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Abstract: We develop an e�cient test for the homogeneity of the mean directions of several

independent circular populations (ANOMED) that can be universally implemented. Current

tests for ANOMED are available only for highly concentrated and/or large groups. Thus, we

�ll the gap for a usable test under highly dispersed and/or small to medium-sized groups.

Focusing on the popular von Mises distribution, a simple and elegant test statistic is derived

under homogeneous concentrations across groups. The hurdle of the non-location-scale nui-

sance parameter κ is overcome by adopting a new approach based on the integrated likelihood

ratio test (ILRT). Furthermore, a second-order-accurate asymptotic chi-square distribution is

established for the ILRT. Notably, the test outperforms existing tests for small to moderate-

size and highly dispersed (small κ) groups, which is precisely the parametric region of prime

concern, where previous tests were either unusable or unsatisfactory. The test also outper-

forms the popular Watson�Williams test for highly concentrated small groups, and shows

competitive performance compared with that of its best competitors and, hence, can be

universally used in all situations. The ILRT extends naturally under heterogeneous concen-

trations, and is amenable to elegant generalizations to a rich variety of circular populations
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and to higher dimensions (i.e., to distributions on the sphere and hypersphere). Lastly, the

test is illustrated using three real-life data sets.

Key words and phrases: Circular ANOVA, Circular normal distribution, Generalized von

Mises distribution, Integrated likelihood ratio tests, Watson-Williams test, Batschelet distri-

bution.

1. Introduction

Observations on angular movements or displacements and on directional propaga-

tions on a plane commonly constitute circular data. Strictly periodic occurrences,

rhythmic activities, and compositional data may also fall within this category. An-

alytically, any data that can be mapped uniquely onto the circumference of a unit

circle is de�ned as circular data. Analyses of such data di�er markedly from those

for linear data, owing to the disparate topologies between the line and the circle.

Refer to Mardia and Jupp (2000) (MJ) and Jammalamadaka and SenGupta (2001)

(JS), and Fisher (1993) for further details.

Often, a situation demands a comparison of the mean directions of several inde-

pendent populations; see Lozano (2016) and Shay et al (2016) for recent applications.

We refer to such a comparison as an analysis of mean directions (ANOMED). The

present work develops e�cient test procedures for an ANOMED under the popular

von Mises (vM) or circular normal distribution.

An overview of the existing literature on ANOMED for vM (see Section 2)re-
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veals that tests are available either for highly concentrated data (Watson, 1956) or

for large samples (e.g., see the corresponding likelihood ratio test (LRT) in MJ).

Under similar conditions, useful references on ANOMED include Beran and Fisher

(1998) for bootstrap-based pairwise comparisons between mean directions, Larsen et

al. (2002) for improved likelihood ratio-based tests for the two-sample problem, and

SenGupta and Roy (2011) for an analysis of deviance-based approach with vM and

wrapped Cauchy distributions.

In the present scenario, it appears that for vM, no satisfactory tests exist for highly

dispersed data (small concentration parameter) and small to moderate group sizes,

despite the frequency with which such data occur in diverse areas of applied research.

An example attesting to this fact is also given in this paper. The present work at-

tempts to �ll this gap by developing an integrated likelihood ratio test (ILRT),

which eliminates the nuisance concentration parameter κ by integrating it out of

the likelihood function using a suitably chosen weight function. Then, a second-

order-accurate asymptotic chi-square distribution for the ILRT is derived. Extensive

simulation-based comparisons show that the proposed test outperforms its competi-

tors under small concentration parameters, and performs as equally well as its best

competitors otherwise, rendering it universally applicable. Tests for ANOMED under

generalized von Mises (GvM) and Batschelet distributions are outlined. A version

of the ILRT for heterogeneous concentrations across groups is also developed. The
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new test is illustrated using real data sets.

The remainder of the paper proceeds as follows. Section 2 summarizes the exist-

ing methods. The proposed ILRT, its asymptotic distribution, and its performance

assessment in comparison to its competitors are addressed in Section 3. Section 4 de-

velops the analogue of the ILRT under unequal concentrations, derives its asymptotic

distribution, and discusses its extensions to other distributions. Section 5 exempli-

�es the use of the ILRT using real data sets, relative to the existing tests. Section 6

concludes the paper.

2. Preliminaries and review

2.1 Preliminaries

The angular observations θij, for i = 1, ..., p, j = 1, ..., ni; θij ∈ (0, 2π], are assumed

to follow the vM or circular normal distribution, with pdf

f(θij) =
1

2πI0(κ)
exp{κ. cos(θij − µi)},

where κ > 0 is the concentration parameter, µi ∈ (0, 2π] is the mean direction for

the ith group, and I0(κ) is the modi�ed Bessel function of the �rst kind with order

zero. The maximum likelihood estimate (MLE) of the ith group mean direction µi

is given by θi., the quadrant-speci�c sample mean direction (JS, p. 13). Let Ci =∑ni
j=1 cos(θij), Si =

∑ni
j=1 sin(θij), and n =

∑p
i=1 ni. The length of the resultant vec-

tor for the ith group in its two equivalent forms is Ri = (C2
i +S2

i )
1
2 =

∑ni
j=1 cos(θij−

θi.). The MLE κ̂1 of κ is a solution of the equation A(κ̂1) = (
∑p

i=1 Ri)/n, where

Statistica Sinica: Preprint 
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A(.) = I1(.)/I0(.).

The mean direction θ.. of the combined sample and its resultant length R are

obtained similarly, based on the combined sample, by replacing Ci and Si with C =∑p
i=1 Ci and S =

∑p
i=1 Si, respectively. The standardized lengths for the ith group

and the combined sample are given by R̄i = Ri/ni and R̄ = R/n, respectively.

Here we test H0 : µ1 = ... = µp, versus at least one inequality in mathematical

terms. Under H0, the MLE of µ0 is θ.., whereas that of κ is κ̂0, where A(κ̂0) = R̄.

The existing tests for ANOMED under vM are described below.

