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Abstract: We propose a realized-covariance estimator based on efficient multi-

ple pre-averaging (EMP) for asynchronous and noisy high-frequency data. The

EMP estimator is consistent, guaranteed to be positive-semidefinite, and achieves

the optimal convergence rate at n−1/4. It is constructed based on 1) an inno-

vative synchronizing technique that uses all available price information, and 2)

an eigenvalue correction method that ensures positive-semidefiniteness without

sacrificing the optimal convergence rate. A simulation study demonstrates the

good performance of the EMP estimator for finite samples in terms of accuracy,

properties, and convergence rate. In a real-data analysis, the EMP covariance

estimator delivers performance that is more stable than that of alternative es-

timators. The new estimator also outperforms alternative realized-covariance

estimators in terms of portfolio selection.

Key words and phrases: Asynchronous and noisy high-frequency data, eigenvalue

correction, synchronizing technique.

1. Introduction

Covariance plays an important role in portfolio allocation, derivative
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EMP covariance estimator 2

pricing, hedging, risk management, and many other modern financial ap-

plications. As a result, estimating the covariance has been of great interest

to academics and industry practitioners alike. In particular, the realized

covariance, a model-free estimator, has attracted attention owing to the

availability of large-scale intra-daily data sampled at second, millisecond,

or even nanosecond frequency. A realized covariance is quantified as a

quadratic variation of high-frequency data. It is theoretically consistent

(Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002a,b;

Andersen et al., 2003) and demonstrates good accuracy in numerous appli-

cations (French et al., 1987; Andersen and Bollerslev, 1998; Andersen et al.,

2001).

However, a direct calculation of the realized covariance from high-

frequency raw data is inconsistent owing to the existence of asynchronous

trading and microstructure noise. Thus, various synchronizing techniques

are used to pre-process asynchronous raw data. The most common ap-

proaches are the previous tick technique (Wasserfallen and Zimmermann,

1985; Dacorogna et al., 2001) and the refresh time technique (Barndorff-

Nielsen et al., 2008; Hautsch et al., 2012; Aı̈t-Sahalia et al., 2010). However,

the former may distort the dependence between multiple price processes in

the raw data, and the latter may lead to low sample sizes if one or more as-

sets are illiquid. Christensen et al. (2013) used the approach of Hayashi and

Yoshida, which depends on selecting a smoothing parameter. Corsi et al.
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(2015) and Shephard and Xiu (2017) proposed the Kalman filter technique,

which assumes a Gaussian distribution. Note that no existing techniques

consider intrinsic data features (e.g., negative serial correlation).

Microstructure noise hinders the synchronizing process. Bias correction

thus becomes necessary, yet often at the cost of efficiency. Some important

contributions to this problem include, but are not limited to, the multi-

variate scaled estimator (Zhang, 2011; Wang and Zou, 2010; Zhang et al.,

2005), multivariate realized kernel estimator (Barndorff-Nielsen et al., 2011,

2008; Zhou, 1996; Hansen and Lunde, 2006), and quasi-maximum likelihood

realized-covariance estimator (QMLE, Aı̈t-Sahalia et al., 2010; Xiu, 2010).

The multiple pre-averaging (MPA) estimator removes noise using a pre-

averaging procedure; see Christensen et al. (2010) and Jacod et al. (2009).

While the QMLE and MPA estimators are n−1/4-consistent, where n−1/4 is

the optimal convergence rate, the other two are suboptimal, at Op
(
n−1/6

)
and Op

(
n−1/5

)
, respectively. Shephard and Xiu (2017) developed a multi-

variate realized quasi-maximum likelihood estimator based on synchronized

observations that is positive-definite, n−1/4-consistent, and asymptotically

mixed-normal.

Bias correction approaches can introduce negative covariance estima-

tors. The negative eigenvalues, though small in magnitude, may change

the stochastic behavior of the covariance estimator, and in some cases, even

its consistency. The MPA estimator, for instance, is not guaranteed to be
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positive-semidefinite. To enforce the right properties, the convergence rate

becomes suboptimal. Several eigenvalue correction approaches have been

proposed. One can replace negative eigenvalues with small positive values

(McNeil et al., 2005; Schaeffer, 2014) or zeros (Rebonato and Jäckel, 1999).

Varneskov (2015) proposed an eigenvalue truncation procedure, showing

that the correction was asymptotically negligible. Ikeda (2016) presented

a Cholesky-type correction without altering the asymptotic distribution of

the two-scale realized-kernel estimator.

In our study, we propose a realized-covariance estimator based on effi-

cient multiple pre-averaging (EMP) that is consistent, positive-semidefinite,

and simultaneously achieves the optimal n−1/4 convergence rate. The EMP

estimator benefits from two innovative approaches. We develop a synchro-

nizing technique called high-frequency filtering (HFF) to recover the “miss-

ing” records of high-frequency data by learning from the dependence of the

same price processes that are synchronously sampled at a low frequency.

