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Abstract: Significance testing for high-dimensional generalized linear models (GLMs)

has become increasingly important in various applications. However, existing meth-

ods are mainly based on a sum of the squares of the elements of the score vector

and are only powerful under certain alternative hypotheses. In practice, the den-

sity of the true association pattern under an alternative hypothesis dictates whether

existing tests are powerful. We propose an adaptive test on a high-dimensional pa-

rameter of a GLM (in the presence of a low-dimensional nuisance parameter) that

maintains high power across a wide range of scenarios. To evaluate its p-value, its

asymptotic null distribution is derived. We conduct simulations to demonstrate

the superior performance of the proposed test. In addition, we apply it and other

existing tests to an Alzheimer’s Disease Neuroimaging Initiative data set to detect

possible associations between Alzheimer’s disease and gene pathways that have a

large number of single nucleotide polymorphisms (SNPs). We implemented the pro-

posed method in the R package GLMaSPU, which is publicly available on GitHub

and CRAN.

Key words and phrases: Adaptive tests, generalized linear models, high-dimensional

testing, power.

1. Introduction

Generalized linear models (GLMs; McCullagh and Nelder (1989)) are in-

creasingly being used in high-dimensional settings owing to the increase in the

amount of to the surge of high-dimensional data in many fields, such as business

and genetics. One topic of intensive interest is significance testing on regression

coefficients in high-dimensional GLMs. For example, genome-wide association

studies (GWASs) have led to the discovery of many genetic variants, mostly

single nucleotide polymorphisms (SNPs), associated with common and complex

diseases. Given the number of SNPs tested in GWASs, a univariate test must

meet a stringent threshold for statistical significance (with a p-value < 5× 10−8)
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and, thus, is often underpowered. If we fail to identify any or a sufficient num-

ber of associated SNPs using a univariate test, we may wish to test a genetic

marker set with possibly a large number of SNPs to both gain statistical power

and enhance the biological interpretation.

In these applications, the dimension of the parameters to be tested, p, is

often close to or higher than the sample size, n. For low-dimensional situations

with p � n, traditional multivariate tests such as the likelihood ratio test and

the Wald test are widely used (McCullagh and Nelder (1989)). However, the

power of such tests tends to diminish quite rapidly as p increases (Goeman, Van

De Geer and Van Houwelingen (2006)). These tests even break down completely

when p > n because the maximum likelihood estimates (MLEs) of the param-

eters are not uniquely determined. To deal with these difficulties, several tests

for high-dimensional data have been proposed (e.g., Goeman, Van De Geer and

Van Houwelingen (2006); Goeman, Van Houwelingen and Finos (2011); Zhong

and Chen (2011); Lan, Wang and Tsai (2014); Guo and Chen (2016)). In par-

ticular, Zhong and Chen (2011) proposed a modified F-test for high-dimensional

linear regression models, allowing p→∞ as n→∞; Lan, Wang and Tsai (2014)

extended the test to GLMs with a general random design matrix. In addition,

Goeman, Van De Geer and Van Houwelingen (2006) proposed a test statistic for

high-dimensional linear models and Goeman, Van Houwelingen and Finos (2011)

derived its asymptotic distribution for a fixed p in GLMs. Guo and Chen (2016)

further modified Goeman’s test statistic (Goeman, Van Houwelingen and Finos

(2011)) to a simpler form, allowing both n and p→∞. In a penalized regression

framework, several inference methods for a low-dimensional sub-vector of a high-

dimensional regression coefficient vector have been developed (Van de Geer et al.

(2014); Zhang and Zhang (2014); Voorman, Shojaie and Witten (2014)). How-

ever, the goal of such methods differs from ours of testing on a high-dimensional

parameter. Thus, we do not discuss these methods further here.

Existing methods are based mainly on the sum of the squares of the elements

of the score vector for the parameters of interest. Such methods are usually pow-

erful against alternative hypotheses with moderately dense signals/association

patterns, where there is a relatively large proportion of associated (i.e., non-

null) parameters. In contrast, if the nonzero associations are strong, but sparse,

the sum-of-squares-type tests lose substantial power, whereas tests based on the

supremum of the score vector are more powerful. Importantly, as shown in the

simulation section, there are intermediate situations in which neither type of tests

is powerful. In practice, it is often unclear which type of test should be applied
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because the underlying truth is unknown.

In this study, we develop an adaptive test that yields high statistical power

under various high-dimensional scenarios, ranging from highly dense to highly

sparse signal situations. The main idea is that, because we do not know which

and how many parameters being tested are associated with the response, we first

construct a class of sum of powered score tests, such that hopefully at least one

is powerful for a given situation. The proposed adaptive test then selects the

test with the most significant result, including a proper adjustment for multiple

testing. To apply the proposed test, we establish its asymptotic null distribution.

In particular, we derive the joint null distribution of the individual powered score

test statistics, which converge to either a multivariate normal distribution or to

an extreme value distribution. The joint asymptotic null distribution for the

proposed tests is used to calculate asymptotics-based p-values, a more convenient

and faster alternative to other computing-intensive resampling methods, such as

the bootstrap method.

The rest of the paper is organized as follows. In Section 2, we review sev-

eral existing tests. In Section 3, we describe the proposed the new adaptive

test and study its asymptotic properties in contexts with and without nuisance

parameters. The results of our simulation studies and real-data analyses are pre-

sented in Section 4. All technical proofs and more extensive simulation results

are relegated to the online Supplementary Material. An R package, GLMaSPU,

implementing the proposed test is also publicly available on GitHub and CRAN.

2. Existing Tests

Suppose we have n identical and independently distributed (i.i.d.) samples

{(Yi, Zi, Xi) : i = 1, 2, . . . , n}, for which we have an n-vector response (outcome

of interest) Y , an n × q matrix Z for q covariates, and an n × p matrix X for p

variables of interest. For subject i, let Zi = (Zi1, . . . , Ziq) be the q covariates,

such as age, gender, and other clinical variables that we want to adjust for, and

let Xi = (Xi1, . . . , Xip) be the p-dimensional variables of interest. Without loss

of generality, we assume that E(X) = 0, otherwise X can be re-centered by its

mean. Assuming a generalized linear model, we have

E(Y |X,Z) = g−1(Xβ + Zα), (2.1)

where the p-vector β and the q-vector α are unknown parameters, and g is the

canonical link function. We are interested in testing

H0 : β = β0 versus H1 : β 6= β0, (2.2)
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while treating α as the nuisance parameter. We target the situation with “small

q, large p and large n.”

