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Abstract: We propose a new procedure to estimate the index parameter and

link function of single-index models, where the response variable is subject to

fixed censoring. Under some regularity conditions, we show that the estimated

index parameter is root-n consistent and asymptotically normal, and the esti-

mated nonparametric link function achieves the optimal convergence rate and is

asymptotically normal. In addition, we propose a linearity testing method for

the nonparametric link function. A simulation study shows that the proposed

procedures perform well in finite-sample experiments. An application to an HIV

data set is presented for illustrative purposes.

Key words and phrases: Nonparametric censored regression, single-index model,

semi-parametric least-squares.

1. Introduction

Because of the non-negativity or a detection limit, data with fixed cen-

*The two authors are co-first authors.
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sored responses are common in econometrics and biometrics studies (Mad-

dala, 1986; Adesina and Zinnah, 1993; Nizar Al-Malkawi, 2007; Haab, Dun-

ham, and Brown, 2001; Van der Pouw Kraan et al., 1995). For instance, in

our motivating HIV data set, the viral load in the blood serum can only be

observed if it is above 50 units (Kobie et al., 2012).

To explore the relationship between the fixed censored response variable

and the covariates, several models and associated estimation methods are

proposed. Earlier works focused on parametric regression models, includ-

ing the Tobit model (Tobin, 1958) and its variants (Amemiya, 1984, 1979;

Blundell and Meghir, 1987), which assume a linear relationship with normal

errors. However, both linearity and normality assumptions can be violated

in practice (Maddala and Nelson, 1975; Gawande, 1995; Chen, Dahl, and

Khan, 2005). To make the model more flexible, several researchers have

studied nonparametric regression models with fixed censored data. For

example, Lewbel and Linton (2002) proposed a two-stage moment-based

method to estimate the nonparametric conditional mean function; Chen,

Dahl, and Khan (2005) studied the identification and estimation problems

of the conditional median function in nonparametric location-scale models.

These nonparametric methods achieve greater flexibility and, in general, do

not require distributional assumptions. However, they suffer from “curse of
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dimensionality”, and their performance can be poor, even when the dimen-

sion of the covariates is moderate.

To amend the limitations of the existing methods, we consider single-

index models with the fixed censored responses. Single-index models have

been widely studied in the literature (Powell, Stock, and Stoker, 1989; Duan

and Li, 1991; Härdle, Hall, and Ichimura, 1993; Ichimura, 1993; Horowitz

and Härdle, 1996; Carroll et al., 1997; Xia and Härdle, 2006; Liang et al.,

2010). The majority of these studies focuses on cases in which the response

Y is fully observed, although some researchers have studied estimation when

Y is randomly censored (Lopez, 2009; Bücher, El Ghouch and Van Keile-

gom, 2014; Chiang, Wang, and Huang, 2017; Kong and Xia, 2017). Note

that the methods for single-index models with randomly censored responses

implicitly assume that we can always observe uncensored observations be-

low any given value of the censoring point (Lopez, 2009; Bücher, El Ghouch

and Van Keilegom, 2014; Kong and Xia, 2017; Huang, 2017). However, this

is not true for the fixed censoring case because the probability of observing

uncensored observations below the given fixed censored point is zero. Thus,

the associated methods cannot be applied. To the best of our knowledge, no

estimation methods for single-index models with fixed censored responses

are available in the literature.
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By establishing a relationship between fixed censored single-index mod-

els and uncensored single-index models, we propose a new procedure to

estimate the index parameter. Under certain regularity conditions, the

proposed estimator is root-n consistent and asymptotically normal. Af-

ter substituting in the index parameter, the single-index model is simpli-

fied to a univariate fixed-censored nonparametric model, and we apply the

method of Lewbel and Linton (2002) to estimate the nonparametric link

function. The estimated nonparametric link function achieves the optimal

convergence rate and is asymptotically normal. Finally, a hypothesis test-

ing procedure is proposed to check the linearity of the nonparametric link

function.