2.2 Existing methods

The literature addresses the problem of ANOMED for a high concentration (large

κ) or for large sample sizes. As a result, four corresponding types of tests exist (see

e.g., MJ, Chapter 10): two high-concentration tests, namely the Watson�Williams

(WW) and Harrison, Kanji, Gadsden (HKG) tests, and two LRT-based large-sample

tests.

1. WW test with a multiplicative correction:

TWW ≡ (1 +
3

8κ̂0

)
(n− p)SSB
(p− 1)SSW

∼ Fp−1,n−p,

for large κ, where SSW = 2κ(n −
∑p

i=1Ri) and SSB = 2κ(
∑p

i=1Ri − R).

The corrective adjustment (1 + 3
8κ̂0

) is suggested by Stephens (1972), and is

recommended for κ̂0 > 2.

Statistica Sinica: Preprint 
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2. HKG with a multiplicative correction:

THKG ≡ (1− 1/(5κ̂0)− 1/(10κ̂2
0))

(n− p)SSTr
(p− 1)SSE

∼ Fp−1,n−p,

for large κ, where SSTr = (
∑

i niR̄i
2 − nR̄..

2
) and SSE = (n−

∑
i niR̄i

2
).

3. LRT:

TLRT = 2[n{log I0(κ̂0)− log I0(κ̂1)}+ κ̂1

∑
i

Ri − κ̂0R]
a∼ χ2

p−1.

4. Anderson and Wu test (AW):

Anderson and Wu (1995) suggested using κ̂0 in place of κ̂1 in TLRT , with the

same asymptotic chi-square distributional assumption.

Here
a∼ refers to an asymptotic distribution.

Although highly dispersed and/or small to medium-sized groups are often en-

countered in practice, existing tests either are not applicable or fail to perform well.

See Section 3.3 for a rigorous discussion of this point. This study seeks to �ll this

gap. To do so, we develop a test that should work uniformly in all situations. Here,

we eliminate the nuisance concentration parameter to improve the quality of the

LRT-based tests.

In the next section, we develop an integrated likelihood test, ILRT, for ANOMED,

and derive its second-order asymptotic chi-square distribution. A detailed assessment

of the test reported in Section 3.3 reveals uniformly satisfactory performance. Fur-

thermore, the proposed test outperforms other tests in the aforementioned regions.

Statistica Sinica: Preprint 
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3. THE PROPOSED ILRT

3.1 The integrated likelihood ratio approach

Consider a likelihood function L(ψψψ,λλλ), where ψψψ is the parameter of interest, and

λλλ ∈ ΛΛΛ is the nuisance parameter. The likelihood inference about ψψψ is often based on

a pseudo-likelihood function Lψψψ, obtained by eliminating λλλ in a suitable way, which

maintains the properties similar to those of a regular likelihood. The most popular

is the pro�le likelihood (PL) Lp (and its modi�cations), which replaces the nuisance

parameter with λ̂λλψψψ, the maximizer of L with respect to λλλ under �xed ψψψ. However the

PL has several drawbacks. First, Maximizing over ΛΛΛ can be challenging in the case

of a large number of nuisance parameters. See also example 2 (yielding ′0′ as the PL-

based MLE for the population variance under every observable data set), example

3 (yielding a strange likelihood, rapidly growing to ∞ as the parameter θ → ∞ or

−∞, depending on the sign of the sample mean), and example 4 (PL is nearly useless

for inferences, being nearly constant over a huge range of the parameter space) of

Berger et al. (1999) for other undesirable situations.

Given this background, the "averaging" e�ect produced by an integrated likeli-

hood (IL) is expected to produce a better summary of the original likelihood than

that of the "maximization" in the pro�le likelihood. Refer to Berger et al. (1999) for

a critical discussion about pseudo likelihoods, where the use of IL is strongly recom-

mended for several reasons, including accounting for nuisance parameter uncertainty.

Statistica Sinica: Preprint 
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For further insights, refer to Kalb�eisch and Sprott (1970) and Liseo (1993), among

others. An IL is of the form

L̄(ψψψ) =

∫
ΛΛΛ

L(ψψψ,λλλ) · Π(λλλ|ψψψ) dλλλ. (1)

Here, Π is a nonnegative weight function on ΛΛΛ, making the above integral convergent

for every �xed ψψψ.

Because L̄ depends only on the data and the parameter of interest ψψψ, it can be

used like a standard likelihood function for all likelihood-based inference procedures.

However, choosing Π to produce good inference procedures is an important issue,

one that remains unresolved under multiple parameters of interest, as in the present

inference problem of ANOMED.

E�ective IL-based inference procedures are considered by Chamberlain (2007),

Ghosh et al. (2006), and Malley et al. (2003), among others. Severini (2007, 2010,

2011) gives a thorough development of inference procedures about a scalar parameter

of interest ψ, particularly when the nuisance parameters λλλ and the scalar parameter

of interest ψ are orthogonal; that is, the expected values of the mixed derivatives

of the log likelihood function with respect to λλλ and ψ are zeros. In this case, the

impact of the choice of Π is quite low when Π does not depend on ψψψ, in moderate

to large samples. However, parameter orthogonality is not a necessary condition for

the ILRT to produce good inference procedures.

In the following, the ILRT statistic is developed for ANOMED under equally

Statistica Sinica: Preprint 
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dispersed vM distributions. Its second-order asymptotic chi-square distribution is

derived. An extensive simulation-based assessment of its performance is carried out

in Section 3.3.

3.2. ILRT under equal concentration parameters

Referring to section 2.1, the likelihood function is

L(µµµ|θθθ, κ) = 1
I0(κ)n

exp
[
κ{
∑p

i=1

∑ni
j=1(cos(θij − µi))}

]
, κ > 0, µi ∈ [0, 2π), ∀i.