Given a prior (realized) covariance estimator and the negative autocorre-

lation, the “unobserved” records in the asynchronous data are iteratively

filtered. We also present an eigenvalue correction method for a consis-

tent, yet negative realized covariance estimator. Here, negative eigenvalues

with small magnitudes are replaced with their absolute values to enforce

the positive-semidefiniteness of the estimator. We describe the convergence

properties of the filtered high-frequency synchronous series. We show that
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2. MODEL SETUP5

the corrected realized-covariance estimator has the same limiting distribu-

tion as the consistent, but negative-semidefinite realized-covariance estima-

tor with the optimal convergence rate. Both approaches are model-free in

that they require neither distributional assumptions nor tuning parameters.

The approaches are general, and can be used for any type of covariance and

correlation estimator.

The remainder of this paper is organized as follows. Section 2 describes

the model setting. Section 3 presents the EMP realized-covariance estima-

tor. Here, we discuss the HFF technique and eigenvalue correction method

and provide the asymptotic results. We demonstrate the finite-sample per-

formance of the EMP estimator using an extensive simulation study in

Section 4. An empirical data analysis is conducted in Section 5. Section

6 provides concluding remarks. All theoretical proofs are contained in the

online Supplementary Material.

2. Model setup

Consider p assets traded over a time interval t ∈ [0, 1]. The efficient log

prices Xt ∈ IRp are assumed to follow the Brownian semimartingale model,

dXt = µtdt+ σ>t dBt, t ∈ [0, 1], (2.1)

where µt = (µ1t, . . . , µpt)
> is the drift vector of the multiple assets, Bt =

(B1t, . . . , Bpt)
> is a standard p-dimensional Brownian motion, σt is a p ×

p matrix, and the symbol > represents the Hermitian transpose. The
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quadratic variation of X t is given by:

[X,X]t =

∫ t

0

Σudu =

∫ t

0

σ>uσudu. (2.2)

The integrated volatility matrix, denoted by Σ, is defined as

Σ ≡
∫ 1

0

Σudu =

∫ 1

0

σ>uσudu. (2.3)

Our goal is to estimate the integrated volatility matrix Σ, given asyn-

chronous and noisy data traded at high frequency.

The synchronous log prices Ytj ∈ IRp at discrete and regular time points

tj = j/n, for j = 0, . . . , n, are assumed to follow the continuous diffusion

model with additive noise,

Ytj = Xtj + εtj , (2.4)

where Xtj = (X1,tj , . . . , Xp,tj)
> denotes the efficient noise-free log prices,

and εtj is an independent and identically distributed (i.i.d.) microstruc-

ture noise with zero mean and finite variance E(εtjε
>
tj

) = diag{η21, . . . , η2p}.

Furthermore, Xtj are assumed to be mutually independent with εtj .

Given the return series Ri,tj = Yi,tj−Yi,tj−1
, it is easy to show that there

is negative lag-1 autocorrelation

Cov(Ri,tj−1
, Ri,tj)√

V ar(Ri,tj−1
)V ar(Ri,tj)

=
−η2i√(

1
n
E
∫ tj−1

tj−2
Σii,udu+ 2η2i

)(
1
n
E
∫ tj
tj−1

Σii,udu+ 2η2i

)
≈ −0.5, i = 1, . . . , p, j = 2, . . . , n, (2.5)

where Σii,u denotes the (i, i)-component of Σu in (2.2).
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Given synchronous data, the MPA estimator (Christensen et al., 2010),

denoted as S1, is computed as follows:

S1 =
n

n− kn + 2

12

kn

n−kn+1∑
j=0

Ȳn
tj

(Ȳn
tj

)> − 12

2nθ2

n∑
j=1

(Y tj − Y tj−1
)(Y tj − Y tj−1

)>, (2.6)

where Ȳn
tj

= 1
kn

(∑kn−1
`=kn/2

Y tj+`
−
∑kn/2

`=0 Y tj+`

)
, kn = bθ

√
nc with a given

constant θ > 0, and the last term of (2.6) is a bias correction term.

The MPA estimator is an unbiased estimator of Σ with convergence rate

Op
(
n−1/4

)
, yet it is not guaranteed to be positive-semidefinite. By taking

kn = bθn0.6c, the bias correction term can be ignored and the estimator

becomes positive-semidefinite. In this case, the convergence rate reduces to

Op
(
n−1/5

)
.

In practice, the observed log prices are irregularly spaced. We define

an information set F to record the time points with observed transactions:

F = {tij|Yi,tij is available at tj, i = 1, . . . , p, j = 0, . . . , n},

where tij represents the time point when the ith asset is traded at time

tj; that is, the log price Yi,tij is observable. If tij 6∈ F , then there is no

transaction of the ith asset at time tj. In this case, the corresponding log

price Yi,tj is considered a “missing” value.

3. Main results

We now present the EMP realized-covariance estimator under two scenar-

ios. For synchronous yet noisy data, we extend the Christensen et al. (2010)
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3. MAIN RESULTS8

MPA estimator by introducing a general eigenvalue correction method in

Section 3.1. We show that the correction method ensures positive semidef-

initeness without damaging the consistency or the asymptotic limiting dis-

tribution of the realized-covariance estimator. For asynchronous and noisy

data, we show how to use the HFF technique to generate high-frequency

synchronous data by retaining the original cross-dependence. The HFF

synchronizing technique and its convergence are discussed in Section 3.2.