The rest of the paper is organized as follows. Section 2 presents the

model, and gives the estimation and testing procedures. Section 3 presents

the asymptotic properties. Section 4 explores the finite-sample performance

by means of a simulation study, and an HIV data set is analyzed in Section

5 for illustrative purposes. All technical proofs are provided in the online

Supplementary Material.
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2. Model and Methods

2.1 Model

Consider the following single-index model for the latent responses:

Y ∗i = m(X>i β)− εi, i = 1, . . . , n, (2.1)

where Xi = (Xi,1, . . . , Xi,d)
> is a d-dimensional covariate vector, β =

(β1, . . . , βd)
> is an unknown index parameter vector, m(u) = E(Y ∗i |X>i β =

u) is an unknown smooth function, and εi is the random error. Owing to

fixed censoring, Y ∗i cannot be fully observed. Instead we can only observe

(Yi, δi), where Yi = max(Y ∗i , c), δi = I(Y ∗i > c), c is the known lower detec-

tion limit, and I(·) is an indicator function. Without loss of generality, we

assume c = 0. Instead of making parametric distribution assumptions, such

as normality, we assume only that εi is independently and identically dis-

tributed (i.i.d.), from an unknown distribution symmetric around zero, and

with finite variance. Furthermore, we assume that no intercept is included

in the index function X>i β, for ||β|| = 1, and that the first element of β

is positive, which ensures identification, where ‖ · ‖ denotes the L2-norm.

In addition, we assume that β ∈ Θ ⊂ Rd for some compact set Θ, and

X ∈ DX ⊂ Rd for some compact set DX .

Remark 1. To facilitate theoretical derivations, we consider an error term

Statistica Sinica: Preprint 
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of “ − εi” instead of “εi”; a similar model setting can be found in Lewbel

and Linton (2002). Note that with the symmetry assumption on εi around

0, εi and −εi have the same distribution.

2.2 Profile least-squares estimator of β

Under model (2.1), the proposed estimation procedure for β is inspired

by considering a connection between fixed censored single-index models

and uncensored single-index models. Under mild assumptions, this connec-

tion changes the estimation of a single-index Tobit model to a standard

single-index model; as a result, well-developed estimation procedures can

be applied.

Assumption A.1 (i) The latent response Y ∗ has first ν(≥ 3) absolute mo-

ments. (ii) The common density function of εi, denoted as f(·), is symmetric

around zero and its derivative is continuous.

Proposition 1. Let F (·) be the distribution function of ε. Under Assump-

tion A.1, if limε→−∞ εF (ε)=0, then E(Yi|X>i β) =
∫ m(X>

i β)

−∞ F (ε)dε.

Assumption A.1 and the assumption limε→−∞ εF (ε)=0 are mild, and

are most commonly used with symmetric distributions, such as the normal

distribution, Student’s tυ distribution (υ ≥ 4), and the uniform distribution

on a symmetric interval (Lewbel and Linton, 2002). Proposition 1 implies

Statistica Sinica: Preprint 
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that E(Yi|X>i β) can be represented as a new uncensored single-index model

with the same index parameter β, but with a new link function. More

specifically, E(Yi|X>i β = u) = r(u) = w ◦m(u), where w(t) =
∫ t
−∞ F (ε)dε,

and “◦” means the composition of two functions; a similar derivation can

be found in Lewbel and Linton (2002).

According to Proposition 1, we can assign a new single-index model for

the observed responses as

Yi = r(X>i β)− ε′i, i = 1, 2, . . . , n, (2.2)

where ε
′
i = εi+(Y ∗i −Yi)+r(X>i β)−m(X>i β). By Proposition 1, E(Yi|X>i β) =

r(X>i β). Thus we have E(ε
′
i|X>i β) = 0. Therefore, existing estimation

methods for single-index models can be applied to estimate β. Here, we

adopt the profile least-squares method of Liang et al. (2010), as follows.

Given β, we employ the local linear regression technique to estimate r(·),

that is, we minimize

n∑
i=1

{a+ b(X>i β − u)− Yi}2Kh(X
>
i β − u) (2.3)

with respect to a and b, where Kh(·) = K(·/h)/h, K(·) ≥ 0 is a kernel

function, and h > 0 is the bandwidth. Let (â, b̂) be the minimizer of (2.3);

then, r̂(u) = â. As discussed in Jennrich (1969), there exists a profile

Statistica Sinica: Preprint 
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least-squares estimator β̂ that minimizes

Q(β) =
n∑
i=1

{Yi − r̂(X>i β)}2

with respect to β, where the minimization problem can be solved using

standard optimization algorithms, such as the Newton–Raphson algorithm,

and convergence is guaranteed.