Here, θθθ = (θ11, θ12, ..., θ1n1 , .., θp1, ..., θpnp) is the vector of all observations, and ψψψ =

µµµ = (µ1, ..., µp) is the vector parameter of interest. The choice of prior,

Π(κ) = I0(κ)n exp(−nκ) κan−1, κ > 0, (2)

is motivated by its success in attaining a simple closed form of the IL, after eliminat-

ing the normalizing constant I0(κ)−n and choosing the exponent exp(−nκ) to make

the resulting integral convergent for all observed data sets and mean directions. Nev-

ertheless, we would like to keep it free from the parameter of interest ψψψ. This choice,

together with the parameter orthogonality between ψψψ and κ, provides the resulting

ILRT with the desired second-order properties, as seen in the proof of Theorem 1

(see also Severini (2007)). The term κan/2−1, the exponent of which produces the

scaling factor an in the resulting ILRT statistic, is used to attain a nondegenerate

limiting distribution. In line with the Welch�Satterthwaite technique, an initial

guess of an = n − 1 is based on matching the simulated means (�rst moments) of

Statistica Sinica: Preprint 
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TILRT to p− 1, the expected values of the desired asymptotic χ2 distribution, under

a large group size and large κ. More precisely, n1 = 100 and κ = 15 were taken as

representatives of large group sizes and large concentrations, respectively. Then, the

ratio of p − 1 to the simulated mean (based on 500000 simulations) of the RHS of

(3), excluding the (n − 1) term (which is the simulated value of the an term), was

regressed on the total sample size n for p = 2(1)8. The value of an was further tuned

for its modest dependence on the unknown κ using multiplicative adjustments, as

suggested in section A.1 of Appendix A. Finally, integrating L.Π over κ ∈ (0,∞)

results in the integrated likelihood function

L̄(µµµ|θθθ) ∝
[
n−

∑p
i=1

∑ni
j=1 cos(θij − µi)

]−(n−1)/2

.

The integrated MLEs obtained by maximizing L̄ with respect to µµµ under the null

and the alternative hypotheses coincide with the usual ones, ψ̄0 = µ̄0 = θ.. and

ψ̄ψψ1 = µ̄µµ; µ̄i = θi., for i = 1, ..., p, respectively (see Section 2.1). The resulting IL ratio

is

λ̄ =
supΘ0L̄(µ|θθθ)
supΘ1

L̄(µµµ|θθθ)
= [(n−

p∑
i=1

Ri)/(n−R)](n−1)/2,

where Θ1 = {µµµ : µi ∈ (0, 2π], i = 1, ..., p}, and Θ0 = {µ(1, 1, ..., 1)p×1, µ ∈ (0, 2π] }

is the subset of Θ1 comprising all components of µµµ equal to µ. The proposed ILRT

statistic −2 log λ̄ is

TILRT = −(n− 1) log[(n−
p∑
i=1

Ri)/(n−R)]. (3)

Statistica Sinica: Preprint 
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The asymptotic χ2 distribution of TILRT is stated in Theorem 1.

Throughout this paper, the parameter space for κ is assumed to be (0,∞). (The case

κ = 0 is excluded, being a uniform distribution over [0, 2π)).

Theorem 1: The asymptotic distribution of TILRT is χ2
p−1.

Proof of Theorem 1. Let C(ψψψ) =
∑p

i=1

∑ni
j=1 cos(θij−µi). Writing L(κ) for L(κ|µµµ;θθθ),

let

h(κ) = − 1

n
log(L(κ))

= log(I0(κ))− κ

n
C(ψψψ).

It is easily seen that the partial derivatives of h with respect to κ are

h′(κ) = −C(ψψψ)

n
+ A(κ);

h(j)(κ) = A(j−1)(κ); j = 2, 3, .... ,

(4)

where A(j) is the jth derivative of A(κ) with respect to κ.

First, consider the case of large concentrations, κ > 1. Here, A(κ) and its jth

derivative can be shown to be piece-wise well approximated to O(10−3) by

A(κ) ≈ c+ b/κ;

A(j) ≈ b (−1)(j) j!/κj+1; j = 1, 2, ... .

(5)

The constant c varies slightly across the pieces, and is almost zero for large concen-

trations, whereas the slope b is very close to 2. See Table 2 of Section A.2, Appendix

A, for details. See also A.13 of Appendix 1 of JM for another approximation. The

Statistica Sinica: Preprint 
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Taylor expansion of h about κ̂ψψψ ≡ κ̂, with equations (4) and (5), and the fact that

h′(κ̂) = 0, yield the following:

nh(κ) = − log(L(κ̂)) +
1

2
A′(κ̂)u2 +

{
−2 u3

√
n3(κ̂)3

+
2 u4

n4(κ̂)4

}
+ rn(u),

where u =
√
n(κ− κ̂) and rn(u) is O(n−1.5).

Note that the prior Π is continuously di�erentiable. Then, applying the expansion

of e−x to the third term (inside the curly bracket) and using Taylor's expansion of

Π(κ) about κ̂ gives

L(κ).Π(κ) = exp{−nh(κ)}Π(κ)

=
L(κ̂)√
n |A′(κ̂)|

.
√
n |A′(κ̂)| exp{−A′(κ̂)u2/2}

.

{
1−

[
−2 u3

3
√
n(κ̂)3

+
2 u4

4n(κ̂)4

]
+

1

2

[
−2 u3

3
√
n(κ̂)3

+
2 u4

4n(κ̂)4

]2

+ R1n(κ, κ̂)

}
{

Π(κ̂) +
1√
n

Π′(κ̂)u+
1

2n
Π′′(κ̂)u2 +

1

6n
√
n

Π(3)(κ̂)u3 + R2n(κ, κ̂)

}
,

(6)

where R1n and R2n are of O(n−2). First compute the product of the two bracketed

terms on the RHS of (6), and then multiply the resulting terms by√
n |A′(κ̂)| exp{−1

2
A′(κ̂)u2}, which is proportional to a normal density with mean

zero and standard deviation A′(κ̂)−1/2. Next, integrate term by term with respect

to κ, and note that dκ =
√
n du. Then, on the RHS of (6), the integrals involving

powers of u are proportional to the raw moments of a normal distribution with mean

zero and standard deviation A′(κ̂)−1/2. The use of (5) with the approximation b ≈ 2

Statistica Sinica: Preprint 
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makes the (2j)th raw moment µ
′
2j = 2κ̂2j(2j)!/(2jj!2j), a constant multiple of κ̂2j,

while the odd order moments vanish. Ignoring the O(n−2) terms, the RHS of (6)

becomes ∫
L(κ).Π(κ)dκ ∝ LA(κ̂)