3.1 The eigenvalue correction

Suppose an integrated covariance estimator, denoted as S1, is available.

Although Σ is a positive-semidefinite matrix with Σ ≥ 0 or a positive-

definite matrix with Σ > 0, the estimator S1 may not satisfy S1 ≥ 0 or

S1 > 0 owing to, for example, a bias-correction approach. We propose

a general approach to construct a nonnegative-definite estimator S that

has the same convergence rate and limiting distribution as the preliminary

estimator S1.

Denote the spectral decompositions of S1 and Σ by

S1 = U Λ̂U∗ =

p∑
i=1

λ̂iuiu
∗
i , Σ = V ΛV ∗ =

p∑
i=1

λiviv
∗
i , (3.1)

where λ̂ and λ are the eigenvalues of S1 and Σ, respectively, and ui and vi

are the orthonormal eigenvectors associated with λ̂i and λi, respectively, for

all i. Set all eigenvalues λ̂i to |λ̂i|, for i = 1, . . . p. The proposed eigenvalue
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3. MAIN RESULTS9

correction, denoted by S, is performed as

S = U |Λ̂|U∗, (3.2)

where |Λ̂| = diag(|λ̂1|, . . . , |λ̂p|). Theorem 1 shows that the estimator S

is consistent if the preliminary estimator S1 is consistent. The asymptotic

distribution of S is derived in Theorem 2, which proves that the estimator

has the same asymptotic limiting distribution as that of S1.

Theorem 1. Suppose Σ ≥ 0 and the maximum eigenvalue of Σ, denoted

by λmax, is bounded. Let S1 be a symmetric matrix satisfying

S1 − Σ
P→ 0. (3.3)

Then, S (cf. (3.2)) is a consistent estimator of Σ; that is,

S − Σ
P→ 0.

When reinforcing the condition on Σ, we conclude that S and S1 have the

same limiting distribution, as shown in the following theorem.

Theorem 2. Suppose Σ > 0 and |λmax| is bounded. Let S1 be a symmetric

matrix satisfying

αn(S1 − Σ)
d→ Z, (3.4)

where αn →∞ as n→∞. Then,

αn(S − Σ)
d→ Z.
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3. MAIN RESULTS10

Remark 1. We choose the MPA as the preliminary estimator S1. It has

an optimal convergence rate Op(n−1/4), but is not guaranteed to be positive

semidefinite (see Christensen et al., 2010). After the eigenvalue correction

procedure, the corrected estimator S has the same optimal convergence

rate.

Remark 2. Rebonato and Jäckel (1999) suggested replacing the negative

eigenvalues with zeros, whereas McNeil et al. (2005) suggested replacing

the negative eigenvalues with small positive numbers. We perform simula-

tions to investigate the numerical performance of our alternative eigenvalue

correction approach. We find that the proposed approach improves the rel-

ative accuracy of the smallest eigenvalues of the methods of Rebonato and

Jäckel (1999) and McNeil et al. (2005) by 43% and 67%, respectively; see

Section S2.1 of the Supplementary Material.

3.2 Synchronization

For asynchronous data with noise, we employ the HFF synchronizing tech-

nique to preprocess the data. The role of HFF is to recover/estimate missing

observations in a sequence of synchronous filters obtained by eigendecom-

posing the covariance matrix of the lower-frequency sample.

Let S0 be a covariance estimator of the noisy data. Usually, S0 is a

quadratic variation of the synchronized, yet low-frequency data. As a result

of microstructure noise, the estimator is biased and eventually outputs the

Statistica Sinica: Preprint 
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sum of the integrated covariance matrix Σ and the microstructure noise

variance Ψ. Perform a spectral decomposition on S0:

S0 = ΓAΓ> =

p∑
i=1

aiγiγ
>
i , (3.5)

where A is a diagonal matrix with eigenvalues ai on the diagonal, and Γ is

a matrix of orthonormal eigenvectors.

Assume there exists a linear filter Z
(0)
tj = (Z

(0)
1tj
, . . . , Z

(0)
ptj )> that is a

projection of the unobserved synchronous log returns Rtj = Y tj − Y tj−1
:

Rtj = Γ>Z
(0)
tj , tj = j/n, j = 1, . . . , n. (3.6)

The linear filter is synchronous and retains the dependence information in

the return processes.

Without loss of generality, we assume that the initial value of each asset

Yi,t0 exists, for i = 1, . . . , p. Denote the synchronous, yet noisy log prices

as Ŷtj = (Ŷ1tj , . . . , Ŷptj)
>, for j = 0, . . . , n. We set Ŷt0 = Yt0 . Starting

from time t1, the HFF technique iteratively recovers the missing values by

minimizing the squared prediction error. At any time tj, when the previous

log prices Ŷ tj−1
are known, we have the log returns R̂i,tij = Yi,tij − Ŷi,tj−1

.