Remark 2. The estimation procedure above treats all covariates as impor-

tant. In practice, especially when the dimension of X is high, it is quite

possible that irrelevant covariates are included. This may motivate us to

consider variable selection. Given expression (2.2), any variable selection

method for single-index models can be used for variable selection, including

the penalized profile least-squares method of Liang et al. (2010). A detailed

discussion can be found in Huang (2017).

2.3 Nonparametric estimation of m(·)

Given β̂, we can estimate the unknown link function m(·). For notational

convenience, we rewrite model (2.1) as

Y ∗i = m(Ui)− εi, i = 1, . . . , n, (2.4)

where Ui = X>i β. Recall the definition of r(·) in (2.2), namely, r(u) =

E(Y |U = u) = E(Y |X>β = u), and define s = r(u), q(s) = q(r(u)) =

Statistica Sinica: Preprint 
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2.4 Testing the linearity of the link function9

P{Y > 0|r(U) = r(u)} = P (Y > 0|U = u); and Ûi = X>i β̂. We propose

estimating m(·) in a similar manner to that of Lewbel and Linton (2002).

Step 1. Smooth the observed response Yi over Ûi to estimate r(Ûi) using

a local linear smoother (Fan and Gijbels, 1996); that is,

(âi,0, âi,1) = arg min
(a0,a1)∈R2

n∑
j=1

{Yj − a0 − a1(Ûj − Ûi)}2Kh1(Ûj − Ûi). (2.5)

Then, r(Ûi) is estimated as r̂(Ûi) = âi,0, where h1 > 0 is a bandwidth.

Step 2. Smooth I(Yi > 0) over r̂(Ûi) to estimate q(·) using a local linear

smoother; that is,

(̂b0, b̂1) = arg min
(b0,b1)∈R2

n∑
i=1

[I(Yi > 0)−b0−b1{r̂(Ûi)−r̂(u)}]2Kh2(r̂(Ûi)−r̂(u)).

Then, q(r̂(u)) is estimated as q̂(r̂(u)) = b̂0, where r̂(u) is estimated

by replacing Ûi with u in (2.5), and h2 > 0 is a bandwidth.

Step 3. Estimate m(u) by m̂(u) = λ̂r −
∫ λ̂r
r̂(u)

1/q̂(s)ds, where λ̂r =

maxi=1,...,n r̂(X
>
i β̂). For the integration part, any one-dimensional

numerical integration approach, such as Trapezoid rule, can be em-

ployed.

2.4 Testing the linearity of the link function

In practice, we may wish to determine whether m(·) is a linear function,

because if it is, we can simplify the single-index model to a linear model.

Statistica Sinica: Preprint 
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In this section, we study the hypothesis

H0 : m(u) = ζ0 + ζ1u versus H1 : H0 is not true.

To test the linearity of m(·), we further assume εi ∼ N(0, σ2), where σ is

an unknown scale parameter.

Recalling Proposition 1, we have

w′(u) = ∂r(u)/∂m(u) = F (m(u)) = Φ(m(u)/σ) > 0,

which indicates that r(·) is a strictly increasing function of m(·). As a

result, testing H0 against H1 is equivalent to

K0 : r0(u) =

∫ ζ0+ζ1u

−∞
Φ(ε/σ)dε versus K1 : K0 is not true.

We adopt the idea of Koul, Song, and Liu (2014) to test K0 versus K1.