The best-known tests for low-dimensional data are the Wald test and the

likelihood ratio test; however, the power of both tests diminishes quite rapidly as

the dimension p increases (Goeman, Van De Geer and Van Houwelingen (2006)).

More importantly, in a high-dimensional situation with p > n, these tests break

down completely, because the MLEs for the parameters no longer exist uniquely.

Goeman, Van De Geer and Van Houwelingen (2006) derived the following test

statistic for testing hypothesis (2.2), based on the score vector

TGoe = UᵀU − trace(I),

where U and I are the score vector and the observed information matrix for β

under the null hypothesis, respectively. Ignoring some constant, TGoe is equal to

TGoe2 = n−1(Y − µ0)ᵀXXᵀ(Y − µ0),

where µ0 is the expectation of Y under the null hypothesis. Goeman, Van

De Geer and Van Houwelingen (2006) calculated the p-value of this test statistic

using permutations or moment matching. Goeman, Van Houwelingen and Finos

(2011) modified TGoe with the following statistic:

TGT =
(Y − µ̂0)ᵀXXᵀ(Y − µ̂0)

(Y − µ̂0)ᵀD(Y − µ̂0)
,

where µ̂0 and D are the MLE of µ0 under the null hypothesis and a diagonal n×n
matrix equal to the diagonal of XXᵀ, respectively. Goeman, Van Houwelingen

and Finos (2011) derived its asymptotic null distribution for fixed p. Because the

denominator of TGT increases the variance, and thus adversely affects the power,

Guo and Chen (2016) proposed the following test statistic:

THDGLM = n−1(Y − µ̂0)ᵀ(XXᵀ − D)(Y − µ̂0),

and further derived the asymptotic normal distribution of THDGLM for diverging

p→∞ as n→∞, under certain assumptions.

Remark 1. To the best of our knowledge, most high-dimensional tests are based

on a sum of squares of the elements of a score vector, which have also been used

in GWASs with large n and small p. For instance, Pan (2009) proposed a sum-of-

squared-score test (similar to TGoe2) for testing the association between multiple

SNPs and the outcome of interest in GLMs. The SKAT is a similar test (Wu

et al. (2011)).
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3. Proposed Method

For the purpose of presentation, we first consider the case without nuisance

parameters, followed by the case with nuisance parameters.

3.1. Testing without nuisance parameters

In this subsection, we assume the GLM (2.1) with α = 0. Many existing

tests are based on the score vector U = (U1, . . . , Up)
ᵀ for β, which, up to some

constant, has elements

Uj =
1

n

n∑
i=1

(Yi − µ0i)Xij , 1 ≤ j ≤ p,

with µ0i = g−1(Xiβ0).

For notational simplicity, we write Sij = (Yi − µ0i)Xij for 1 ≤ i ≤ n and

1 ≤ j ≤ p. As demonstrated later, depending on the unknown association effects

β to be tested, different tests may be more powerful. Inspired by Pan et al.

(2014), we use U to construct weights to upweight more informative components

of the score vector, proposing a sum of powered score (SPU) test statistic, with

power index 0 < γ <∞, as

L(γ, µ0) =

p∑
j=1

wjUj =

p∑
j=1

Uγ−1
j Uj =

p∑
j=1

Uγj =

p∑
j=1

( 1

n

n∑
i=1

Sij

)γ
,

where wj = Uγ−1
j is a data-dependent weight.

Note that γ = 2 yields a sum-of-squares-type test statistic, which is similar

to the existing tests reviewed in the previous section. As an even integer γ →∞,

we have L(γ, µ0) ∝ L(γ, µ0)1/γ → max1≤j≤p |(1/n)
∑n

i=1(Yi − µ0i)Xij |; thus, we

define L(∞, µ0) as

L(∞, µ0) = max
1≤j≤p

n ((1/n)
∑n

i=1 Sij)
2

σjj
,

where Σ = (σkj)p×p, and σkj = Cov[Sik, Sij ], for 1 ≤ k, j ≤ p. Note that the co-

variance matrix Σ is defined unconditionally on the covariates and, consequently,

it does not depend on the subject index i. See Remark 7 for further details.

The class of SPU tests covers several tests used in GWASs as special cases.

For example, for large n and small p, L(2, µ0) is like the SKAT with a linear

kernel (Wu et al. (2011)), and L(1, µ0) is a burden test in genetic rare-variant

association analyses (Morgenthaler and Thilly (2007)). As shown in simulations,

if most variables of X are associated with the response Y , such as with similar

effect sizes and the same association direction, then a burden test L(1, µ0) yields

Statistica Sinica: Preprint 
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high statistical power. In contrast, with only moderately dense signals or with

different association directions, L(γ, µ0) with an even integer γ ≥ 2 is more

powerful. In particular, the supremum-based test statistic, L(∞, µ0), yields high

statistical power if few variables are strongly associated with Y (i.e., a sparse

nonzero components of β). In summary, the power of L(γ, µ0) depends on the

unknown true association pattern (i.e., value of β), such as the signal sparsity

or magnitudes. To choose the most powerful test automatically, we propose the

following adaptive test that combines the multiple tests:

TaSPU = min
γ∈Γ

PSPU(γ,µ0),

where PSPU(γ,µ0) is the p-value of the L(γ, µ0) test. For simplicity, we use L(γ, µ0),

SPU(γ, µ0) and SPU(γ) interchangeably. Taking the minimum p-value is a simple

and effective way to approximate the most powerful test (Pan et al. (2014)). Note

that TaSPU is a test statistics and no longer a genuine p-value. Thus, we need to

derive its asymptotic null distribution to facilitate calculating its p-value.

Remark 2. The optimal value of γ for the test statistic L(γ) to achieve the

highest power depends on the specific alternative. We choose a Γ set to maintain

the high power of the aSPU test under a wide range of scenarios. The supremum-

based test statistic for high-dimensional two-sample testing has been studied in

Cai, Liu and Xia (2014); from their Theorem 2, the power of the supremum-

based test converges to one if the signal is strong with a high sparsity level; see

also related discussions in Donoho and Jin (2015) and Jin and Ke (2014). When

the signal is dense with a constant effect size, L(1) is most powerful (Xu et al.