{
Π(κ̂) +

Π
′′
(κ̂)µ

′
2

2n
+

Π
′
(κ̂)µ

′
4

3nκ̂3
−

Π(κ̂)µ
′
4

2nκ̂4
+

Π(κ̂)µ
′
6

9nκ̂6
+O(n−2)

}
,

(7)

where LA(ψψψ) ∝ L(ψψψ, κ̂ψψψ)|lκκ|−1/2
{κ=κ̂} is the Cox and Reid (1987) adjusted pro�le likeli-

hood, |lκκ|{κ=κ̂} = nA′(κ̂), where lκκ is the second-order partial derivative of the log

likelihood l with respect to κ. Furthermore, from (5), Π
′
(κ) ≈ nΠ(κ)(2.5/κ− θ) and

Π
′′
(κ) ≈ Π(κ)n2(2.5/κ − θ)2, where θ = 1 − c is close to one (for large κ, c is very

close to zero, see Table 2, Section A.2, Appendix A for more details). Consequently,

ignoring the O(n−2) terms, the above observations yield

L̄(ψψψ) =

∫
L .Π(κ)dκ ∝ LA(κ̂).Π(κ̂)g(κ̂)

{
1 +O(n−1.5)

}
, (8)

where, for every �xed n, both g and Π are �nite and continuous in κ. Taking the

logarithms and denoting the log likelihoods by l yields

l̄(ψψψ) = lA(ψψψ) + log(Π(κ̂ψψψ)) + log(g(κ̂ψψψ)) + log(
{

1 +O(n−1.5)
}

).

Recall from Section 2.1 that ψ̄ψψ1 = µ̂µµ, ψ̄0 = µ̂0, are the usual MLEs of µµµ, whereas

those of κ are κ̂1 = sup
ψψψ

κ̂ψψψ and κ̂0 under Hi, for i = 1, 0. The resulting ILRT statistic

Statistica Sinica: Preprint 
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is

−2 log λ̄ = −2(lA(µ̂µµ)− lA(µ̂0)) + 2log(Π(κ̂1)/Π(κ̂0)) + 2log(g(κ̂1)/g(κ̂0)) +OP (n−1.5).

(9)

Note that Π (by our choice) and g depend on the parameter of interestψψψ only through

κψψψ. Additionally, E(∂2l/∂κ∂µi) = 0, for i = 1, ..., p, (see MJ) such that the nuisance

parameter κ is orthogonal to the parameter of interest ψψψ = µµµ. Consequently, κ̂ψψψ,

is less sensitive to the variation in ψψψ under the null and the alternative hypotheses

(see Section 2.2, result (iv) of Cox and Reid (1987)). Additionally, both κ̂1 and κ̂0

are consistent for the same parameter κ, |κ̂1 − κ̂0| = OP (n−1). Together with the

continuity of Π and g, this makes the terms log(Π(κ̂1)/Π(κ̂0)), log(g(κ̂1)/g(κ̂0)), and

the middle term in equation (9) all OP (n−1). These arguments �nally lead to

TILRT = −2 log λ̄ = −2(lA(µ̂µµ1)− lA(µ̂0)) +OP (n−1),

where the computational form is given in equation (3). The asymptotic distribu-

tion of TILRT is the same as that of the adjusted pro�le log likelihood ratio, namely

χ2
p−1. The approximations involving κ in (5) (leading to the χ2 distributional ap-

proximation) are very sharp for large κ, say κ > 9, but not so for κ < 9. A slight

�ne-tuning in the form of subtle multiplicative adjustments is given in Section A.1 of

Appendix A. This is based on the piece-wise partition of the approximation of A(κ),

and signi�cantly improves the χ2
p−1 approximation for this case.

Statistica Sinica: Preprint 
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The case of a small concentration can be dealt with in a similar way by noting

that, in this case, the function A(κ) can be well approximated by .107 + .46κ, with

a maximum deviation of order 10−3, for κ ∈ (0.1, 0.9). For κ < 0.1, the circular

uniform distribution is recommended. Here, the derivatives of A(κ), and hence of

h(κ), of order greater than one all vanish, simplifying the RHS of (6) to a great extent.

However, in this region, the estimates of κ are likely to be more sensitive. Moreover,

the derivatives of Π involve reciprocals of κ̂. Hence, the RHS of (9) is expected to

be more unstable, resulting in large observed sizes, as shown in a simulation study

(not discussed here, for brevity). This problem was handled by ad-hoc multiplicative

adjustments to the resulting ILRT, as developed in Section A.1 of Appendix A.

Remarks : (i) The aforementioned multiplicative adjustments controlled the sizes of

the resulting tests very well, without a�ecting its power function, as can be seen in

the simulation study reported in the next subsection. These adjustments are used

throughout the remainder of this paper, including the performance assessment in

Section 3.3 and the real-data analysis in Section 5, and are strongly recommended

in practice.

(ii) Although the results from Cox and Reid (1987) under parameter orthogonality

used here were originally developed for a real-valued parameter of interest, these

remain valid for a vector-valued parameter of interest, as long as the orthogonality

between the vector parameter of interest and the nuisance parameters holds, as in

Statistica Sinica: Preprint 
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our case.

The next subsection attempts an extensive simulation-based comparison between

the ILRT and the existing tests.

3.3 Performance assessment

A study based on 50,000 simulated observations from vM distributions on the cir-

cle is conducted to compare the size and power of the ILRT with those of the two

high-concentration tests and the two likelihood-based tests reported in Section 2.2.

