

VV⊤ ≈ −1

2
PnD̂Pn = PnXX⊤Pn.

Write the eigen-decomposition of PnXX⊤Pn as

PnXX⊤Pn =
n∑

i=1

λiαiα
⊤
i ,

where λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues, and α1, . . . ,αn are the

corresponding eigenvectors. By the Eckart–Young theorem, a solution for

V is given by

Ṽ = (λ
1/2
1 α1, . . . , λ

1/2
d αd).

Write Ṽ = (ṽ y1 , . . . , ṽ yn)
⊤. In the statistics literature, the reduction

from x y to ṽ y is known as the CMDS, or a principal coordinate analysis.
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2.2 Subspace estimation

We can view ṽ y as the vector of coordinates of x y with respect to the

orthonormal basis Γ. From the viewpoint of regression dimension reduction,

Ṽ then contains all regression information on the response. In subsequent

analyses, graphical displays and regression methods can be exploited to

examine the relationship between the response and the vector of coordinates.

As such, it is important to predict the coordinates of a new observation,

x y∗ , y
∗ ∈ Y. This can be done using the classical method of adding a

point to vector diagrams (Gower, 1968; Zhang et al., 2008). For each i ∈

{1, . . . , n}, we define s̃i = ∥ṽ yi∥22−∥x y∗−x yi∥22. Let s̃ = (s̃1, . . . , s̃n)
⊤ ∈ Rn.

Then, the predicted coordinates ṽ y∗ of x y∗ are given by

ṽ y∗ =
1

2
(Ṽ⊤Ṽ)−1Ṽ⊤s̃ . (2.3)

In a classical sufficient reduction, one is interested mainly in the matrix

Γ, or the subspace SY |X spanned by it. The above procedure operates in

the space of coordinates of x y with respect to the orthonormal basis Γ.

The approach is appealing because it achieves dimension reduction while

avoiding the need to estimate Γ.

2.2 Subspace estimation

Once v y has been determined, it becomes natural to use the least squares

method to estimate Γ in model (2.2), if desired. Specifically, we estimate
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Γ by minimizing the residual sum-of-squares,

∥PnX− ṼΓ⊤∥2F .

Here, ∥ · ∥F denotes the Frobenius matrix norm. The minimizer is given by

Γ̃ = X⊤Ṽ(Ṽ⊤Ṽ)−1. (2.4)

Write Γ̃ = (Γ̃1, . . . , Γ̃d). The estimate of SY |X is then given by span(Γ̃).

After some further manipulations, Γ̃j can be shown to equal the jth

principal component direction ofPnX. Thus, the first d principal component

score vectors of PnX produce a sufficient reduction. Consequently, our

method coincides with that of Cook (2007) under a PC regression model.

The PC regression model is the same as the inverse regression model (2.2),

except the former assumes ϵ is normally distributed, and it employs a

maximum likelihood estimation.

2.3 A toy example

Before we proceed, we consider a simple simulation with p = 5 and d = 2.

Observations on (X , Y ) were generated from the inverse regression model

(2.2), as follows. First, Y = y was sampled from a normal distribution

with mean 0 and variance 4. Then, X y = x y was generated according

to X y = Γv y + ϵ, where Γ = (Γ1,Γ2)
⊤, with Γ1 = (1, 0, 0, 0, 0)⊤ and
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Γ2 = (0, 1, 0, 0, 0)⊤, and v y = (y, y2/3)⊤. The error vector was sampled

from a normal distribution with mean vector 0 and covariance matrix ∆ =

diag(1, 1, 5, 5, 5).

In the upper plot of Figure 1, the two-dimensional coordinates of 200

CMDS samples are displayed, with each sample indexed according to the

response value. There appears to be little discernible relationship between

the response and the coordinates (i.e., principal component scores). This

lack of pattern is to be expected: aside from the subscript y, nothing

on the right-hand side of (2.2) is observable. Consequently, dimension

reduction under this model is based solely on the predictors, and hence is

unsupervised. The lower plot shows the results of applying the supervised

reduction method in Section 4. We see that the response increases as we

move from left to right, and that the middle and extreme response values

are somewhat separated by the second coordinate. In other words, some

proportion of variability in the response can be explained using the new

coordinates.