For any tij 6∈ F , we evaluate Ẑtj using the minimizers

Ẑtj = argminZtj

p∑
i=1

[(
R̂i,tij − γ̂>i Ztj

)2
I{tij ∈ F}

]
+δn

(
Ztj + 0.5Ẑtj−1

)>
Â−1

(
Ztj + 0.5Ẑtj−1

)
, (3.7)

where the first part of (3.7) focuses on the projection errors. As such, the

filtered series are disciplined by the eigendecomposition of S0, and retain the
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stability of the cross-dependence structure. Owing to asynchrony, an opti-

mization of the prediction error alone does not produce a unique solution.

Thus, a smoothing penalty (i.e., the second part of (3.7)) is introduced that

links the estimated filter with the previous (known) values. We standardize

the filtered series using its own variance, the eigenvalues of Â. This penalty

selection not only ensures the continuity of the filtering procedure, but also

incorporates the first-order autocorrelation in the noisy data. The tuning

parameter δn controls the level of smoothness of the filtered series. While

large values of δn lead to over-smoothing, small values may create an unnec-

essarily rough process. Cross-validation is used to select the optimal value

of δn. It turns out that its order is proportional to the inverse of the eigen-

values. Finally, the filtered log price is obtained using Ŷ tj = Γ̂>Ẑtj +Ŷ tj−1
,

where Γ̂ = (γ̂1, . . . , γ̂p) and Â = diag{â1, . . . , âp} are the eigenvectors and

eigenvalues,respectively, of the estimator S0. If the assets are not all traded

at time tj, there is no benefit to using the dependence across assets rather

than the previous tick technique. We set Ŷ tj = Ŷ tj−1
.

The formal algorithm of the HFF technique is presented as follows:

Set j = 1. Let Ẑt0 = 0p, and we have Ŝ = Γ̂ÂΓ̂>.

1. If tij 6∈ F , for all i = 1, . . . , p, set Ŷ tj = Ŷ tj−1
and jump to step 4.

2. If tij ∈ F , with at least one i = 1, . . . , p, compute the log return

R̂i,tij = Yi,tij − Ŷi,tj−1
, for every i satisfying tij ∈ F .

Statistica Sinica: Preprint 
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3. Obtain the linear filter Ẑtj that minimizes the objective function (3.7).

We have Ŷ tj = Γ̂>Ẑtj + Ŷ tj−1
.

4. Stop when j = n; otherwise, set j = j + 1 and return to step 1.

Next, we investigate the convergence of the proposed filtering technique.

Theorem 3. Assume that Ŝ−S0 = Op(n
−1/4). Then, for all j = 1, 2, . . . , n,

we have

‖Ẑtj −Z
(0)
tj ‖ = Op(n

−1/4) +O(δn) +O(mj), (3.8)

where mj represents the number of missing values of Yi,tj at time tj. More-

over,

1

n

n∑
j=1

‖Ẑtj −Z
(0)
tj ‖ = Op(n

−1/4)

if δn = O(n−1/4) and n−1
∑n

j=1mj = O(n−1/4).

3.3 The efficient and positive-semidefinite pre-averaging estima-

tor

Given the synchronized high-frequency data Ŷ tj from Section 3.2, the pre-

averaging estimator is computed and denoted as S1; see Section 3.1:

S1 =
n

n− kn + 2

12

kn

n−kn+1∑
j=0

Ȳn
tj

(Ȳn
tj

)> − 12

2nθ2

n∑
j=1

(Ŷ tj − Ŷ tj−1
)(Ŷ tj − Ŷ tj−1

)>, (3.9)

where Ȳn
tj

= 1
kn

(∑kn−1
`=kn/2

Ŷ tj+`
−
∑kn/2

`=0 Ŷ tj+`

)
and kn = bθ

√
nc, with a

given constant θ > 0. It is unbiased, but not guaranteed to be positive-

semidefinite. Decompose S1 as in (3.1), and take the absolute value of the
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eigenvalues. We obtain the efficient and positive-semidefinite pre-averaging

estimator S in (3.2), which we refer to as the efficient multiple pre-averaging

(EMP) estimator. We show that the EMP estimator is consistent with the

optimal convergence rate at Op
(
n−1/4

)
in Theorem 4 of the Appendix, with

two additional assumptions.

4. Simulation study

In this section, we run a series of simulations to investigate the performance

of the proposed EMP estimator. Then, we compare this performance with

that of the following two popular alternative estimators:

• MPA: multiple pre-averaging estimator with the synchronizing tech-

nique of Hayashi and Yoshida, proposed by Christensen et al. (2010)

(cf. (2.6));

• MK: kernel estimator with the refresh time synchronization technique,

proposed by Barndorff-Nielsen et al. (2011).

Moreover, given that the MPA showed the best performance in a previous

analysis, we investigate the individual effects of the components of the EMP

estimator in the MPA framework, namely the proposed eigenvalue correc-

tion approach (MPA-E), HFF technique (MPA-H), and negative first-order

autocorrelation (MPA-N).

• MPA-E: MPA estimator with only the proposed eigenvalue correction;

Statistica Sinica: Preprint 
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• MPA-H: MPA estimator with only the HFF technique;

• MPA-N: MPA estimator with the proposed eigenvalue correction and

HFF approach, but excluding the negative first-order autocorrelation.