A large number of situations are considered to form a fair representation of prac-

tical scenarios: group sizes n1 = 15,20,30,40,60; concentration parameters κ=.25,

.3(.04).44; .45, .5(.1)1.5; 2(1)10; 15, 20, 40, 70, 100; and number of groups p =

2(1)8. The level of signi�cance was �xed at the commonly used 5% level. Note

that the parametric space under H1 for the mean vectors µµµ, Θ1 = [0, 2 π)p, is

p-dimensional, whereas the power function is a surface in p+ 1 dimensions. A com-

parative study of the power surfaces of several tests in p+1 dimensions is challenging,

particularly when p is large, and may lack visual clarity. To avoid such complica-

tions, and noting the periodic nature of µi, such that the farthest components of µµµ

can be at most π distance from each other, a systematic subset of [0, 2 π)p is se-

lected, {µµµ = h/(p − 1).(0, 1, · · · , p − 1); h = 0 (π/6) π}. Here, we scale the vector

(0, 1, · · · , p − 1)/(p − 1) ∈ Θ1 by a real positive number h, varying h over the grid

{ 0 (π/6) π }, for the computation of powers so that the resulting collection of powers
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can be plotted against h as a function in two dimensions, henceforth referred to as

"the power function". This enables a visually clear picture of the power functions

and a clearer comparison of the tests.

(A) Size performance

Note that the case of h = 0 corresponds to the observed sizes of the respective tests.

Box plots of the simulated sizes for the aforementioned four tests and the ILRT

are shown in Figure 1. A careful assessment of the simulated sizes based on vari-

ous graphical tools (not reported here, for brevity) revealed the following prominent

features:

i) The large outliers in the box plots for WW basically emerged from small con-

centrations (κ < 1). The magnitude of outliers increased with the number of

groups (p), but group sizes (n1) had almost no impact. This behavior is con-

sistent is with the role of the large concentration behind WW's construction.

ii) The observed sizes of the other large concentration test, HKG, revealed a sim-

ilar impact of κ and p (but not of n1), albeit in the opposite directions; that

is, tiny sizes (often very close to zero) increased with κ and stabilized to the

desired level after κ became as large as 40. This, in turn, resulted in reduced

power, as revealed by Figures 2�5.

iii) The whiskers and outliers for LRT emerged under all three factors: small κ,

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0501



Analysis of Mean Directions 18

large p, and small n1. Under small concentrations, the group sizes required to

stabilize the sizes around the desired level 0.05 were as large as 60. For large

concentrations, the convergence was relatively fast.

iv) AW exhibited a pattern similar to LRT, but in the opposite direction, as HKG

did.

Clearly, based on the size performance, WW and LRT were practically unusable

under small concentrations and/or small groups.

(B) Power performance

To ensure a fair comparison between the tests, two versions of the power function

were simulated:

(I) For an unbiased comparison among all available tests, the normalized power

function was generated by multiplying the original uncorrected tests by the ratio

of the respective theoretical χ2 or F quantile to the simulated quantile of the un-

corrected statistics, for the particular parameter combination under concern. This

guaranteed the size of all cases to be exactly .05, making the power comparison un-

biased. Figure 2 presents the gain in power over other tests by the ILRT, under

the normalized power function at h = π as a function of κ for small concentrations

at various combinations of p and n1. Figure 3 displays similar plots for very small

concentrations (κ =.25 and .3) as a function of p.

(II) Viewing AW as the "size-corrected" version of LRT, the actual (non-normalized)
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power functions of AW and HKG were compared with the ILRT. Representative

power functions for the p = 2 and p = 8 groups are presented in Figures 4�5 for

small concentrations, and in Figures 6�7 for large concentrations. WW and LRT

are unusable owing to their large sizes under small concentrations; thus, their power

functions are not included in Figures 4 and 5, whereas Figures 6 and 7 include all

tests.

Both the normalized and non-normalized power functions showed similar pat-

terns in excess power (gain) attained by the ILRT. A careful observation of Figures

2�7 strongly supports the following points.

Small concentrations:

i) As targeted, a notable gain for the ILRT was observed over its competitors, AW

and HKG, under small concentrations, namely κ < 1, and more prominently

for κ < .5 (see Figures 2�5).

ii) For very small κ, the gain was increasing with the number of groups (p) for

�xed values of other parameters (see Figure 3).

iii) For two groups and/or κ < .5, the gain over AW was uniformly more than that

over HKG, even under large group sizes (Figure 3 and �rst row of Figure 2).

However, this behavior reversed for large numbers of groups and .5 < κ < 1.

Under large group sizes and κ in the neighbourhood of one, the three tests
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performed almost equally (last two rows of Figure 2).

Large concentrations:

iv) Under medium κ (1 < κ < 2) and very small group sizes, the likelihood-based

tests surpassed WW, with the gain increasing with p (�rst row of Figures 6�7).

v) Under large concentrations and large group sizes, all tests, including the regular

LRT, performed almost equally well (Figure 7). However, for two groups, the

power of AW declined in the farthest region from the null hypothesis, that is

at h = π, particularly under large concentrations and small group sizes (Figure

6).

Remarks: (i) Because the unadjusted versions of the ILRT and WW are functionally

related, namely ILRT = (n − 1) log(WW − 1), the normalized power functions of

the two are almost the same; thus, WW is not included in Figures 2�3. However

their distributions, and hence cut-o� points, are di�erent. As noted above, under

small concentrations, WW yields large sizes, making it practically unusable.

(ii) The main bene�t of the ILRT was evident under small concentrations and/

or small group sizes, as desired. The ILRT not only improved over LRT and AW,

but was also superior to all other tests in this scenario. It compared well in all other

cases to the best performers and, hence, can be uniformly used under all situations,

irrespective of the magnitude of the observed values of κ and the group sizes.
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Figure 1: Box plots of simulated sizes of all tests for the parametric combinations

reported in Section 3.3.

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0501



Analysis of Mean Directions 22

Figure 2: Gain in normalized power by ILRT over AW and HKG vs. κ (< 1) for

various group sizes (n1) and number of groups (p). Panel headings are values of the

pairs p, n1.
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Figure 3: Gain in normalized power by ILRT over AW and HKG vs. p for various

group sizes (n1) and concentrations κ = .25 and .3. Panel headings are values of the

pairs κ, n1.
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Figure 4: Simulated power functions of ILRT, AW, HKG; two groups and small κ.

Panel headings are values of the pairs κ, n1.
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Figure 5: Simulated power functions of ILRT, AW, HKG; eight groups, small κ.