(2016)). L(2) is a sum-of-squares-type test that has been widely used and studied

Guo and Chen (2016). As default values, we recommend using γ = 1, 2,∞ and

a small subset of moderate values of γ in Γ. More generally, as recommended

in Xu et al. (2016), we use Γ = {1, 2, . . . , γu,∞} with γu such that L(γu) gives

similar results to that of L(∞); our simulation studies show that γu = 6 or 8

often suffices and that the performance of the aSPU test is robust to such a choice

of γu.

Remark 3. Our proposed test is an extension of the original aSPU test (Pan

et al. (2014)) to high-dimensional GLMs; the original aSPU test was proposed for

analyses of rare variants with large n and small p. For simplicity, we use the same

name “aSPU” for our proposed test here. Because the asymptotic properties of

the adaptive aSPU test for GLMs have not been studied, we derive its asymptotic

null distribution in a high-dimensional setting, based on which the asymptotic

p-values of L(γ, µ0) and TaSPU can be calculated.

Statistica Sinica: Preprint 
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Next, we derive the asymptotic properties under the null hypothesis. For two

sequences of real numbers {an} and {bn}, we write an = O(bn) if there exists some

constant C such that |an| ≤ C|bn| holds for all n ≥ N , and write an = o(bn)

if limn→∞ an/bn = 0. Under H0 : β = β0, we first derive some asymptotic

approximations to the mean and the variance of L(γ, µ0) for γ < ∞, and then

establish the asymptotic distribution of L(γ, µ0). The following assumptions are

needed.

C1. The eigenvalues of Σ are bounded, that is, B−1 ≤ λmin(Σ), λmax(Σ) ≤ B for

some finite constant B, where λmin(Σ) and λmax(Σ) denote the minimum and

maximum eigenvalues of matrix Σ, respectively. Moreover, the absolute value

of any corresponding correlation element is strictly smaller than one; in other

words, max1≤i6=j≤p |σij |/
√
σiiσjj < 1− ξ, for some constant ξ > 0.

C2. Given a set of multivariate random vectors W = {W (j) : j ≥ 1}, for integers

a < b, let χba be the σ-algebra generated by {W (m) : m ∈ [a, b]}. The α-mixing

coefficient αW (s) is defined as sup{|Pr(A ∩ B) − Pr(A)Pr(B)| : 1 ≤ t < p,A ∈
χt1, B ∈ χ∞t+s}. We assume W = {W (j) = (Sij , i = 1, . . . , n) : j ≥ 1} is α-mixing

such that αW (s) ≤Mδs, where δ ∈ (0, 1) and M is some constant.

C3. Under H0 : β = β0, E
[
(Sij)

3
]

= 0 for 1 ≤ j ≤ p.
C4. (log p)/n1/4 = o(1).

C5. There exist some constants η and K > 0 such that E
[
exp

{
η(Sij)

2/σjj
}]
≤

K, for 1 ≤ j ≤ p.
Remark 4. Assumptions C1, C4, and C5 are mild conditions, and are used

to establish the weak convergence of L(∞, µ0). Cai, Liu and Xia (2014) used

the same assumptions (C1, C4, and C5) to derive the limiting distribution of a

supremum-type test statistic for high-dimensional two-sample mean testing. As-

sumption C2 assumes an α-mixing-type weak dependence structure of the data,

and is widely used in spatial statistics and time series. For high-dimensional

two-sample mean testing, a similar mixing condition is used by Xu et al. (2016)

and Chen, Li and Zhong (2014). Alternatively, we may consider the weak de-

pendence structure adopted in Guo and Chen (2016), where a factor-type model

for Si = (Si1, . . . , Sip)
ᵀ is assumed. Intuitively, many random vectors (e.g., any

ergodic and aperiodic Markov chain) meet the α-mixing weak dependence condi-

tion. Another example applies to random vectors X = (X1, X2, . . . )
ᵀ, where Xi

and Xj are independent, with |i− j| > C for some constant C; then, αX(s) = 0

if s > C, satisfying the α-mixing assumption as well. This type of structure

has also been used to estimate high-dimensional covariance matrices (Bickel and

Levina (2008)). In addition, the correlations between the variables (i.e., SNPs) in

Statistica Sinica: Preprint 
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our motivating genome-wide association study data decay to zero as their phys-

ical distances on the same chromosome increase (while the SNPs from different

chromosomes are usually independent). Thus, the α-mixing assumption fits the

application well, and, thus, is employed in this study.

We write L(γ, µ0) =
∑p

j=1 L
(j)(γ, µ0), with L(j)(γ, µ0) = ((1/n)

∑n
i=1 Sij)

γ ,

then denote µ(γ) =
∑p

j=1 µ
(j)(γ) as µ(j)(γ) = E

(
L(j)(γ, µ0)

)
, and σ2(γ) =

var(L(γ, µ0)).

Proposition 1. Under assumptions C1, C3, and H0 : β = β0, µ(1) = 0 and

µ(γ) =


γ!

d!2d
n−d

p∑
j=1

σdjj + o(pn−d), if γ = 2d,

o(pn−(d+1)), if γ = 2d+ 1,

where σjj = E[(Sij)
2].

Proposition 1 follows directly from Lemma 1 in the online Supplementary

Material.

Proposition 2. Under assumptions C1–C3 and H0, σ2(1) = (1/n)
∑

1≤i,j≤p σij+

o(pn−1) and, for γ ≥ 2,

σ2(γ) = µ(2γ)−
p∑
j=1

{µ(j)(γ)}2 +
1

nγ

∑
i6=j

∑
2c1+c3=γ
2c2+c3=γ
c3>0

(γ!)2

c3!c1!c2!2c1+c2
σc1ii σ

c2
jjσ

c3
ij

+ o(pn−γ),

where σij = E[SkiSkj ].

Note that the order of σ2(γ) is pn−γ . Then, we derive the following result

to approximate the correlations between L(γ, µ0).