As in this toy example, in many applications, the response is expected

to play an important role in supervising our reduction. Indeed, this is the

main motivation for most modern dimension-reduction methods, including

those developed in the framework of sufficient dimension reduction. We
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elaborate on this in the next section.

3. A supervised inverse regression model

To facilitate supervised reduction, we model the coordinate vectors as

v y = βf y,

where β ∈ Rd×r has rank d ≤ min(r, p), and f y ∈ Rr is a known vector-

valued function of y. Usually, f y is required to contain a reasonably flexible

set of basis functions, such as slice indicator functions or B-spline basis

functions. This parameterization is widely used in model-based reduction;

see, for example, Cook and Forzani (2008), Cook et al. (2012), andWang and Zhu

(2013). Replacing v y in model (2.2) with βf y, we have the following model:

X y = µ+ Γβf y + ϵ. (3.5)

We refer to this model as a supervised inverse regression model. Without

loss of generality, we assume that the sample mean vector of f y is zero.

The process of dimension reduction based on CMDS is essentially the

same as before. Note that, under (3.5),

dyy′ = ∥Γβf y − Γβf y′∥22 = f ⊤
y β

⊤βf y − 2f ⊤
y β

⊤βf y′ + f ⊤
y′β

⊤βf y′ .

Let π = (f ⊤
y1
β⊤βf y1 , . . . , f

⊤
ynβ

⊤βf yn)
⊤ ∈ Rn and F = (f y1 , . . . , f yn)

⊤ ∈
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Figure 1: Two-dimensional plots of 200 samples from the inverse regression

model in (2.2). The simulation setup is described in the text. Top: The

axes represent the first and second CMDS coordinates. Bottom: The

axes represent the first and second coordinates produced by the supervised

reduction method in Section 4.
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3 A SUPERVISED INVERSE REGRESSION MODEL

Rn×r. In matrix form,

D = π1⊤
n + 1nπ

⊤ − 2Fβ⊤βF⊤.

Because PnF = F, a simple calculation shows that

β⊤β = −1

2
(F⊤F)−1F⊤DF(F⊤F)−1.

Substituting D with D̂, we have

(F⊤F)1/2β⊤β(F⊤F)1/2 ≈ −1

2
(F⊤F)−1/2F⊤D̂F(F⊤F)−1/2

= (F⊤F)−1/2F⊤XX⊤F(F⊤F)−1/2.

Write the eigen-decomposition of the term in the last line as

(F⊤F)−1/2F⊤XX⊤F(F⊤F)−1/2 =
r∑

j=1

ρjϕjϕ
⊤
j ,

where ρ1 ≥ · · · ≥ ρr ≥ 0 are the eigenvalues, and ϕ1, . . . ,ϕr are the

corresponding eigenvectors. A solution for β is then given by

β̃ = (ρ
1/2
1 ϕ1, . . . , ρ

1/2
d ϕd)

⊤(F⊤F)−1/2.

Furthermore,

ṽ y = β̃f y,

and the vector of coordinates ṽ y∗ associated with a new observation x y∗ is,

again, computed from (2.3).
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4. Reduction when ∆ is unknown

4.1 The proposed method

In practice, ∆ is seldom known in advance, and thus has to be estimated

from the data. Throughout this paper, we estimate ∆ using the residual

sample covariance matrix from the multivariate linear regression of X y on

f y:

∆̂ =
1

n
X⊤(In −PF)X,

where PF = F(F⊤F)−1F⊤ is the hat matrix. The asymptotic properties

of ∆̂ can be found in Lemmas 1 and 2 in the Supplementary Material.

Theorem 3.1 of Cook and Forzani (2008) shows that this estimator and the

maximum likelihood estimator under normality of errors are different, but

related.

We fix∆ at ∆̂, and base the analysis on the standardized dataX∆̂
−1/2

.

For simplicity, we focus on the supervised inverse regression model (3.5).