In other words, MPA-N is the same as EMP, except that the high-frequency

filtration is performed by minimizing the following function:

Ẑtj = argminZtj

p∑
i=1

[(
R̂i,tij − γ̂>i Ztj

)2
I{tij ∈ F}

]
+ δnZ

>
tj
Â−1Ztj .

By comparing MPA-N and EMP, we can determine how the HFF technique

improves the estimation of the covariance matrices by incorporating the

empirical feature of the negative first-order autocorrelation.

We generate noisy and asynchronous processes under various scenarios

with dimensions p = 5, 10, and 15. The simulation contains three real data

sets, oriented with parameters learned from Trade and Quote (TAQ) data

in the finance, electronics, and food sectors. We also experiment on four

extreme scenarios to investigate the performance of the EMP estimator.

4.1 Setup

We first generate efficient and synchronous log prices Xt of p assets, follow-

ing the setup in Wang and Zou (2010):

dXt = σ>t dBt, t ∈ [0, 1],

where Bt = (B1t, . . . , Bpt)
> is a standard p-dimensional Brownian motion,

and σt is a Cholesky decomposition of Σt = (Σij,t)1≤i,j≤p, which is defined

Statistica Sinica: Preprint 
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below. Let the diagonal elements of Σt follow a Cox–Ingersoll–Ross (CIR)

process,

dΣii,t = θi(µi − Σii,t)dt+ ωi
√

Σii,tdWit,

where µi denotes the long-term mean of the volatility, for i = 1, . . . , p, and

Wit is a standard one-dimensional Brownian motion independent of Bt.

Define the off-diagonal elements by

Σij,t = [κ(t)]|i−j|
√

Σii,tΣjj,t, 1 ≤ i 6= j ≤ p,

where κ(t) is given by

κ(t) =
e2u(t) − 1

e2u(t) + 1
, du(t) = 0.3[0.64− u(t)]dt+ 0.118u(t)dWκ,t,

Wκ,t =
√

0.96W 0
κ,t − 0.2

p∑
i=1

Bit/
√
p,

and W 0
κ,t is a standard one-dimensional Brownian motion independent of

Bt and Wit.

The synchronous, yet noisy log prices are generated with Gaussian

noise:

Ytj = Xtj + εtj ,

where tj = j/n, with j = 0, . . . , n, and ε is an i.i.d. random vector with

mean zero and variance ηi, for i = 1, . . . , p. Then, the asynchronous and

noisy price processes are generated by sampling from Poisson processes

with intensity ψ = (ψ1, . . . , ψp)
>. Note that the generated processes have

on average, 23 400/ψ1 to 23 400/ψp observations.
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4. SIMULATION STUDY17

For parameter settings, we consider three practically oriented experi-

ments based on the TAQ data in the finance, electronics, and food sectors.

For each sector, the variances of the microstructure noise (ηi), long-term

means of the volatility (µi), and intensities (ψi) are estimated from five ar-

bitrarily selected assets; see Table S4 in the Supplementary Material. For

the extreme scenarios, we design four experiments, as follows:

• Noisy: a lower signal-to-noise ratio range from 0.017 to 0.034;

• Ex-Asy: dissimilar sampling frequencies, with ψi = 3 ∼ 60;

• Ex-HF: ultra-high sampling frequencies, with ψi = 3 ∼ 5;

• Negative: an artificial signal-to-noise ratio ranging from 0.00043 to

0.017 for estimating negative-definite covariance matrices.

The parameter settings of each scenario can be found in Table S4. In

addition, the parameter settings of p = 10 assets are combined with those

of the finance and electronics sectors, and the parameter settings of p = 15

assets are combined with those of the finance, electronics, and food sectors.

In each sector, the sample size is n = 23 400 with m = 1 000 replications.

Following the initial screening, in 230 of the 1 000 replications, the MPA

estimator is not positive semidefinite for the Negative scenario. In addition,

the negative eigenvalues mostly occur for the fifth eigenvalue. For the cases

of p = 10 and p = 15, the frequencies at which the eigenvalues are negative

for the 1 000 replications are plotted in Figure 1. Overall, the frequencies

Statistica Sinica: Preprint 
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of nonpositive-semidefinite covariance estimators are 99% for both p = 10

and p = 15.

3 4 5 6 7 8 9 10
eigenvalue

0.1

0.2

0.3

0.4

0.5

0.6
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0.448

0.475

5 6 7 8 9 10 11 12 13 14 15
eigenvalue
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0.5

0.6

frequency

0.034

0.141

0.361

0.42
0.46

0.521 0.535
0.575

0.593 0.581
0.56

Figure 1: The occurrence frequencies of negative eigenvalues based on 1, 000 replica-

tions for p = 10 (left panel) and p = 15 (right panel).

For each scenario, the EMP estimator is obtained by

1. filtering the high-frequency synchronous data using the HFF tech-

nique, in which the tuning parameter δn is chosen using cross-validation.