Proposition 3. Under assumptions C1–C3 and H0 : β = β0, for any finite and

positive integers s, t ∈ Γ, we have

(i) if s+ t is even,

Cov{L(t, µ0), L(s, µ0)}

= µ(t+ s)−
p∑
i=1

µ(i)(t)µ(i)(s) +
1

nc

∑
i6=j

∑
2c1+c3=t
2c2+c3=s
c3>0

t!s!

c3!c1!c2!2c1+c2
σc1ii σ

c2
jjσ

c3
ij

+ o(pn−(t+s)/2).

(ii) if s+ t is odd, Cov{L(t, µ0), L(s, µ0)} = o(pn−(t+s)/2).

Statistica Sinica: Preprint 
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AN ADAPTIVE TEST ON HIGH-DIMENSIONAL PARAMETERS IN GLMS 9

Let Γ be a candidate set of γ, with ∞ ∈ Γ. We further define R = (ρst),

where ρss = 1 for s ∈ Γ \ {∞}, and ρst = Cov{L(s, µ0), L(t, µ0)}/{σ(s)σ(t)} for

s 6= t ∈ Γ\{∞}. In particular, ρst = o(1) when s+ t is odd. This yields Theorem

1, which describes the asymptotic distribution of L(γ, µ0).

Theorem 1. Under assumptions C1–C5 and the null hypothesis H0, we have:

(i) For set Γ′ = Γ \ {∞}, the vector of standardized test statistics [{L(γ, µ0) −
µ(γ)}/σ(γ)]ᵀγ∈Γ′ converges weakly to a normal distribution N(0, R) as n, p→∞.

(ii) When γ =∞, let ap = 2 log p− log log p, for any x ∈ R, Pr{L(∞, µ0)−ap ≤
x} → exp{−π−1/2 exp(−x/2)}.
(iii) [{L(γ, µ0)−µ(γ)}/σ(γ)]ᵀγ∈Γ′ is asymptotically independent of L(∞, µ0). That

is, the joint distribution of [{L(γ, µ0)−µ(γ)}/σ(γ)]ᵀγ∈Γ′ and L(∞)−ap converges

weakly to the product of the limiting distributions given in (i) and (ii).

Remark 5. Testing without nuisance parameters can be treated as a special case

of testing with nuisance parameters. The methods described in the following

subsection can be used to calculate the p-values for testing without nuisance

parameters by replacing µ̂0 with µ0.

3.2. Testing with nuisance parameters

In this subsection, we consider testing on a high-dimensional regression coef-

ficient vector in the presence of a low-dimensional nuisance parameter, which is a

common task in practice. For example, in a study of a complex disease, we usu-

ally have both SNP data and other demographic variables, which may confound

the association between the SNPs and the outcome of interest. For example,

we may be interested only in genetic effects, while adjusting for demographic

variables. Hence, the coefficients of the demographic variables are treated as

low-dimensional nuisance parameters, which have to be estimated. Here, we are

interested in testing hypothesis (2.2) under GLM (2.1).

Let µ0(α) = µ0 = g−1(Zα+ Xβ0) and µ̂0 = g−1(Zα̂+ Xβ0), where the MLE

α̂ is obtained under the null hypothesis. Because µ0 is unknown, we use µ̂0 and

the test statistic L(γ, µ̂0). To derive its asymptotic distribution, the following

additional assumptions are needed.

C6. The dimension of nuisance parameters α ( q) is fixed, and each covariate

in Z is bounded almost surely. We assume E(Xij |Z) 6= 0 holds for j ∈ P0 only

with the size of P0 (p0), satisfying p0 = O(pη) for a small positive η. We further

assume a consistent and asymptotic normal MLE α̂ under the null hypothesis

(Fahrmeir and Kaufmann (1985)).

Statistica Sinica: Preprint 
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C7. There exist some positive constants K1 and K2, such that K1 < E[ε20i|Z =

z] < K2, almost everywhere, for z in the support of the probability density of Z,

where ε0i = Yi − µ0i, 1 ≤ i ≤ n. We further assume E[ε0i|X,Z] = 0.

C8. We assume p/n2 = o(1).

C9. The conditionally α-mixing coefficient αW |F (s) is defined as sup{|Pr(A ∩
B|F) − Pr(A|F)Pr(B|F)| : 1 ≤ t < p,A ∈ χt1, B ∈ χ∞t+s}, where F is a sub-

σ-algebra of W . We assume W = {W (j) = (Xij , i = 1, . . . , n) : j ≥ 1} is

conditionally α-mixing, given Z such that αW |σ(Z)(s) ≤ Mδs, where δ ∈ (0, 1)

and M is some constant.

Remark 6. Assumption C6 states that the dimension of the nuisance parame-

ters, q, is fixed as n → ∞, which is appropriate in many applications, including

the GWASs of interest here. However, this assumption may not be appropriate

in some applications. For example, when testing gene environmental interac-

tions, the main effects are treated as nuisance parameters, which may be high-

dimensional (Lin et al. (2013)). Note that we assume that each Xj is already

centered and has sample mean zero, partially making it reasonable to assume

E[Xij |Z] 6= 0 for j ∈ P0 only, with the size of P0 in a small order of p (i.e.,

p0 = O(pη)). This assumption is technically needed to prove Theorem 2. For

finite γ, we can relax the assumption to p0 = O(p1/2−δ), where δ is a small

constant. If we are concerned about the validity of this assumption, we can

regress each Xj on Z and use its residuals as the new Xj to approximately sat-

isfy E[Xij |Z] = 0 for any j = {1, 2, . . . , p}. Assumption C7 is common in GLMs,

for instance, as assumption G in Fan, Song et al. (2010) and assumption 3.3 in

Guo and Chen (2016). Assumption C8 is an updated version of C4 and somewhat

restrictive, but is needed to prove Theorem 2. Note that, instead of considering

only a sum-of-squares-type statistic (with γ = 2) similar to the HDGLM (Guo

and Chen (2016)), we derive the asymptotic distributions for any finite γ and

γ =∞, for which a stronger assumption is therefore used. However, this assump-

tion may be relaxed: as shown in the simulations, the asymptotic distribution

still performs well for more general high-dimensional situations. We leave this

interesting problem to future work. Conditional α-mixing is introduced by Rao

(2009) and assumption C9 is an updated version of C2 to adjust for the case of

the nuisance parameters.