Replacing X with X∆̂
−1/2

, we compute

(F⊤F)−1/2F⊤X∆̂
−1
X⊤F(F⊤F)−1/2,

and its eigen-decomposition

r∑
j=1

ρ̂jϕ̂jϕ̂
⊤
j .
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We estimate β and v y as

β̂ = (ρ̂
1/2
1 ϕ̂1, . . . , ρ̂

1/2
d ϕ̂d)

⊤(F⊤F)−1/2

and

v̂ y = β̂f y.

Define ŝi = ∥v̂ yi∥22 − ∥∆̂
−1/2

(x y∗ − x yi)∥22. Let ŝ = (ŝ1, . . . , ŝn)
⊤ and

V̂ = (v̂ y1 , . . . , v̂ yn)
⊤. Then, the vector of coordinates of a new observation

x y∗ is predicted by

v̂ y∗ =
1

2
(V̂⊤V̂)−1V̂⊤ŝ . (4.6)

We refer to this method as supervised reduction via inverse regression

(SRIR).

As mentioned earlier, the advantage of working with coordinate vectors

is that a reduction can be performed without needing to estimate Γ or SY |X .

Nevertheless, there are situations in which the inferential target is SY |X , as

is the case in a traditional sufficient dimension reduction. To conduct a

reduction in the original predictor space, we have to determine both ∆

and Γ. In general, it is infeasible to find a closed-form expression for these

estimators, and so we usually need an alternating procedure. Fortunately,

the estimate ∆̂ has nothing to do with Γ, suggesting a one-step estimate for
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Γ. Specifically, we estimate Γ by minimizing the residual sum-of-squares

RRS(Γ) = ∥PnX∆̂
−1/2

− V̂Γ⊤∆̂
−1/2

∥2F

= trace{(PnX− V̂Γ⊤)∆̂
−1
(PnX− V̂Γ⊤)⊤}.

The solution is

Γ̂ = X⊤V̂(V̂⊤V̂)−1 = X⊤Fβ̂
⊤
(β̂F⊤Fβ̂

⊤
)−1. (4.7)

Note that Γ̂ depends on ∆̂ (and, hence, the observed responses yi) through

β̂. Finally, we estimate SY |X using span(∆̂
−1
Γ̂).

4.2 Theoretical properties

The limiting behavior of v̂ y∗ is considered in the following theorem.

Theorem 1. Assume that vY = βfY has finite sixth moments, and that ϵ

has finite fourth moments. Then, for some d× d rotation matrix R,

v̂y∗ = R(vy∗ + Γ⊤∆−1ϵy∗) +OP

(
1√
n

)
.

For two d-dimensional random vectors V 1 and V 2, let Σ1,Σ2, and

Σ12 denote the covariance matrix of V 1, the covariance matrix of V 2, and

the covariance matrix between V 1 and V 2, respectively. To assess the

prediction accuracy, we use the multiple correlation coefficient, which is
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defined as the positive square root of

ρ2(V 1,V 2) =
1

d
trace(Σ12Σ

−1
2 Σ⊤

12Σ
−1
1 ).

This measure takes the maximum value of one whenV 1 andV 2 are linearly

related, and takes the minimum zero when the components of the two

vectors are uncorrelated; see Hall and Mathiason (1990) and Li and Dong

(2009). We have the following corollary.

Corollary 1. Assume the conditions of Theorem 1. Then,

ρ2(v̂Y ∗ , vY ∗) =
1

d
trace[Var(vY ∗){Var(vY ∗) + Id}−1] +OP

(
1√
n

)
,

where the covariances in ρ2(v̂Y ∗ , vY ∗) are taken with respect to the joint

distribution of Y ∗ and ϵY ∗.