Panel headings are values of the pairs κ, n1.
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Figure 6: Simulated power functions of ILRT,AW,LRT, HKG, WW; two groups,

large κ. Panel headings are values of the pairs κ, n1.
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Figure 7: Simulated power functions of ILRT,AW,LRT, HKG, WW; eight groups,

large κ. Panel headings are values of the pairs κ, n1.
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The next section discusses an extension of the ILRT to heterogeneous groups.

An extension to GvM and the Batschelet distributions is also outlined. Note that

our approach can be adapted easily and elegantly for a generalization of ANOMED

to distributions on hyper-spheres.

4. Extensions of ILRT to other cases

4.1 ILRT under unequal concentration parameters

The p groups may follow vM distributions with di�ering concentration parameters.

The setup is similar to the that in Section 3.2, except that now θij ∼ von-Mises

(µi, κi), for i = 1, ..., p. The likelihood function is given by

L∗(µµµ,κκκ|θθθ) =

p∏
i=1

Li, Li =
1

I0(κi)
ni exp

[
κi{

ni∑
j=1

cos(θij − µi)}

]
.

The only existing test for unknown and unequal concentrations for this problem is

the likelihood ratio test suggested by Watson (1983) (WW ∗), given by

TWW ∗ = 2

(
p∑
i=1

κ̂iRi −RW

)
∼ χ2

p−1,

where

RW =


(

p∑
i=1

κ̂iRi cos θi.

)2

+

(
p∑
i=1

κ̂iRi sin θi.

)2


1/2

,

where κ̂i is the MLE of κi under the ith group.

To identify the speci�c parametric region where an improvement over WW ∗ is

essential, the power values were simulated using the same setting as those in the

case of equal κ. Additionally, increments in the concentration parameters by .25
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and .5 for successive groups were introduced. Though the sizes of actual LRT were

unduly large, the size-normalized power function was reasonably good, even for small

group sizes. However, size-corrective multiplicative adjustments may depend on the

pattern of concentrations across the groups in a complicated way, and thus cannot

be derived easily .

The ILRT for this case is developed next. Adopting a parallel approach to that

in Section 3.2 with the prior

Π∗(κκκ) =

p∏
i=1

Πi, Πi = (I0(κi))
niκ

(ni−1)/2−1
i exp(−niκi), κi > 0 ∀ i, (10)

the resulting integrated likelihood function is

L̄∗(µµµ|θθθ) =

p∏
i=1

∫
LiΠid(κi), (11)

leading to

L̄∗(µµµ|θθθ) ∝
p∏
i=1

[ni −
ni∑
j=1

cos(θij − µi)]−(ni−1)/2.

The maximizer of L̄∗ with respect to µµµ under H1 is still µ̄
∗
i = µ̂i = θi., for i = 1, ..., p.

However, under H0, L̄
∗ is maximized at µ̄∗0, which is the solution to the equation

p∑
i=1

(Si. cos(µ̄∗0)− Ci sin(µ̄∗0))/(ni − Ci. cos(µ̄∗0)− Si. sin(µ̄∗0)) = 0, (12)

where Si and Ci are de�ned in Section 2.1. This leads to the integrated likelihood

ratio

λ̄∗ =

p∏
i=1

[
ni −Ri

ni − Ci. cos(µ̄∗0)− Si. sin(µ̄∗0)

](ni−1)/2

.
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The log likelihood ratio statistic is

TILRT ∗ = −2logλ̄∗ =

p∑
i=1

(ni − 1). log

(
ni −Ri

ni − Ci. cos(µ̄∗0)− Si. sin(µ̄∗0)

)
.

As before, we have the following result:

Theorem 2: The asymptotic distribution of TILRT ∗ is χ
2
p−1.

Proof of Theorem 2. Note from equation (11) that

L̄∗(ψψψ|θθθ) =

p∏
i=1

∫
LiΠid(κi)

=

p∏
i=1

fi,

where fi =
∫
LiΠid(κi). Treating each group separately, and employing similar

arguments to those in the proof of Theorem 1 on each Li separately, analogues of

equations (4) through (8) hold for each fi, such that

l̄i(ψψψi) = log(fi)

= lAi(ψψψi) + log(Πi(κ̂iψψψi )) + log(g(κ̂iψψψi )) + log(
{

1 +O(n−1.5)
}

),

where lAi(ψψψi) is the Cox�Reid adjusted pro�le likelihood corresponding to Li. Tak-

ing the logarithms yields

l̄∗(ψψψ) =

p∑
i=1

log(fi)

=

p∑
i=1

lAi(ψψψi) + log(Πi(κ̂iψψψi )) + log(g(κ̂iψψψi )) + log(
{

1 +O(n−1.5)
}

).
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The MLE(s) of µµµ under H1 are θi., as given in Section (2.1), whereas under H0, they

are µ̄∗0, as given in equation (12). The MLEs κ̂i of κi (solutions to the equations

A(κ̂i) = (Ri)/ni, for i = 1, ..., p, where Ri is de�ned in Section 2.1) are the same

under both H0 and H1. Consequently, the terms containing the estimates of κ in the

log likelihood ratio get cancelled out, leaving the following ILRT statistic:

−2 log λ̄∗ = −2

p∑
i=1

[
(lAi(µ̂µµ)− lAi(µ̂∗0)) +OP (n−1.5

i )
]
, (15)

Ignoring the OP (n−1.5
i ) terms, and noting the asymptotic χ2

1 distribution of the ad-

justed Cox�Reid likelihood for each group, the additive property of χ2 under in-

dependence across the groups and a common estimate of the mean under the null

establish the asymptotic χ2
p−1 distribution of TILRT ∗ .

Using the overall sample mean θ.. in place of µ̄∗0 gave a good approximation. In

addition, minor �ne-tuning with the multipliers 1.085 (for .7 < k0 < 1), 1.05 (for

2 < k0 < 5), and 1.15 (for 1 < k0 < 2) further enhanced the size performance. Here,

k0 is the smallest of the estimates of the concentration parameters for the p groups.