Although the estimated parameter α̂ complicates derivations, we have the

following theorem, which is similar to Theorem 1.

Theorem 2. Under assumptions C1–C9 and the null hypothesis H0, we have:
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(i) For set Γ′ = Γ \ {∞}, [{L(γ, µ̂0) − µ(γ)}/σ(γ)]ᵀγ∈Γ′ converges weakly to the

normal distribution N(0, R) specified in Theorem 1 as n, p→∞.

(ii) When γ =∞, let ap = 2 log p− log log p, for any x ∈ R, Pr{L(∞, µ̂0)−ap ≤
x} → exp{−π−1/2 exp(−x/2)}.
(iii) [{L(γ, µ̂0)− µ(γ)}/σ(γ)]ᵀγ∈Γ′ is asymptotically independent with L(∞, µ̂0).

Remark 7. In a GLM, conditional on Z and X, we usually have Cov[Sik, Sij |Z,X]

6= Cov[Si′k, Si′j |Z,X] for i 6= i′. In our derivations, we treat Z and X as random

and assume the data are i.i.d., which makes σkj well defined (unconditionally);

we also derive the unconditional version of the asymptotic null distribution.

Because µ(γ), σ(γ), and R can be approximated using Propositions 1–3, re-

spectively, the p-values for individual L(γ, µ̂0) can be calculated using either a

normal or an extreme value distribution. We illustrate how to calculate the

p-value for aSPU. Define LO = [{L(γ, µ̂0) − µ(γ)}/σ(γ) : odd γ ∈ Γ′] and

LE = [{L(γ, µ̂0) − µ(γ)}/σ(γ) : even γ ∈ Γ′]. By Proposition 3, Cov(L(t), L(s))

is a small-order term if t + s is odd, implying that LO and LE are asymptoti-

cally uncorrelated. By Theorem 2, LO and LE converge jointly and weakly to

a multivariate normal distribution as n, p → ∞, implying that LO and LE are

asymptotically independent. Further, by Theorem 2, L(∞, µ̂0) is asymptotically

independent of both LO and LE . Then, we can calculate the p-value for aSPU

using the following procedure.

Step 1 Define tO = maxodd γ∈Γ′ |{L(γ, µ̂0) − µ(γ)}/σ(γ)| and tE = maxeven γ∈Γ′

{L(γ, µ̂0)− µ(γ)}/σ(γ) as the observed test statistics from the data, and

calculate the p-values for tO and tE as pO = Pr[maxodd γ∈Γ′ |{L(γ, µ̂0)−
µ(γ)}/σ(γ)| > tO] and pE = Pr[maxeven γ∈Γ′{L(γ, µ̂0) − µ(γ)}/σ(γ) >

tE ], respectively. We can use function pmvnorm() in the R package mvt-

norm to calculate the multivariate normal tail probabilities for pO and

pE .

Step 2 Calculate the p-value p∞ of L(∞, µ̂0) based on its asymptotic extreme-

value distribution.

Step 3 By the asymptotic independence, the asymptotic p-value for the aSPU

test is paSPU = 1− (1− pmin)3, where we have pmin = min{pO, pE , p∞}.

The above discussion assumes that the covariance matrix Σ is known. In

practice, Σ has to be estimated. Here, we may apply an existing method, such as

the banding and thresholding technique, to estimate a high-dimensional sparse
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covariance matrix (Bickel and Levina (2008); Cai and Liu (2011)); see Cai, Ren

and Zhou (2016) for an excellent review. Under the α-mixing assumption C2,

σij is close to zero when |i − j| is large and, thus, we may apply the band-

ing approach of Bickel and Levina (2008) to estimate the covariance matrix Σ.

Specifically, we first calculate the sample covariance matrix S = (sij), where

sij = (1/(n− 1))
∑n

k=1(Yk − µ̂0k)
2XkiXkj . Then, we further calculate the band-

able covariance matrix with bandwidth kn as Σ̂kn = (sijI(|i − j| ≤ kn)). From

a theoretical perspective, the optimal bandwidth kn and the minimax risk rates

of Σ̂kn have been studied in Bickel and Levina (2008). Because a theoretically

optimal kn is determined by some unknown hyperparameters, we use five-fold

cross-validation to select an optimal bandwidth kn (Bickel and Levina (2008);

Cai and Liu (2011)). Following Xu et al. (2016), under the assumptions in The-

orem 2, we can show that µ̂(γ) and σ̂2(γ), estimated based on the bandable co-

variance matrix Σ̂kn , satisfy µ̂(γ) = {1 +o(1)}µ(γ) and σ̂2(γ) = {1 +o(1)}σ2(γ),

respectively, for properly chosen kn = o(n1/2).

With a relatively small sample size, five-fold cross-validation may select

a smaller than optimal bandwidth, yielding an underestimated σ̂2(γ) and a

smaller p-value. As an alternative, we propose using the parametric bootstrap

to estimate µ̂(γ), σ̂2(γ), and R. We first fit a null model under H0 to ob-

tain µ̂0i = Ê(Yi|Zi, H0). Then, we simulate a new set of responses Y
(b)
i from

the corresponding model for b = 1, 2, . . . , B. For example, for a binary out-

come of interest, generate Y
(b)
i ∼ Bin(1, µ̂0i). We refit the model with {Y (b)

i :

i = 1, 2, . . . , n} and calculate the corresponding test statistic L(γ, µ̂0)(b). Then,

µ̂(γ) =
∑B

b=1 L(γ, µ̂0)(b)/B, σ̂2(γ) =
∑B

b=1(L(γ, µ̂0)(b) − µ̂(γ))2/(B − 1), and

R̂ = cor(L(Γ, µ̂0)), where cor is the sample correlation. The accuracy of the

usual resampling methods is bounded by the number of resampling B. Thus, a

large B is needed to calculate a very small p-value. In contrast, we can use a rel-

atively small B to calculate µ̂(γ), σ̂2(γ), and R and then an asymptotic p-value.

Although they estimate the mean and covariance matrix differently, the above

two methods still use the asymptotics to calculate the p-values and, hence, are

referred to as asymptotics-based methods in this paper. In contrast, we can also

simply use the parametric bootstrap to calculate the p-values (without using the

asymptotic results directly), which is more time-consuming (requiring a large B

for a highly significant p-value), but may perform better for finite samples. In

the sequel, by default, the parametric bootstrap refers to this way of calculating

the p-values.