We now consider the situation in which f y is misspecified. Denote by

{Var(f Y )}−1Cov(f Y , vY ) = UΛV⊤

the singular value decomposition of {Var(f Y )}−1Cov(f Y , vY ); that is, U =

(U1, . . . ,Ud) is r× d with orthonormal columns, V = (V1, . . . ,Vd) is d× d

orthogonal, and Λ is a d × d diagonal matrix with diagonal entries λ1 ≥

λ2 ≥ · · · ≥ λd ≥ 0. Let Φ = (λ1U1, . . . , λdUd)
⊤.
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Theorem 2. Assume that fY has finite sixth moments, and that vY and ϵ

both have finite fourth moments. If Cov(fY , vY ) has full column rank, that

is, λd > 0, then

v̂y∗ = R(c+Avy∗ +AΓ⊤Ω−1ϵy∗) +OP

(
1√
n

)
,

for some d× d rotation matrix R, where

c =
1

2
{ΦVar(fY )Φ

⊤}−1{E(ΦfY f
⊤
YΦ

⊤ΦfY )− E(ΦfY v
⊤
Y vY )},

A = {ΦVar(fY )Φ
⊤}−1ΦCov(fY , vY ),

and

Ω = Var(X)− ΓCov(vY , fY ){Var(fY )}−1Cov(fY , vY )Γ
⊤.

This result indicates that, up to an affine transformation, that is, a

linear transformation followed by a translation, the conclusion of Theorem

1 remains valid, given that f Y and vY are sufficiently correlated. From a

dimension reduction point of view, we can treat v y∗ and c +Av y∗ as the

same reduction.

The following theorem gives the consistency of the subspace estimation.

Theorem 3. Assume the conditions of Theorem 1 or Theorem 2 hold.

Then, span(∆̂
−1
Γ̂) is a

√
n-consistent estimate of SY |X.
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Let Σ̂ = X⊤PFX. Define Sd(∆̂, Σ̂) as the span of ∆̂
−1/2

multiplied by

the first d eigenvectors of ∆̂
−1/2

Σ̂∆̂
−1/2

. One connection between our one-

step subspace estimate and the maximum likelihood estimate is captured

in the following theorem.

Theorem 4. Assume that fy is correctly specified. Then, span(∆̂
−1
Γ̂) =

Sd(∆̂, Σ̂). Consequently, if ϵ is normally distributed, then span(∆̂
−1
Γ̂) is

the maximum likelihood estimate of SY |X.

4.3 Choice of d

In practice, the structural dimension d is unknown, and thus the choice

of d is essential to the proposed method. In the literature, there are two

useful techniques for determining d: one is based on a sequential test (Li,

1991), and the other uses an information criterion (Zhu et al., 2006). Let d0

denote the true dimension. To estimate d0, we propose using the Bayesian

information criterion (Zhu et al., 2012). With

BICd =

∑d
j=1 ρ̂

2
j∑r

k=1 ρ̂
2
k

− log(n)

n
× d(d+ 1)

2
,

the estimated dimension is

d̂ = arg max
1≤d≤r

BICd. (4.8)
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Theorem 5. Assume the conditions of Theorem 1 or Theorem 2 hold.

Then, d̂ converges to d0, in probability.

5. Numerical studies

In this section, we first conduct Monte Carlo simulation studies to assess

the finite-sample performance of the proposed method. We then apply our

method in an analysis of a real data set.

5.1 Simulations

Throughout the simulation study, we considered the structural dimension

d = 2, the sample size n = 200, and the number of predictors p ∈ {10, 20}.

We set∆ = (θ|i−j|), with θ taking 0 or 0.5. Let Γ01 = (1, 1,−1,−1, 0, . . . , 0)⊤/2,

Γ02 = (1, 0, 1, 0, 1, 0, . . . , 0)⊤/
√
3, and Γ0 = (Γ01,Γ02). Set Γ = Γ0(Γ

⊤
0 ∆

−1Γ0)
−1/2.

We used the cubic polynomial basis (y, y2, y3) to fit the model, and then

assessed the prediction accuracy on an independent test sample, {(x y∗i
, y∗i )},

of size 100. Let v̂ y∗i
be the predicted vector of coordinates of x y∗i

. To

measure the closeness between v̂ y∗i
and v y∗i

, we used the sample version

of the multiple correlation coefficient (MCC). For each configuration, the

number of repetitions was 200.