Given a root-n consistent estimator of β0, say β̂, we define

ε̂
′

i = Yi −
∫ ζ0+ζ1·X>

i β̂

−∞
Φ(ε/σ)dε,

where ζ0, ζ1, and σ are estimated by the maximum likelihood method in

the Tobit model (Tobin, 1958; Amemiya, 1984). Define

Vn =
1

n(n− 1)h

∑
i6=j

K
(X>i β̂ −X>j β̂

h

)
ε̂
′

iε̂
′

j,

γ̂2 =
2

n(n− 1)h

∑
i6=j

K2
(X>i β̂ −X>j β̂

h

)
ε̂
′2
i ε̂

′2
j ,

Statistica Sinica: Preprint 
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where h > 0 is the same bandwidth as that of the profile least-squares

estimator of the index parameter, specified in equation (2.3). The test

statistic is then defined as

Tn = nh1/2Vn/γ̂.

Under certain regularity conditions, we can prove that Tn is asymptotically

normal under the null hypothesis. Thus, a large value of Tn indicates a

deviation from the Tobit model.

3. Asymptotic Properties

In this section, we present the asymptotic properties of the proposed estima-

tors for the index parameter and the link function, as well as the properties

of the test statistic. The true index parameter and unknown link function

are denoted as β0 = (β1,0, . . . , βd,0)> and m(·), respectively. In addition to

Assumption A.1, the following assumptions are needed for the asymptotic

results.

Assumption A.2. (i) r(·) and m(·) are not constant on the support

Ω = {u|u = x>β, x ∈ DX , β ∈ Θ}; then their third derivatives are uni-

formly Lipschitz continuous for all u ∈ Ω. (ii) Let fX(x) be the density

function of X; then, the third derivative of fX(x) is continuous. (iii) The

second derivative of the function q(·) is continuous, and infu∈Ω q(r(u)) > 0.

Statistica Sinica: Preprint 
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Furthermore, q(λr) = 1, where λr = supu∈Ω r(u), and the supremum is tak-

en over u = x>β0 for x ∈ DX . (iv) τ 2(u) = E[{Y − r(X>β0)}2|X>β0 = u]

and v4(u) = E[{Y − r(X>β0)}4|X>β0 = u] are bounded functions with

continuous derivatives.

Assumption A.3. (i) nh8 → 0 and nh3+3/(ν−1)/ log n → ∞ as n → ∞,

where ν ≥ 3 is specified in A.1. (ii) nh2
1/ log2(n) → ∞, nh2

2/ log2(n) → ∞

and h1/h2 ≤ C1, nh5
1 ≤ C2, and nh5

2 ≤ C3 for some positive constants

C1, C2, and C3.

Assumption A.4. The support of the kernel function K(·) is [−1, 1], and

its second derivative is Lipschitz continuous. Moreover,
∫ 1

−1
K(s)ds = 1,∫ 1

−1
sK(s)ds = 0, and

∫ 1

−1
s2K(s)ds > 0.

Assumptions A.2 (i)–(ii) are similar to the regularity conditions in Carroll

et al. (1997) and Liang et al. (2010) for uncensored data. A.2 (iii) is adopt-

ed from Assumption 2 in Lewbel and Linton (2002), which is necessary to

ensure that the estimated nonparametric link function achieves the opti-

mal convergence rate. Assumption A.2 (iv) is adopted from Assumption

(C2) in Koul, Song, and Liu (2014), which is a necessary condition for the

asymptotic normality of the test statistic. Assumption A.3 provides us with

a guideline for selecting appropriate bandwidths. Furthermore, as pointed

out by Liang et al. (2010), Assumption A.3 (i) implies that the estimation

Statistica Sinica: Preprint 
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performance remains stable in a reasonable range of bandwidth, especially

when the sample size is large. In practice, the bandwidth can be chosen

using cross-validation. Assumption A.4 is standard for nonparametric re-

gressions.

Theorems 1–2 present the asymptotic properties of the estimated index

parameter and the nonparametric link function.

Theorem 1. Under Assumptions A.1–A.4, we have

√
n(β̂ − β0)

D−→ N(0,W+
0 ), (3.1)

whereW0 = E
[
r′2(X>β0){X−E(X|X>β0)}{X−E(X|X>β0)}>τ 2(X>β0)

]
,

and W+
0 denotes its Moore–Penrose inverse.