Remark 8. The optimal value of γ for the test L(γ, µ̂0) to achieve the highest
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power depends on the true alternative. As shown in the numerical results, when

the signal β is highly dense with the same sign, L(1, µ̂0) is more powerful than the

competing tests. L(2, µ̂0) performs similarly to the tests of Guo and Chen (2016)

because they use similar test statistics. However, in some situations, L(2, µ̂0) is

not as powerful as other L(γ, µ̂0) tests. In these cases, the proposed test is more

powerful than the competing tests. When the signal is strong and highly sparse,

L(∞, µ̂0) is more powerful. Owing to the nature of its adaptiveness, the power

of the aSPU test is often either the highest or close to the highest.

4. Numerical Results

4.1. Simulations

We conducted extensive simulations to compare the performance of the pro-

posed adaptive test with two existing methods, namely the HDGLM (Guo and

Chen (2016)) and the GT (Goeman, Van Houwelingen and Finos (2011)), owing

to their popularity and the availability of their computer code.

We set the sample size as n = 200 and the dimension of β as p = 2,000,

though other values were also considered. We generated a data matrix Xn×p from

a multivariate normal distribution; that is, we had independent Xi ∼ N(0,Ξ) for

i = 1, 2, . . . , n. We show the results with unit variances and a blocked first-order

autoregressive correlation matrix Ξ = (Ξij), with Ξij = 0.4|i−j| if |i − j| ≤ 3,

and 0 otherwise. Other simulation results with other covariance structures are

presented in the Supplementary Material.

We further generated a data matrix with two covariates Z from a normal

distribution, N(0, 0.5). The outcome Y was generated from a logistic regression

model, as in GLM (2.1), with a logit link function, α = (1, 1)ᵀ, and β = 0

or 6= 0, corresponding to the null hypothesis H0 or the alternative hypothesis

H1, respectively. Here, we focus on the results for a binary outcome because

in our real-data application, the response is binary and more challenging than

that of a continuous outcome. Under H1, bpsc elements of β were set to be

nonzero, where s ∈ [0, 1] controls the degree of signal sparsity. We varied s to

mimic varying sparsity levels: from highly sparse signals at s = 0.001, to less

sparse, to moderately dense at s = 0.1, and finally to dense and highly dense

signals at s = 0.7. The indices of nonzero elements in β were assumed to be

uniformly distributed in {1, 2, . . . , p}, and their values were constant at c. We

varied s, c, n, and p to evaluate the performance of the new method under

various situations. We used the parametric bootstrap method (Pan et al. (2014))
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Table 1. Empirical type I error rates and power (%) of various tests in simulations with
n = 200 and p = 2,000. The sparsity parameter is s = 0.1, leading to 200 nonzero
elements in β with a constant value c. The results outside and inside parentheses are
calculated using the asymptotics- and parametric bootstrap-based methods, respectively.

c 0 0.03 0.05 0.07 0.1 0.15
SPU(1) 5 (5) 33 (32) 59 (59) 73 (74) 84 (86) 92 (92)
SPU(2) 6 (5) 18 (15) 44 (39) 65 (61) 81 (78) 91 (89)
SPU(3) 4 (5) 28 (30) 58 (59) 76 (76) 89 (90) 96 (96)
SPU(4) 4 (6) 11 (14) 33 (36) 55 (58) 74 (75) 87 (87)
SPU(5) 4 (5) 15 (18) 37 (41) 59 (62) 78 (81) 88 (89)
SPU(6) 3 (6) 7 (11) 18 (24) 36 (43) 53 (59) 70 (72)
SPU(∞) 5 (5) 7 (7) 8 (9) 13 (16) 19 (22) 21 (25)
aSPU 5 (5) 22 (25) 53 (57) 75 (77) 90 (90) 96 (96)

to obtain a “bronze-standard” (slightly inferior to a “gold standard”, where the

true p-value is known) analysis, to which we compared the asymptotic results

based on Theorem 2. In all simulations, we treated Σ as unknown, and thus

estimated Σ, and then calculated the means and covariances of the SPU test

statistics based on Propositions 1–3. For each setup, we simulated 1,000 data

sets and averaged the test results. The nominal significance level was set to

α = 0.05. For the aSPU test, the candidate set of γ was, by default, set to

Γ = {1, 2, . . . , 6,∞}.
Table 1 shows the type I error rates and power for s = 0.1. The results

outside and inside parentheses in Table 1 were calculated using the asymptotics-

and parametric bootstrap-based methods, respectively; the results based on the

two methods were very similars, confirming the results in Theorem 2. We further

studied the performance of the asymptotics-based method under different spar-

sity levels (s = 0.001, 0.05, 0.7) and dimension p = 4,000. The results for these

simulation settings were similar to those shown in Table 1, thus, are relegated to

the Supplementary Material, Tables S1–S5.

Figure 1 shows the empirical power for different methods under high-dimen-

sional scenarios. When the signals were extremely sparse at s = 0.001, as ex-

pected, the supremum-type test SPU(∞) and aSPU performed much better than

the competing tests, the GT and the HDGLM, in terms of power. When the

signal nonsparsity increased from 0.001 to 0.05, the aSPU test performed sim-

ilarly to the sum-of-squares-type tests, such as the GT and the HDGLM, and

was much more powerful than the supremum-type test SPU(∞). As the signals

became more dense at s = 0.1, the aSPU test was the most powerful, closely
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Figure 1. Empirical power of the SPU(1), SPU(2), SPU(∞), aSPU, GT (Goeman,
Van Houwelingen and Finos (2011)), and HDGLM (Guo and Chen (2016)). The signal
sparsity parameter s varies from 0.001 to 0.7. We set n = 200 and p = 2,000.

followed by the SPU(1) and SPU(2) tests. At s = 0.7, the aSPU test remained

the best, and the SPU(1) test was more powerful than the sum-of-squares-type

and supremum-type tests. Under all of the situations considered, the aSPU con-

sistently maintained high power, being either the best or close to the best.