Example 1. To gain insight into the operating characteristics of the
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proposed method, consider the model

X y = Γv y + ϵ,

where y is drawn from a normal distribution N(0, σ2), v y = (y, y2)⊤, and

ϵ ∼ N(0,∆). By Corollary 1,

ρ2(v̂Y ∗ , vY ∗) = g2(σ) +OP

(
1√
n

)
.

Here, g(σ) =
√
σ2/(2σ2 + 2) + σ4/(2σ4 + 1) is an increasing function of σ.

Six values of σ were explored: 0.5, 0.8, 1, 1.5, 2, and 3. Figure 2 depicts

g(σ) and its sample estimate under different configurations. We see there is

an excellent agreement between the theoretical prediction and the empirical

behavior.

Next, we examine the behavior of our method in further detail. In

addition to the prediction accuracy, we also assessed its performance in

terms of subspace recovery. Specifically, we used the vector correlation

coefficient (VCC) and the trace correlation coefficient (TCC) to measure

the closeness between the true and estimated subspaces (Ye and Weiss,

2003). Let B̂ and B be basis matrices for the estimated and true subspaces,

respectively. Denote by ρ1 ≥ · · · ≥ ρd the ordered eigenvalues of B̂⊤BB⊤B̂.

VCC is defined as the positive square root of q2(B̂,B) =
∏d

i=1 ρi, and TCC

is defined as the positive square root of r2(B̂,B) = d−1
∑d

i=1 ρi.
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Figure 2: The estimated MCC curves, based on 200 data replications, for

θ = 0 (dotted) and θ = 0.5 (solid), along with the theoretical MCC curve

g(σ) (longdashed). The error bars indicate one standard deviation.
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Example 2. Consider the model

X y = Γβf y + ϵ,

where f y = (y, |y|, y2)⊤, and ϵ has mean vector 0 and covariance matrix ∆.

Two types of nonGaussian errors were explored, with covariance structures

as in the previous example. In the first, ϵ is drawn from a multivariate

t-distribution with five degrees of freedom. In the second, each component

of ϵ is uniformly distributed on [−
√
3,
√
3]. For the coefficient matrix β,

we set

β =

 1 0 0

0 0 1

 or

 1 −0.5 0

0 0.5 1

 .

This corresponds to the setting where the cubic polynomial basis is correctly

specified or misspecified. Finally, we generated Y from the standard normal

distribution. The averaged values of MCC, VCC, and TCC, and their

standard deviations, based on 200 data replications, are reported in Tables

1–4. From Tables 1 and 3, we see that the prediction accuracy for the

nonGaussian errors is comparable with that under the Gaussian assumption

(Figure 2, σ = 1). Furthermore, our method performs well in terms of

subspace estimation. In general, the performance improves as the number

of predictors decreases. From Tables 2 and 4, we see that our method is
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robust to misspecification of the basis functions, as expected from Theorems

2 and 3.

Table 1: Means and standard deviations (in parentheses) of MCC, VCC,

and TCC, over 200 data applications. ϵ is drawn from a multivariate t-

distribution with five degrees of freedom, and f y is correctly specified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.737 (0.056) 0.900 (0.036) 0.949 (0.018) 0.725 (0.066) 0.845 (0.170) 0.929 (0.061)

θ = 0.5 0.740 (0.048) 0.916 (0.037) 0.958 (0.018) 0.456 (0.085) 0.120 (0.083) 0.406 (0.096)

p = 20 θ = 0 0.716 (0.055) 0.802 (0.047) 0.897 (0.025) 0.667 (0.081) 0.581 (0.279) 0.816 (0.103)

θ = 0.5 0.728 (0.055) 0.827 (0.048) 0.911 (0.025) 0.374 (0.085) 0.050 (0.049) 0.304 (0.077)

Table 2: Means and standard deviations (in parentheses) of MCC, VCC,

and TCC, over 200 data applications. ϵ is drawn from a multivariate t-

distribution with five degrees of freedom, and f y is misspecified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.768 (0.046) 0.899 (0.036) 0.949 (0.018) 0.758 (0.057) 0.843 (0.187) 0.930 (0.067)