Theorem 2. Under Assumptions A.1–A.4, for an interior point u = x>β,

where x ∈ DX and β ∈ Θc0 = {β : ||β − β0|| ≤ c0n
−1/2}, for some positive

constant c0, we have

√
nh1

{
m̂(u)−m(u)− k0 − bm(u)h2

1

} D−→ N
{

0,
1

s2
0(u)

σ2
u

}
. (3.2)

Here, σ2
u = τ 2(u)f−1

U (u)
∫ 1

−1
K2(t)dt, with fU(·) being the density function of

U = X>β0; k0 = λr −F−1
1 (λr), with F1(λr) =

∫ λr
−∞ F (ε)dε; s0(u) = q(r(u));

bm(·) is a bounded continuous function that is determined by the terms T2

and T6 in the online Supplementary Material. If we further assume that

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0451
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supε∈Ωε ε ≤ λr, where Ωε is the domain of ε, then the term k0 disappears,

and we have√
nh1

{
m̂(u)−m(u)− bm(u)h2

1

}
D−→ N

{
0,

1

s2
0(u)

σ2
u

}
. (3.3)

Theorem 1 shows that the estimator β̂ is root−n consistent and asymp-

totically normal. Theorem 2 indicates that, up to a location constant, the

proposed nonparametric estimator achieves the optimal convergence rate.

Furthermore, note that although k0 is theoretically nonzero, it is numeri-

cally negligible in many situations, based on our experience. In addition,

Theorem 2 theoretically justifies that the location shift k0 disappears with

slightly stronger assumptions.

Remark 3. Constructing confidence intervals for β0 and m(·) may require

that we estimate the asymptotic variances involved in Theorems 1–2. The

weighting function τ(·) and asymptotic covariance matrix W+
0 of β̂ can

be estimated using typical variance estimation methods for heterogeneous

single-index models (Ichimura, 1993; Härdle, Hall, and Ichimura, 1993;

Chiou and Müller, 1998, 1999). The asymptotic variance σ2
u/s

2
0(u) of the

link function estimator can be obtained by replacing f−1
U (·) and s0(·) with

their consistent estimators (Lewbel and Linton, 2002). Considering the po-

tential complexity in the estimation of the variances, the bootstrap method

is a good alternative for constructing confidence intervals for β0 and m(·).

Statistica Sinica: Preprint 
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Lastly, we state the asymptotic properties of the proposed test. We

need two additional assumptions.

Assumption A.5. The random noise εi ∼ N(0, σ2), where σ ∈ Ωσ is an

unknown parameter.

Assumption A.6. For any given β ∈ Θ, and any root-n consistent esti-

mator σ̂ of σ, sup(x,σ)∈DX×Ωσ |r(x>β, σ̂)− r(x>β, σ)− (σ̂ − σ)r′(x>β, σ)| =

Op(1/n), where r(x>β, σ) =
∫ m(x>β)

−∞ Φ(ε/σ)dε.

Assumption A.6 is adapted from Assumption (C.4) of Koul, Song, and

Liu (2014). We have the following result for Tn.

Theorem 3. Assume Assumptions A.1–A.6 hold. Then, under H0,

Tn = nh1/2Vn/γ̂
D−→ N(0, 1).

4. Simulation Studies

In this section, we investigate the finite-sample performance of the proposed

estimation and testing methods using Monte Carlo simulations. Examples

4.1 and 4.2 focus on the estimation of β0 and m(·), respectively, and Ex-

ample 4.3 studies the performance of Tn.

Statistica Sinica: Preprint 
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Example 4.1. In this example, we focus on the estimation of β0. We

generate 100 replicates from the following two models:

Y ∗i = e(Xi1+Xi2)/
√

2 − εi, i = 1, . . . , n, (4.1)

and

Y ∗i = sin
(
π{(Xi1 +Xi2)/

√
2}/(b− a)

)
− εi, i = 1, . . . , n, (4.2)

whereXi1 andXi2 are i.i.d. from Uniform(0, 1), εi follows either aN(0, 0.12)

or a Laplace distribution L(0, 0.12), and a =
√

2/2 and b =
√

3/2 +

1.645/
√

12. In both (4.1) and (4.2), the true index parameter is β0 =

(β01, β02)> = (0.701, 0.701)>. The observed responses Yi are set as Yi =

max(Y ∗i , c), where c is properly chosen to yield two censoring proportions

(Cen), Cen=20% and Cen=40%. We consider two sample sizes, n = 200

and 400.