2. performing the proposed eigenvalue correction and obtaining the realized-

covariance estimator.

4.2 Evaluation and alternatives

We measure both the overall and the element-wise accuracy of the EMP

estimator. The overall performance is evaluated using the relative error

(RE) of each eigenvalue, defined as

REi =

√
1
m

[∑m
s=1(λ̂

(s)
i − λi)2

]
λi

, i = 1, . . . , p,
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where λi/λ̂
(s)
i denotes the ith true/estimated eigenvalue of the sth repli-

cation. The maximum norm (MN) evaluates the element-wise accuracy,

measured by the largest absolute deviation of all elements:

MN =
1

m

m∑
s=1

{
max
i,j
|Σ̂(s)

ij − Σij|
}
,

where Σij is the (i, j)th element of the covariance, and Σ̂
(s)
ij is the estimated

(i, j)th element in the sth replication, for i, j = 1, · · · , p, s = 1, . . . ,m, with

m = 1 000. The lower of these two measures represents the better accuracy

of the estimated covariance matrix.

Table 1 reports the RE and MN of the EMP estimator. It shows that the

EMP estimator provides accurate results with low estimation errors in the

finance, electronics, food, Noisy, Ex-Asy, and Ex-HF sectors. The MPA and

MK alternative estimators are compared with the EMP estimator by calcu-

lating the ratios of their errors to the corresponding EMP measurements.

A ratio larger than one indicates poorer accuracy of the alternative. In

the real-data-oriented scenarios (finance, electronics, and food), the EMP

estimator, although far from optimal, still has lower relative errors than

those of MPA and MK. More specifically, the improvement in relative over-

all performance ranges from 1.7% (RE4 electronics) to 77% (RE5 finance),

and the improvement in element-wise accuracy ranges from 60.8% (finance)

to 66.2% (electronics), as compared with the MPA. Compared with MK,

with the exception of the first eigenvalue in finance, the EMP estimator

displays an increase in overall accuracy ranging from 8.4% (RE3 finance)
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to 198.1% (RE1 food), and an improvement of more than 246.2% (finance)

in terms of MN. In the extreme scenarios (Noisy, Ex-Asy, and Ex-HF), the

EMP estimator outperforms MK and MPA, without exception. The EMP

estimator enhances the element-wise accuracy by between 69.5% (compared

with MPA Noisy) and 311.7% (compared with MK Ex-HF).

Table 2 presents the REs of MPA, MPA-E, MPA-H, MPA-N, and EMP

in the Negative scenario. The results confirm that the proposed eigen-

value correction approach efficiently improves the negative eigenvalue(s) by

around 20.4%. Error correction contributes greatly in the cases with smaller

eigenvalues, especially those close to zero or negative. For larger eigenval-

ues, there is little benefit to using the error correction approach. The HFF

technique, conversely, leads to a big improvement in the larger eigenvalues

by using the cross-dependence between the multiple assets. However, HFF

does not provide significant benefits for smaller eigenvalues, which repre-

sent fewer features of the covariance matrix. The MPA-N results indicate

the importance of incorporating the negative autocorrelation in the HFF

technique. Without these empirical features, MPA-N produces a mixture

of beneficial and detrimental contributions, but an overall decrease in ac-

curacy. The EMP estimator nicely combines the two techniques and the

empirical features. It benefits in the larger-eigenvalue cases from the richer

information on the multiple assets, and in the smaller-eigenvalue cases from

the correction of the negative values.
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Table 1: Comparisons of EMP and alternative realized covariance estimators in terms

of the RE of eigenvalues and maximum norms (MN).

Food Electronics Finance

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

RE1 0.162 2.981 1.265 0.170 2.747 1.076 0.218 0.982 1.023

RE2 0.142 2.951 1.577 0.145 2.725 1.539 0.159 1.390 1.226

RE3 0.156 2.365 1.455 0.143 2.839 1.434 0.215 1.084 1.121

RE4 0.183 2.891 1.426 0.230 1.913 1.017 0.200 1.740 1.165

RE5 0.272 2.419 1.232 0.265 2.525 1.260 0.236 2.436 1.771

MNs 6.98E − 5 3.734 1.643 6.72E − 5 3.853 1.662 7.02E − 5 3.462 1.608

Noisy Ex-Asy Ex-HF

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

RE1 0.176 2.892 1.250 0.209 2.909 1.038 0.138 2.928 1.326

RE2 0.165 2.679 1.479 0.172 2.831 1.767 0.109 3.367 1.725

RE3 0.341 1.067 0.633 0.217 2.037 1.258 0.256 1.457 0.738

RE4 0.253 1.767 0.874 0.222 2.824 1.500 0.143 2.832 1.294

RE5 0.303 2.205 1.218 0.339 2.469 2.555 0.168 3.595 1.595

MNs 5.11E − 5 3.560 1.695 9.08E − 5 3.992 1.800 9.13E − 5 4.117 1.780

The results of p = 10 and p = 15 are similar and are discussed in Section

S2.3 of the Supplementary Material.