Equally good performance was exhibited by the size-adjusted .88 TWW∗, with mul-

tiplier .88 for κ0 > .7. However for very small concentrations, namely k0 < .7, none

of the tests gave satisfactory results. This case requires further investigation.

The next section describes the ILRT for the GvM in the circular case.

4.2. ANOMED for GvM (A case of two nuisance parameters)
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Note that the ILRT-based treatment of the nuisance parameter is likely to be more

e�ective under orthogonality between the nuisance parameters and the parameters of

interest, and the prior does not depend on the parameters of interest. This fact can

be used to construct tests for ANOMED for other distributions, preferably where the

normalizing constant does not depend on the parameter of interest. In this case, its

in�uence can be circumvented by including its reciprocal in the prior, while keeping

the prior free of the parameter of interest. These conditions are, for example, sat-

is�ed for the three-parameter GvM and Batschelet(1981) distributions, as discussed

below. Suppose θθθ = {θij, i = 1, ..., p, j = 1, ...ni} are independent and identically

distributed (i.i.d.) observations from the generalized vM distribution, with pdf

f(θij) = [2πG0(k1, k2)]−1 exp[k1 cos(θij − µ) + k2 cos 2 (θij − µ)], k1 > 0, k2 > 0,

where µ ∈ [0, 2π) is a location parameter, and G0(k1, k2) is the normalizing constant.

The prior Π(κ1, κ2) = [G0(κ1, κ2)]n exp[−nκ1−nκ2]kan−1
1 kan−1

2 is the most appropri-

ate, and yields

L̄(µµµ|θθθ) ∝ [n−
∑
i

R1
i ]
an [n−

∑
i

R2
i ]
an , (13)

where, Rl
i(x) =

ni∑
j=1

cos l(θij − x), for l = 1, 2, leading to the following ILR statistics:

TGvM_ILRT ≡ 2an log
[ [n−

∑
i

R1
i (µ̂0)][n−

∑
i

R2
i (µ̂0)]

[n−
∑
i

R1
i (µ̂1i)][n−

∑
i

R2
i (µ̂1i)]

]
. (14)

Here, µ̂1i, for i = 1, ..., p, and µ̂0 are maximizers of L̄(µµµ) under H1 and H0, respec-
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tively, and can be obtained using numerical methods. Because the domain of the

maximization is bounded, this should not pose much di�culty. The choice of an can

be based on the Satterthwaite �Welch-type technique, in line with the arguments

in Section 3.2.

A parallel approach holds for the Batschelet distribution(1981), with density

function

f(θ) = C−1 exp[κ cos (θ − µ) + ν sin(θ − µ)]; −π ≤ θ, µ < π; κ ≥ 0; −∞ < ν <∞,

with R2
i (x) replaced by

ni∑
j=1

sin(θij−x) in equations (13) and (14). However �ne-tuning

adjustments described in Section A.1 of Appendix A may need to be developed for

small concentrations.

5. Examples

This section applies ILRT to real-data examples, representing situations in which

ANOMED is most appropriate. The computational details are summarized in Table

1. For WW, HKG, LRT, and AW, the computational formulae given in Section 2.2

are used. The ILRT is computed using equation (3), together with the multiplicative

correction factor suggested in Section A.1 of Appendix A, where we replace κ0 with

its estimate κ̂0, as reported in Table 1. For the data sets (except data set D3, where

the raw data were not available), the assumptions of a vM distribution and an equal

concentration parameter for the groups were validated (MJ (2000), Fisher (1993)).

These examples also demonstrate the proper usage of tests.
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5.1 Epidemic onset data: D1,D2

In certain epidemic diseases, such as acute primary angle closure glaucoma (APACG),

the exact date of attack can be reliably determined. As suggested by Gao et al. (2006)

(GAO), each date of onset within a year can be represented as an angle by equating

the 365 days of a year to 360o (2.π radians). Therefore, one day is equivalent to

360/365 = 0.986o. Then, a well-�tted vM distribution with a single peak (mode)

(indicating a prevalent date of onset) would indicate a seasonal in�uence on such

data. Furthermore, note that a signi�cant di�erence between the peak dates of onset

for the groups corresponding to the di�erent levels of an attribute (e.g., age group,

gender etc.) indicates an interaction between the seasonal e�ect and the attribute

under consideration.

Gender, adverse environmental conditions, and amount of sunlight are known

to be in�uential factors in causing APACG (Ivanisevic et al. (2002), Sharpec et al.

(2010), Hillman et al. (1977)). Because the latter two factors vary with the season,

a seasonal impact on the onset of APACG is expected. This may vary by gender

and age group, perhaps, owing to di�ering capabilities of sustaining the adverse

conditions.

GAO give data on the exact dates of onset, converted to angles, for 132 APACG

patients from Singapore, along with information on other attributes such as age

group, gender and so on. The data set D1 is extracted from this database and
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displays the dates of onset of APACG for male patients, partitioned into four age

groups: below 50; 50 to 59; 60 to 69; and above 70. Referring to Table 1 for D1, the

estimated concentration under H0 (κ̂0 = .2563) is very small, as are the group sizes.

Following the recommendations of Section 3.3, the inference based on the ILRT is

the most reliable. The ILRT clearly rejects the hypothesis of no di�erence (p-value:

0.0151), as did the next favored HKG ((B) (i); Section 3.3) (p-value: 0.0132). This

indicates that the seasonal impact varies among the age groups (i.e., the mean dates

of onset across the age groups are signi�cantly di�erent). The strength with which

WW and LRT rejected the hypothesis (p-value < 10−3) is untrustworthy owing to

their large type-I errors ((A) (i), Section 3.3), although they do agree with the ILRT.

The least powerful test, AW, accepted the null, perhaps incorrectly. Note that in

some situations, such a decision could be risky, for example, in case-control studies

that assess the e�ectiveness of a treatment on a gait pattern, under Cerebral Palsy,

where even small angular di�erences with respect to a gait pattern are of great clinical

importance.

A similar hypothesis for female patients (data set D2), extracted from the same

database under the same age groups, was unanimously accepted by all the tests ex-

cept WW (which rejected the hypothesis (p-value: 0.0391), conforming to its afore-

mentioned tendency of false alarms under small concentrations). Such a decision can

also be undesirable, for example, in drug testing, where falsely declaring a drug to
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be superior to others could be harmful.