Because no estimation methods are available for such models, we com-

pare our estimator with the widely used profile least-squares estimator,

based on the latent data Y ∗i (corresponding to Cen=0). The performance

is evaluated using the L2 difference ||β0 − β̂||2 across replicates. We select

the bandwidth h using a grid search to minimize the simulation-based es-

timates of the L2 differences, following Liang et al. (2010). The average

CPU time for each replicate is 28 seconds for n = 200 and 101 second-

Statistica Sinica: Preprint 
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s for n = 400, running on an Intel(R) Core(TM) i7-6700HQ CPU with

2.60GHz. Table 1 summarizes the averaged estimates (AVE) of β0 and the

corresponding MSE. From Table 1, we find that the biases based on Yi are

comparable with those from Y ∗i , whereas the MSE based on Yi is larger,

but still within a reasonable range.

Example 4.2. In this example, we focus on the estimation of m(·).

We generate 200 replicates, where each replicate consists of n = 400 obser-

vations from models (4.1) and (4.2). We estimate m(·) at 400 grid points,

uniformly spaced within the range of X>β0. The censoring point c is set

to yield Cen=20%, which mimics our real HIV data in Section 5. To al-

leviate the computational burden, the bandwidths for estimating the link

function are chosen using a the rule of thumb (Silverman, 1986), that is,

h1 = 1.06s(X>β̂)n−1/5 and h2 = 1.06s(r̂(X>β̂))n−1/5, where s(·) denotes

the sample standard deviation.

Figures 1 and 2 present the point-wise median curve (solid line) of

the estimated function m̂(u) on the selected grid, point-wise 5% and 95%

quantiles (dotted line) of m̂(u), and the true m(u) (dashed lines). The

difference between the median curve and the true curve provides a measure

of the bias, whereas the 5% and 95% lines provide measures of spread,

which can be interpreted as simulation-based point-wise confidence bands.

Statistica Sinica: Preprint 
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Table 1: Example 4.1, average estimates (AVE) and MSE×104 of the index

parameter.

n Cen Model (4.1) Model (4.2)

AVE MSE AVE MSE

β1 β2 β1 β2 β1 β2 β1 β2

εi ∼ N(0, 0.12)

200 0% 0.7067 0.7080 4.84 5.07 0.7083 0.7057 5.37 5.64

20% 0.7065 0.7076 5.16 4.51 0.7083 0.7054 6.92 7.35

40% 0.7080 0.7061 7.91 7.43 0.7079 0.7052 10.80 12.12

400 0% 0.7078 0.7064 1.16 0.98 0.7069 0.7072 1.32 1.46

20% 0.7067 0.7060 1.63 1.49 0.7074 0.7074 2.05 2.28

40% 0.7056 0.7070 1.64 1.67 0.7093 0.7065 3.52 4.24

εi ∼ L(0, 0.12)

200 0% 0.7067 0.7074 4.12 3.67 0.7079 0.7073 5.76 5.97

20% 0.7075 0.7068 5.19 4.47 0.7076 0.7067 7.41 7.78

40% 0.7071 0.7061 6.27 6.34 0.7071 0.7052 9.52 9.89

400 0% 0.7070 0.7072 1.27 1.30 0.7074 0.7071 3.16 3.25

20% 0.7069 0.7730 1.28 1.33 0.7074 0.7068 4.01 4.16

40% 0.7071 0.7070 1.76 1.72 0.7093 0.7065 5.09 5.69
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In general, regardless of normal errors or Laplace errors, the fitted curves

are close to the true curve, and the confidence bands cover the true curve,

except for a small region. Finally, as pointed out by Lewbel and Linton

(2002), if the assumption that supε∈Ωε ε ≤ supu r(u) = λr in Theorem 2 is

not satisfied, a location shift may be expected. However, for these scenarios,∫ λ̂r
−∞ εf(ε)dε is almost zero and F (λ̂r) = 1, numerically, which implies that∫ λ̂r
−∞ εf(ε)dε = λ̂r −

∫ λ̂r
−∞ F (ε)dε = 0 (i.e., λ̂r = F−1

1 (λ̂r)). Therefore, the

location bias can be ignored.