θ = 0.5 0.767 (0.050) 0.917 (0.039) 0.958 (0.019) 0.502 (0.069) 0.130 (0.098) 0.431 (0.082)

p = 20 θ = 0 0.752 (0.052) 0.815 (0.041) 0.903 (0.022) 0.711 (0.070) 0.607 (0.257) 0.834 (0.089)

θ = 0.5 0.752 (0.048) 0.826 (0.049) 0.911 (0.025) 0.457 (0.071) 0.058 (0.049) 0.353 (0.065)
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Table 3: Means and standard deviations (in parentheses) of MCC, VCC,

and TCC, over 200 data applications. Each component of ϵ is uniformly

distributed on [−
√
3,
√
3], and f y is correctly specified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.745 (0.044) 0.931 (0.024) 0.965 (0.012) 0.747 (0.043) 0.946 (0.028) 0.973 (0.014)

θ = 0.5 0.742 (0.048) 0.942 (0.027) 0.971 (0.013) 0.436 (0.075) 0.097 (0.073) 0.377 (0.088)

p = 20 θ = 0 0.727 (0.048) 0.852 (0.034) 0.923 (0.018) 0.731 (0.049) 0.867 (0.052) 0.933 (0.025)

θ = 0.5 0.730 (0.049) 0.859 (0.042) 0.928 (0.021) 0.380 (0.074) 0.040 (0.037) 0.290 (0.066)

Table 4: Means and standard deviations (in parentheses) of MCC, VCC,

and TCC, over 200 data applications. Each component of ϵ is uniformly

distributed on [−
√
3,
√
3], and f y is misspecified.

SRIR PC

MCC VCC TCC MCC VCC TCC

p = 10 θ = 0 0.776 (0.033) 0.934 (0.022) 0.967 (0.011) 0.777 (0.033) 0.944 (0.028) 0.972 (0.014)

θ = 0.5 0.769 (0.036) 0.944 (0.026) 0.971 (0.012) 0.488 (0.060) 0.111 (0.078) 0.411 (0.066)

p = 20 θ = 0 0.753 (0.037) 0.853 (0.034) 0.924 (0.018) 0.757 (0.039) 0.881 (0.049) 0.941 (0.024)

θ = 0.5 0.753 (0.045) 0.869 (0.037) 0.933 (0.019) 0.449 (0.065) 0.049 (0.045) 0.354 (0.058)

We also compared our method with the principal components (PC) and

principal fitted components (PFC) methods of Cook and Forzani (2008).

The PC results are shown in the last three columns of Tables 1–4. SRIR

appears to dominate PC in most cases, especially when θ = 0.5. The

PFC results are the same as the SRIR results and, thus, are omitted. For
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subspace estimation, this is expected, from Theorem 4, but for prediction,

this comes as somewhat of a surprise. We provide theoretical support for

this conclusion in the Supplementary Material.

Thus far, we have assumed that the value of the structural dimension

is known. Using Example 2, we evaluated the performance of the BIC-type

criterion (4.8). Tables 5 and 6 report the frequencies of decisions over 200

replications. We see that the proportion of correctly identifying the true

dimension is greater than 80% in each configuration. We also see that a

misspecification can have a significant impact.

Table 5: Selection frequencies of BIC over 200 data replications. ϵ is drawn

from a multivariate t-distribution with five degrees of freedom.

Correctly specified Misspecified

d̂ = 1 d̂ = 2 d̂ = 1 d̂ = 2

p = 10 θ = 0 2 198 39 161

θ = 0.5 2 198 31 169

p = 20 θ = 0 5 195 33 167

θ = 0.5 4 196 30 170
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Table 6: Selection frequencies of BIC over 200 data replications. Each

component of ϵ is uniformly distributed on [−
√
3,
√
3].