In summary, the EMP estimator displays substantial improvements in

relative performance and is stable in different scenarios, indicating that it

estimates the true covariance matrix with reasonable accuracy.
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Table 2: Comparison of MPA, MPA-E, MPA-H, MPA-N, and EMP in terms of REs.

RE1 RE2 RE3 RE4 RE5

MPA 0.4688 0.3702 0.5086 0.5799 0.8648

MPA-E 0.4688 0.3702 0.5086 0.5479 0.7182

MPA-H 0.2711 0.2607 0.2616 0.2258 1.4661

MPA-N 0.3003 0.8231 0.6509 0.5761 1.6064

EMP 0.2711 0.2607 0.2616 0.2258 0.7647

5. Real-data analysis

In this section, we implement the synchronizing technique and eigenvalue

correction approach to apply the EMP realized-covariance estimator to real-

world tick-by-tick financial data. We also apply the proposed EMP esti-

mator in portfolio selection to show its usefulness in financial applications,

where covariance is a key input factor.

We consider the TAQ data of seven assets listed on the New York Stock

Exchange (NYSE) (i.e., AIG, GE, IBM, JPM, MRK, PFE, and T) over the

period January 2, 2005, to December 31, 2005. The normal trading hours

of the NYSE are from 9:30 to 16:00, or 6.5 hours (23,400 seconds). We

remove the seven days from November 21, 2005, to November 30, 2005,

owing to unavailable data for asset T. In total, there are 245 trading days.

Figure 2 depicts the evolution of the daily adjusted closing prices of the

PFE and MRK stocks in 2015. The two assets belong to the same industry,

that is, pharmaceuticals, and hence are naturally positively correlated; the
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historical correlation estimator is 0.51.

The two alternative estimators MPA and MK are also computed based

on the high-frequency data. Figure 3 depicts the time plot of the estimated

daily correlations of PFE and MRK. Each of the realized-covariance esti-

mators delivers positive correlations in most cases, with values varying in

the range [−0.53, 0.87] for EMP, a larger range [−0.74, 0.98] for MPA, and

the range [−0.31, 0.98] for MK. The correlation between PFE and MRK

becomes negative after day 200. This is well represented by the EMP esti-

mator, but not by the alternatives, an observation that supports the general

accuracy of the EMP estimator. Furthermore, even with a large n = 12, 552,

there are 40 days when the MPA estimators are not positive semidefinite.

50 100 150 200
Date

16

18

20

22

24

Price

Figure 2: Time plot of daily closing prices of PFE (gray real line) and MRK (black

dashed line) stocks for a total of 245 days.

5.1 Application in portfolio allocation

Markowitz mean-variance portfolio selection has had a profound impact on

financial economics. Suppose that w represents the weights of a portfolio
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Figure 3: Time plots of the intra-daily correlation estimations between PFE and MRK

stocks based on EMP (left panel), MPA (middle panel), and MK (right panel) for a total

of 245 days.

allocation, with the constraint that w∗1 = 1. The Markowitz mean-variance

optimization is equivalent to maximizing the following function:

M(µ,Σ) = w∗µ− λw∗Σw,

which is sensitive to estimation errors in the expected return and the co-

variance matrix, especially when the portfolio is large. Fan, Zhang, and Yu

(2012) showed that the estimation errors can be bounded as

|M(µ̂, Σ̂)−M(µ,Σ)| ≤ ‖µ̂− µ‖∞‖w‖1 + λ‖Σ̂− Σ‖∞‖w‖1,

where ‖ · ‖∞ refers to the maximum component-wise estimation errors.

The problem disappears when the gross-exposure constraint ‖w‖1 ≤ c is

imposed for a moderate c, where c is the total exposure allowed:

min
w

w∗Σw s.t. ‖w‖1 ≤ c and w∗1 = 1.

Letting R(w,Σ) = w∗Σw, Fan, Zhang, and Yu (2012) showed that

|R(w, Σ̂)−R(w,Σ)| ≤ ‖Σ̂− Σ‖∞‖w‖1.
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The above estimation errors do not accumulate in the risk. Fan, Li, and

Yu (2012) extended the work of Fan, Zhang, and Yu (2012) to include

high-frequency data by using the two-scale realized-covariance estimator

combined with the all-refresh and pairwise-refresh synchronizing techniques.

Following Fan, Li, and Yu (2012), we construct portfolios based on

tick-by-tick records. The optimal weights are updated using the realized-

covariance estimator from the previous day:

min
w

w∗Σw s.t. ‖w‖1 ≤ c and w∗1 = 1,

where we consider three cases, c = 1, c = 2, and c = 3, using three

alternative realized-covariance estimators, MPA, MK, and EMP.