In conclusion, males are prone to age-dependent seasonal e�ects, whereas sea-

sonal in�uence does not depend on age for females. This also indicates a three-way

interaction between gender, age group-and seasonal in�uence on the dates of onset

of APACG. GAO observed such di�erences, but were not able to establish them sta-

tistically using a circular regression, possibly because the interaction e�ects were not

accounted for in their regression model. Further clinical investigation and research is

needed in this context, because the results observed here may o�er important clues

and insights.

5.2 Light pulse treatment on the pineal melatonin rhythm: D3

It is widely assumed that the circadian system adapts to local environmental cues,

such as light and temperature, which vary enormously across habitats. Moore &

Menaker (2012) examined the e�ect of light pulse treatment on the pineal melatonin

rhythm of �ve Anolis lizard species. The data set D3, with small group sizes from

a control group and a treatment group, was analyzed in a similar manner to that of

the A. gundlachi species. As reported in Table 1, the light pulse treatment caused a

signi�cant phase delay in the circadian rhythm. This indicates that the circadian sys-

tem of the species under consideration adapts itself to the light pulse treatment. This

is highly concentrated data (κ̂0 = 9.0176); the analysis as per the recommendations

of Section 3.3 ((B) (v), Section 3.3) shows that all tests are equally competent. This
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is re�ected in the unanimous decision to reject the null hypothesis by all tests (all

p-values <0.05). However, here too, the ILRT rejects the hypothesis more strongly

than the other tests do (p-value=0.0006), favoring the conjectured behavior.

6. Conclusion

Our motivation for this study was to develop an e�cient parametric test for the ho-

mogeneity of the mean directions of several independent circular populations, which

can be universally implemented in practice. The need for such a test emerged from

the fact that there is no universal test in the existing literature that shows accept-

able performance and can be applied to diverse realistic situations, for example low

concentrations and a large number of small size groups. We have derived a universal,

yet simple and elegant test statistic. We have demonstrated that our method can

be extended in a straightforward manner to a rich class of distributions, including

asymmetric, bimodal, sharply peaked, and �at-topped distributions among others,

as modeled by, for example generalized vM and Batschelet distributions. The di�-

culty of the non-location-scale nuisance parameters κκκ was overcome by introducing a

new approach based on the integrated likelihood ratio test. Furthermore, extensive

simulations showed that our test outperforms existing tests in the usual paramet-

ric region, and competes uniformly well with the best of these other tests. Finally,

our approach is amenable to elegant and almost straightforward generalizations to

higher dimensions (i.e., to hyper-spherical, e.g., Langevin, populations). This last
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Table 1: Computational details for the three data sets.

Data Group sizes Resultant lengths κ̂0 p-values

D1 n1 = 5 R1=4.0986 0.2563 ILRT: 0.0151

p=4 n2 = 9 R2=3.9193 AW:0.0869

n3 = 12 R3=6.146 HKG: 0.0132

n4 = 9 R4=3.104 WW: 0.0007

N=35 R0=4.4494 LRT: 0.0007

D2 n1 = 8 R1=4.7977 0.4116 ILRT:0.1815

p=4 n2 = 22 R2=3.7932 AW:0.1414

n3 = 36 R3=6.8435 HKG: 0.1284

n4 = 31 R4= 10.7446 WW: 0.0391

N=97 R=19.5524 LRT:0.0923

D3 n1 = 9 R1=8.73 9.0186 ILRT:0.0006

p=2 n2 = 7 R2=6.65 AW: 0.0211; HKG: 0.0154

N=16 R=15.085 WW: 0.0196; LRT:0.0115

observation is currently being studied further.

APPENDIX-A

A.1 Corrective adjustments for small concentrations:
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The corrective multiplicative adjustment cfIlrt given below for controlling the sizes

of ILRT under small and equal concentrations was derived by regressing the ratio of

theoretical 95th quantile of the desired χ2
p−1 distribution to the simulated 95th quan-

tiles of TILRT under H0 based on 200000 simulations. A large number of parametric

combinations of input parameters n, p and κ were used and then κ was replaced by

its estimate κ̂0. The densely clustered sizes around the target level of the multiplica-

tively adjusted ILRT as seen in the corresponding box-plot in Figure 1 are indicative

of a closer conformation to the desired χ2
p−1 distributional assumption.

cfIlrt=

0.563− 0.0029.n1 + 0.029 p+ 0.93 .κ0 − 0.32.
√
p− 0.12 log(N)

+0.32. log(p)− 0.186. log(κ0) + 0.019 n1 .κ0) if κ0 < .4,

(1.92− 0.0186
√
p+ 0.0544 log(N)− 0.985

√
.κ0 + log(.κ0)

−0.002.
√
N + 0.001.n1− 0.01

√
n1). if .4 < κ0 < 1.

Furthermore, as mentioned in the proof of Theorem 1 a little �ne-tuning for moderate

values of κ ∈ (1, 9) namely, 1.11 for {1 < κ0 < 1.25} ∪ {3 < κ0 < 4.25}; 1.17 for

1.25 < κ0 < 3; 1.04 for 4.25 < κ0 < 9 gave excellent results. Also for κ0 > 15, an =

n− 1.5 in place of n− 1 gave more accurate results.

A.2 Piece-wise approximation of A(κ):

Note that for κ ∈ [1,∞), ω = 1/κ ∈ (0, 1]. By computing A(ω) on a very �ne mesh
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Table 2: Details of the piece-wise approximation c+ bω, ω = 1/κ for A(κ)

Domain for κ c b

[1,1.45) 0.391 1.84

[1.45,3) .235 1.95

[3, 4.25) .149 1.98

[4.25,10) .0805 1.99

[10, 15) .046 2

[15, 50) .0181 2

>50 .007 2

of (0, 1] and regressing A(ω) verses ω piece-wise on the partition given in Table 2,

(chosen selectively) the approximation of A(κ) with error less than 10(−3) reported

in Table 2 was obtained.
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