Next, we analyzed the sensitivity of the aSPU test to the choice of Γ. Figure

2 shows the results for aSPU with Γ1 = {1, 2, . . . , 4,∞}, Γ2 = {1, 2, . . . , 6,∞},
Γ3 = {1, 2, . . . , 8,∞}, and Γ4 = {1, 2, . . . , 10,∞} under different scenarios. As

shown in Figure 2, the aSPU test was relatively robust to the choice of Γ.
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Figure 2. Empirical power of the aSPU with different Γ set. aSPU 1, aSPU 2, aSPU 3,
aSPU 4 represent an aSPU with Γ1 = {1, 2, . . . , 4,∞}, Γ2 = {1, 2, . . . , 6,∞}, Γ3 =
{1, 2, . . . , 8,∞}, and Γ4 = {1, 2, . . . , 10,∞}, respectively. The signal sparsity parameter
s varies from 0.001 to 0.7. We set n = 200 and p = 2,000.

To further study the impact of the covariance structures, we considered the

following two structures used in Cai, Liu and Xia (2014). The first is a block

diagonal structure: Ξ = (σ∗i,j), with σ∗i,i = 1, σ∗i,j = 0.8 for 2(k − 1) + 1 ≤ i 6=
j ≤ 2k and k = 1, . . . , [p/2], and σ∗i,j = 0 otherwise. The second is a nonsparse

structure: let Ξ+ = (σ+
i,j). with σ+

i,i = 1 and σ+
i,j = |i − j|−5/2, for i 6= j,

and let D = (di,j) be a diagonal matrix with diagonal elements di,i following a

uniform distribution between 1 and 3, for i = 1, . . . , p. Then, Ξ = D1/2Ξ+D1/2.
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For these two covariance structures, the results of the asymptotic approximation

and power comparison were similar to those in Table 1 and Figure 1. Therefore,

these are relegated to the Supplementary Material, Tables S6–S13 and Figures

S1–S2. Finally, we also considered a continuous outcome Y ; again, the results

were similar (Supplementary Material, Table S14).

In summary, because of its adaptiveness, the aSPU test either achieved the

highest power or was close to the best under various scenarios, validating its

consistently good performance across a wide range of scenarios.

4.2. Real-data analysis

Alzheimer’s disease (AD) is the most common form of dementia, affecting

millions of people worldwide. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) is a longitudinal multisite observational study of healthy elders, mild

cognitive impairment (MCI), and AD (Jack et al. (2008)). It is jointly funded

by the National Institutes of Health (NIH) and industry via the Foundation

for the NIH. The Principal Investigator of this initiative is Michael W. Weiner,

VA Medical Center and University of California. The major goal of the ADNI

is to test whether serial MRI, positron emission tomography (PET), and other

biological markers can be combined to measure the progression of MCI and early

AD. ADNI has recruited more than 1,500 subjects, aged between 55 and 90, to

participate in the research. For latest information, see www.adni-info.org.

One objective of the ADNI is to reveal a person’s genetic susceptibility to

AD. Owing to the relatively small sample size and the usually small genetic

effect sizes, applying a univariate test to the ADNI data failed to identify any

SNP that passed the genome-wide significance level at 5 × 10−8 (Kim, Zhang

and Pan (2016)). Furthermore, an even much larger meta-analysis of 74,046

individuals identified very few genome-wide significant SNPs (Lambert et al.

(2013)). Hence, it is natural to consider possible associations at the pathway or

even chromosome level, which may be more powerful owing to effect aggregation

and a reduced burden of multiple testing, and to reveal the underlying genetic

architecture.

We ran quality control steps first. Specifically, we filtered out all SNPs with

a minor allele frequency < 0.05, those with a genotyping rate < 0.95, and those

with a Hardy–Weinberg equilibrium test p-value < 10−5. To test the polygenic

effects (on chromosome level), we pruned the SNPs using a criterion of linkage

disequilibrium r2 > 0.1, with a sliding window of size 200 SNPs and a moving

step of 20. For the pathway-level analysis, we pruned the SNPs using a criterion
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of linkage disequilibrium r2 > 0.8, with a sliding window of size 50 SNPs and a

moving step of 5. We imputed the missing SNPs using the Michigan Imputation

Server (Das et al. (2016)) with the 1,000 Genomes Project European ancestry

samples as the reference panel. We used ADNI1 data of 756 individuals. We

assigned individuals with AD or MCI as cases (Y = 0) and healthy individuals

as controls (Y = 1). For the covariates, we included gender, years of education,

handedness, age, and intracranial volume measured at the baseline. To better

demonstrate the possible power differences between the tests, we applied the tests

at either the chromosome or pathway level.

First, we conducted polygenic testing at the chromosome level. The family-

wise nominal significance level was set at 0.05, yielding a 0.05/22 ' 0.0023 sig-

nificance cutoff for each chromosome after the Bonferroni adjustment. Table

2 shows representative results for the asymptotics and parametric bootstrap-

based p-values for each test. Most asymptotic p-values of the proposed SPU

and aSPU tests were close to their parametric bootstrap-based values, indicat-

ing good approximations by the asymptotics. The aSPU test gave significant

p-values (< 0.0023) for five chromosomes. In contrast, the HDGLM (Guo and

Chen (2016)) yielded significant p-values for only two chromosomes. As expected,

the p-values of the HDGLM were close to those of SPU(2), because the two test

statistics are similar. Perhaps owing to the dense and weak signals on these

chromosomes, the supremum-type test SPU(∞) was not significant in any chro-

mosome, while the burden test SPU(1) was often more significant. However, in

some situations, SPU(γ) with a larger γ might perform better. For example,

for chromosome 5, perhaps owing to the moderately sparse and weak signals,

SPU(3) gave the most significant p-value. Another example is that of chromo-

some 14, where SPU(3) yielded a significant result, while the HDGLM gave a

nonsignificant one. A meta-analysis of 74, 046 individuals identified two SNPs

at the genome-wide significance level on chromosome 14 (Lambert et al. (2013)),

validating that chromosome 14 was not a false positive finding by SPU(3). Ow-

ing to its adaptiveness, the aSPU test often yielded more significant results than

those of HDGLM across the chromosomes.