Table 3 provides a statistical summary of the portfolios based on differ-

ent realized-covariance estimators and c = 1, 2, and 3. Without exception,

the EMP portfolios are better than the MPA and MK specifications. The

EMP portfolio is the only portfolio with a positive mean, and it produces

the smallest standard deviation. In most cases, the EMP portfolio out-

performs the alternatives when extreme loss is considered and c = 2 or

3. The other portfolios for extreme losses are also competitive with the

best solutions. To visualize the differences between the estimators, we plot

histograms of the daily log returns of the portfolios with different realized-

covariance estimators in Figure 4. The EMP portfolio provides superior

performance in terms of cumulative returns, as displayed in Figure 5, with

c = 1, c = 2, and c = 3. After t = 130, the EMP portfolio outperforms
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Table 3: The medians, means, standard deviations (Std.), and 1% and 5% quantiles of

the log returns of portfolio prices based on three covariance matrix estimators.

c = 1

Median Mean Std. 1% quantile 5% quantile

EMP 1.40E − 4 4.67E − 5 6.87E − 3 −1.12E − 2 −1.57E − 2

MK 0.92E − 4 −1.93E − 5 7.42E − 3 −1.17E − 2 −1.65E − 2

MPA −1.24E − 4 −1.46E − 4 6.94E − 3 −1.08E − 2 −1.53E − 2

c = 2

Median Mean Std. 1% quantile 5% quantile

EMP 1.39E − 4 1.89E − 5 6.93E − 3 −1.12E − 2 −1.57E − 2

MK −0.21E − 4 −8.09E − 5 8.85E − 3 −1.17E − 2 −2.08E − 2

MPA −0.96E − 4 −9.72E − 5 7.21E − 3 −1.08E − 2 −1.59E − 2

c = 3

Median Mean Std. 1% quantile 5% quantile

EMP 1.40E − 4 2.56E − 5 6.93E − 2 −1.12E − 2 −1.56E − 2

MK −0.58E − 4 −1.21E − 4 9.37E − 2 −1.29E − 2 −2.05E − 2

MPA −1.24E − 4 −9.84E − 5 7.38E − 2 −1.12E − 2 −1.96E − 2

the alternatives and the equal-weighted portfolio. Figure 5 also depicts

the daily portfolio volatility (ŵ∗optΣ̂ŵopt) using different realized-covariance

estimators. The results, summarized in Table 4, indicate that the EMP

portfolio has a greater chance of obtaining lower portfolio volatilities than

do MPA and MK. To summarize, the EMP estimator is superior in the

Markowitz mean-variance portfolio selection experiment.
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Table 4: Portions of the smallest portfolio volatility of different covariance estimators.

c = 1 c = 2 c = 3

EMP 44.64% 50% 52.57%

MPA 30.90% 31.62% 31.62%

MK 24.46% 18.38% 15.81%
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Figure 4: Histograms of the log returns of portfolio prices based on EMP (left panel),

MPA (middle panel), and MK (right panel). The lower panel is zoomed in to show the

tail sections.

6. Conclusion

We have developed a new realized-covariance estimator that simultaneously

ensures positive semidefiniteness and optimal efficiency. By drawing on the

dependence information in the data, we were able to iteratively synchronize

asynchronous high-frequency data. Together with a correction approach,

the proposed estimator is positive semidefinite and efficient at the optimal

convergence rate Op
(
n−1/4

)
. It is consistent and has the same limiting
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distribution as the efficient estimator. Real-data-oriented simulation ex-

periments demonstrated the finite-sample performance of the estimator,

showing that, compared with several alternatives, the proposed estimator

provides the best accuracy. A real-data analysis illustrated the superior

performance of the proposed estimator in portfolio allocations. The pro-

posed methods are general, and can be applied to other realized measures

and to matrix corrections. In this study, we considered multidimensional

covariance matrix estimators. Extensions to high- and large-dimensional

covariance matrix estimators are of practical interest, and are left to future

research. Some important works in this context include, but are not limited

to, those of Aı̈t-Sahalia and Xiu (2017), Dai et al. (2017), Fan et al. (2016),

Kim et al. (2018), Kim et al. (2016), Kong (2017), and Kong (2018).

Supplementary Material

All proofs and some simulations can be found in the online Supplementary Material.
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Appendix

Theorem 4. Let Strue be the multiple pre-averaging estimation based on efficient but unobserv-

able log prices.

Strue =
n

n− kn + 2

12

kn

n−kn+1∑
j=0

Ȳ
n,(0)
tj

(Ȳ
n,(0)
tj

)> − 12

2nθ2

n∑
j=1

(Y tj − Y tj−1)(Y tj − Y tj−1)>,
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where Ȳ
n,(0)
tj

= 1
kn

(∑kn−1
`=kn/2 Y tj+` −

∑kn/2
`=0 Y tj+`

)
. The asymptotic distribution of Strue is

given in Christensen et al. (2010) with convergence rate n1/4. Let the assumptions of Theorem

2 and 3 hold, and further assume that

(i) X̂tj −Xtj and ε̂tj − εtj share the same order with R̂tj −Rtj ;

(ii) ε̂tj have lower dependency on each other, j = 1, . . . , n.

We have

‖n1/4(S1 − Strue)‖ = op(1),

which implies that S1 has the same limiting distribution as Strue.
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Figure 5: Cumulative portfolio returns (left panel) and portfolio volatilities (right

panel) based on EMP (thick solid line), MK (solid line), MPA (dashed line), and equal

weights (dot-dash line) for c = 1 (upper panel), c = 2 (middle panel), and c = 3 (lower

panel).
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