Correctly specified Misspecified

d̂ = 1 d̂ = 2 d̂ = 1 d̂ = 2

p = 10 θ = 0 0 200 29 171

θ = 0.5 1 199 32 168

p = 20 θ = 0 3 197 26 174

θ = 0.5 1 199 30 170

5.2 Boston housing data

We applied SRIR to Boston housing data (Harrison and Rubinfeld, 1978),

available in the MASS library in R. This data set has 14 variables and 506

observations, with each observation representing a census tract in Boston

Standard Metropolitan Statistical Areas. The variable of primary interest

is the median value, in thousands of dollars, of owner occupied homes.

The 13 explanatory variables include the per capita crime rate by town,

average number of rooms per house, and percentage of households with low

socioeconomic status, among others.

Fitting the supervised inverse regression model (3.5), with the cubic

polynomial basis, resulted in BIC choosing d = 2, suggesting that two linear

combinations of the 13 predictors are sufficient. The top panel of Figure

3 shows a two-dimensional plot of the 506 observations, with coordinates

computed using (4.6). We see a horseshoe-like pattern in the data cloud.
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We also see an association between the response and the coordinates, similar

to that in the toy example. For comparison purposes, we also carried

out CMDS. In the bottom panel, the ordination of the first two CMDS

coordinates is shown. The unsupervised method failed to show any useful

relationship.

Figure 4 shows plots of the response versus the SRIR coordinates. The

upper panel shows a strong linear relation between the response and the

first SRIR coordinate. In the lower panel, we see a nonlinear association

between the response and the second SRIR coordinate.

6. Discussion

Linear reduction methods aim to construct a few linear combinations of

the original predictors for subsequent analyses. Nearly all existing methods

estimate a subspace in the primal predictor-based space, and then obtain

the set of reduced predictors by projecting the original predictor vector onto

this subspace. We have proposed a principled reduction method in a dual

sample-based space, based on a supervised inverse regression model. Instead

of estimating the subspace, our method directly estimates the projection

coordinates of the predictor vector onto the subspace. The results extend

the well-known duality between principal component analysis and CMDS.
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Figure 3: Two-dimensional plots for the Boston housing data. Top: The

axes represent the first and second SRIR coordinates. Down: The axes

represent the first and second CMDS coordinates.
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Figure 4: Boston housing data. Top: Response versus the first SRIR

coordinate. Down: Response versus the second SRIR coordinate.
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Computating SRIR has the same order of computation as that of the

maximum likelihood estimation (Cook and Forzani, 2008). However, our

method has a smaller computational cost than that of the maximum likelihood

method in terms of generating the reduction for the observed data. Specifically,

the computational complexity of the former is O(d × n × r2), and that of

the latter is O(d× n× p2).

We have presented the theoretical properties of our method, supported

by simulation results. As with most reduction methods, we have adopted

the traditional asymptotic reasoning of letting the sample size n → ∞,

with the number of predictors p fixed. Our method requires the inverse

of the residual sample covariance matrix, and hence is problematic when p

is comparable to, or even larger than n. Regularized versions in the dual

space have a strong practical appeal, and are currently under investigation.

Our method is related to a nonparametric multivariate analysis procedure

in ecological studies (Mcardle and Anderson, 2001), known as a permutation

multivariate analysis of variance. This procedure partitions the variability

in multivariate ecological data according to factors in an experimental

design. The underlying intuition is the duality between X⊤X, an inner

product matrix in the primal space, and XX⊤, an outer product matrix

in the dual space, in the sense that trace(X⊤X) = trace(XX⊤). This
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equivalence is important, because an outer product matrix can be obtained

from any symmetric distance matrix D = (dij) ∈ Rn×n (Gower, 1966).

In particular, for a p × p positive-definite matrix B, if we let dij(B) =

(x i−x j)
⊤B(x i−x j), thenXBX⊤ = −PnDPn/2, where Pn is the centering

matrix. Similarly to the permutation multivariate analysis of variance, we

can extend our supervised reduction method, based solely on measures of

distance or dissimilarity between pairs of observations, without assuming

the inverse regression model. Alternatively, under a notion of nonlinear

sufficient reduction (Zhang et al., 2008), it is possible to derive a kernel

extension of the proposed method. These topics are left to future research.

Supplementary Material

The online Supplementary Material contains proofs of the relevant lemmas

and theorems.
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