Next we conducted a pathway-based analysis. We retrieved a total of 214

pathways from the KEGG database (Kanehisa et al. (2009)). As in practice

(The Network and Pathway Analysis Subgroup of the Psychiatric Genomics

Consortium (2015)), we restricted our analysis to pathways of at most 200

genes and at least 10 genes, and excluded those pathways with fewer than 1,000

SNPs, leading to 141 pathways for the analysis. We set a significance cutoff of
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Table 2. The p-values of various tests for the ADNI data. The results outside and
inside parentheses were calculated from the asymptotics- and parametric bootstrap-based
methods, respectively.

Test
Chromosome (number of SNPs)

5 (3445) 13 (2071) 14 (1878) 21 (840)
SPU(1) 0.01 (0.01) 2×10−4 (6×10−4) 0.002 (0.002) 1×10−4 (2×10−4)
SPU(2) 0.03 (0.04) 0.11 (0.10) 0.25 (0.22) 0.15 (0.14)
SPU(3) 0.004 (0.003) 7×10−5 (7×10−4) 5×10−4 (2×10−3) 5×10−4 (2×10−3)
SPU(4) 0.11 (0.09) 0.14 (0.13) 0.30 (0.28) 0.33 (0.02)
SPU(5) 0.01 (0.02) 5×10−4 (3×10−3) 0.001 (0.005) 6×10−3 (0.01)
SPU(6) 0.32 (0.29) 0.22 (0.20) 0.28 (0.25) 0.38 (0.32)
SPU(∞) 0.95 (0.87) 0.66 (0.57) 0.07 (0.12) 0.27 (0.23)
aSPU 0.02 (0.03) 3×10−4 (9×10−4) 0.003 (0.006) 7×10−4 (5×10−4)
HDGLM 0.04 (0.04) 0.14 (0.12) 0.29 (0.25) 0.20 (0.17)

0.05/141 ' 3× 10−4 for each pathway after the Bonferroni adjustment. Figure 3

compares the p-values of the asymptotics- and parametric bootstrap-based meth-

ods, showing that those of the former method were close to those of the latter,

validating the good performance of the asymptotic results in Theorem 2 for real-

data analyses. The Pearson correlations of the p-values between the two methods

ranged from 0.965 to 0.998. Table 3 shows 10 KEGG pathways with p-values less

than 3 × 10−4 by aSPU, GT, or the HDGLM. The three tests identified 10, 0,

and 1 significant pathways, respectively. The KEGG Alzheimer’s disease path-

way (hsa05010) can be treated as a true positive because the common variant in

the APOE gene (one gene in the KEGG AD pathway) alone explains 6% of total

AD phenotypic variance (Ridge et al. (2013)). For the HSA05010 pathway, the

aSPU test gave a signficant p-value < 3× 10−4, whereas neither the GT (p-value

= 0.0038) nor the HDGLM (p-value = 0.0014) yielded significant values. Spo-

radic amyotrophic lateral sclerosis (ALS) is an age-associated disease and there

is some evidence that ALS and AD are triggered by common factors (Wang et al.

(2014)). Furthermore, acute myeloid leukemia has been discovered to be associ-

ated with AD by other studies (Satoh (2012)), supporting for other two identified

pathways (HSA05014 and HSA05221). Perhaps owing to very strong, but sparse

signals in these three pathways, aSPU identified these three pathways, while the

GT and the HDGLM failed to do so.

In summary, the two real-data applications here demonstrate that our pro-

posed aSPU test is competitive and potentially useful in practice, owing to its

adaptiveness.
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Figure 3. Comparison between the asymptotics- and the parametric bootstrap-based
p-values of SPU(γ) and aSPU.

5. Discussion

We have proposed a highly adaptive association test on a high-dimensional

parameter in a GLM in the presence of a low-dimensional nuisance parameter.

Its asymptotic null distribution is established, facilitating its asymptotic p-value

calculations. At first glance, the proofs of Theorems 1 and 2 are similar to those

of (Xu et al. (2016)). However, the problem is more challenging here owing to

the presence of nuisance parameters.

As shown in both the simulations and in the real-data analyses, the proposed

aSPU test is powerful across a wide range of scenarios. In comparison, two
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Table 3. Results of the ADNI data analysis: significant KEGG pathways with p-values
< 3× 10−4 by any of aSPU, GT, or HDGLM.

p values
KEGG ID Pathway Name # Genes # SNPs aSPU GT HDGLM
hsa05010 Alzheimer’s disease 151 7,251 0.0E+00 3.8E-03 1.4E-03
hsa05014 Amyotrophic lateral sclerosis 52 2,503 0.0E+00 2.3E-03 3.2E-04
hsa05221 Acute myeloid leukemia 55 2,024 0.0E+00 2.6E-03 7.6E-04
hsa04520 Adherens junction 72 6,179 9.0E-09 4.4E-01 4.7E-01
hsa00071 Fatty acid degradation 40 1,110 5.3E-08 1.6E-02 8.0E-03
hsa00830 Retinol metabolism 61 1,256 2.1E-07 4.1E-03 7.9E-04
hsa00350 Tyrosine metabolism 38 1,194 4.0E-07 7.7E-03 2.4E-03
hsa00982 Drug metabolism 70 1,472 2.2E-05 3.6E-02 2.6E-02
hsa00534 Heparin 26 1,630 6.4E-05 6.2E-04 1.1E-05
hsa00980 Metabolism of xenobiotics 68 1,576 1.6E-04 9.5E-02 9.1E-02

other existing tests, the HDGLM (Guo and Chen (2016)) and GT (Goeman,

Van Houwelingen and Finos (2011)), based on the sum of the squares of the

elements of a score vector, performed similarly to SPU(2). The latter tests were

powerful only in situations with moderately dense signals, but less powerful than

some other SPU tests when the signals were either highly dense or highly sparse.

In contrast, by combining multiple SPU tests, the aSPU test maintained high

power across various scenarios. In addition to polygenic testing, we also applied

the proposed aSPU test to a pathway or a gene-set analysis, demonstrating its

potential usefulness in practice. An R package, GLMaSPU, implementing the

proposed test is publicly available on GitHub and CRAN; to facilitate its use, we

have also created an online website at http://wuchong.org/GLMaSPU.html.

Supplementary Materials

The online Supplementary Material includes proofs of the theoretical results

and additional simulation results.
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