Example 4.3. In this example, we focus on the linearity test. We

generate 200 replicates from the model

Y ∗i = m
(

(Xi1 +Xi2)/
√

2
)
− σεi, Yi = max(Y ∗i , c), i = 1, . . . , n,

where Xi1, Xi2 are i.i.d. from N(0, 1), εi ∼ N(0, 1), σ is equal to either 0.1

or 0.25, n is equal to either 200 or 400, and c is chosen to yield Cen=20%.

The true m(·) function is

m(u) = u+ c2 exp(u),

where c2 ranges from 0 to 0.16, with increment 0.04, and c2 = 0, corre-

sponding to the null hypothesis.

Table 2 summarizes the rejection rates for all cases, given the nominal

level 0.05. We find the following: (i) under the null hypothesis, the em-
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Figure 1: Simulation results for models (4.1) and (4.2) with the normal

error: fitted curves (dashed lines) and true curves (solid lines) with 90%

confidence bands (dotted lines)

Figure 2: Simulation results for models (4.1) and (4.2) with the Laplace

error: fitted curves (dashed lines) and true curves (solid lines) with 90%

confidence bands (dotted lines)
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Table 2: Rejection rates for the linearity test of the link function when

n = 200 or 400, and σ = 0.1 or σ = 0.25.

n=200 n=400

c2 σ = 0.1 σ = 0.25 σ = 0.1 σ = 0.25

0 0.02 0.01 0.01 0.02

0.04 0.58 0.04 0.96 0.13

0.08 0.98 0.35 1 0.75

0.12 1 0.78 1 0.98

0.16 1 0.93 1 1

pirical sizes are less than the nominal level; hence, the proposed tests are

conservative, which is common for nonparametric smoothing based tests

(Zheng, 1996; Koul, Song, and Liu, 2014); (ii) when the alternative is true,

the power approaches to one quickly.

5. Analysis of an HIV Study

A primary goal of vaccine strategies aimed at trying to prevent HIV infec-

tion is the induction of a protective humoral response. Some HIV-infected

patients develop potent serum antibodies that are able to neutralize a broad

range of HIV isolates. By studying the characteristics of the T-cells in such
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patients, mechanisms for the induction of potent neutralizing antibodies

may be revealed.

In this section, we apply the proposed methods to analyze a data set

from a study that measures T-cell-related parameters in HIV patients with

varying degrees of HIV viral load. The data set consists of observations of of

four variables for 414 patients: CD4, CD8, the difference of CD4 (diffcd4),

and difference of CD8 (diffcd8). Owing to detection limit, 20% of viral load

values are left censored at 50 units. All covariates are standardized to [0, 1],

and a log-transformation is applied to the response variable.

We first apply the linearity test for the link function. The resulting

p-value is 0.002, which provides strong evidence that the link function is

nonlinear. As a result, the proposed model is more appropriate for this

data set. We then estimate the index parameter and the link function.

The bandwidth for estimating β is selected using 10-fold cross-validation,

yielding hreal = 0.14, and the bandwidths for estimating the unknown link

function are selected using a rule of thumb, as in the simulation study.

The estimated coefficients are 0.3970 (CD4), 0.0002 (CD8), 0.5919 (d-

iffcd4), and −0.7015 (diffcd8). Figure 3 presents the estimated curve of the

link function and the 90% point-wise confidence band at 50 grid points,

uniformly spaced between [0, 0.3]. The figure indicates that the viral load
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Figure 3: Fitted link function (solid line) and 90% confidence band (shaded

area)

shows a logarithmically descending trend with the composite single-index.

Combining the index parameter signs and the descending trend of the link

function, we find that CD4, CD8, and diffcd4 have negative effects, whereas

diffcd8 has a positive effect on the viral load, although the effect of CD8 is

very small. These results are largely consistent with the conclusions in the

scientific literature. For example, Jiao et al. (2006) discovered that there is

a negative relation between CD4 and viral load.

Supplementary Material

The online Supplementary Material provides the proofs of Proposition
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1 and Theorems 1–3.
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