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1 Introduction

Optimal experimental designs have been applied successfully in many ar-

eas, including engineering, biomedical, environmental, and epidemiological

research, since the seminal work of Smith (1918). Identifying an optimal

design often results in an intricate optimization problem that is difficult to

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0332

http://dx.doi.org/10.5705/ss.202017.0332


handle. In the field of optimal designs, current available tools are based

mainly on the general equivalence theorem of Kiefer and Wolfowitz (1960)

and the geometric approach of Elfving (1952). The general equivalence

theorem provides the necessary and sufficient conditions for a design to be

optimal under a specific criterion. This provides a way to check the opti-

mality of a candidate design and to construct optimal designs iteratively.

The geometric approach presents a geometric characterization of optimal

designs and allows us to search for designs with support included only in

the “extreme points” of the Elfving set. See Silvey and Titterington (1973),

Dette (1993), Dette and Studden (1993), Dette and Holland-Letz (2009),

and Holland-Letz et al. (2011), for example. Because of the complicated

structure of the corresponding optimization problems, general results are

extremely difficult to obtain. This means that results can only be obtained

on a case-by-case basis.

A useful strategy is to simplify the design problem by identifying a

complete subclass, Ξcom, composed of relatively simple designs. In addition,

the subclass is sufficiently small that for any design ξ not belonging to

this class, there is a design in the class that has an information matrix

dominating that of ξ in the Loewner ordering. We may then restrict our

attention to this subclass Ξcom. Along this line, a series of remarkable
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papers by Yang and Stufken (2009, 2012), Yang (2010), Dette and Melas

(2011), and Dette and Schorning (2013) derived several complete classes

of designs for single-response models with respect to the Loewner ordering

of the information matrices, based on considerations of admissibility and

invariance.

In many experimental situations, especially in engineering, pharmaceu-

tical, biomedical, and environmental research, more than one response is

measured for each unit. Thus, multiresponse models play an important

role in many areas of science. For example, the model of Berman (1983)

is used to analyze data obtained when calibrating apparatus in microwave

engineering. Another example is a bioassay experiment that measures a

response from different doses of standard and test preparations, which can

be fitted by the parallel linear model introduced in Huang et al. (2006). For

more examples of multiresponse statistical models, refer to Atkinson and

Bogacka (2002) and Uciński and Bogacka (2005). Although work on the

theory of an optimal design for single-response models dates back as far as

1918, multiresponse models did not appear in the optimal design literature

until 1966. Draper and Hunter (1966) developed a criterion for selecting

additional experiment runs after a certain number of runs have already

been chosen. However, the literature in this area is relatively sparse owing
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to the increased theoretical and computational challenges associated with

multiresponse models. For further reference, refer to Khuri (1990, 1996)

and Liu et al. (2011), and the literature cited therein.

As mentioned above, considerations of admissibility and invariance are

key to reducing complicated design problems, which have been applied suc-

cessfully to finding optimal designs by many authors, including Kiefer and

Wolfowitz (1959). However, while these techniques have been discussed

in detail in the context of single-response models (see Pukelsheim (1993)),

they are underdeveloped for multiresponse models.

In the present study, we consider admissibility and invariance in the de-

sign problem for multiresponse linear models. Our strategy is to reformulate

the multiresponse linear model in a simple form so that the original design

problem can be transformed into an equivalent problem for a corresponding

single-response model.

The rest of the paper is organized as follows. In Section 2, we first

specify the multiresponse linear model, and then provide reformulations of

the multiresponse linear model and its information matrix. Three examples

of multiresponse models are also given in this section. Sections 3 and 4

consider design admissibility and invariance, respectively. In Section 5, we

establish Elfving’s theorem for D-optimality in the multiresponse linear
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models. Section 6 concludes the paper.

2 Model specification and reformulation

2.1 Model specification

We consider the following multiresponse linear model:

Y (x) = F (x)θ + ε, (2.1)

where Y (x) = (y1(x), ..., yr(x))T is an r-dimensional response, x = (x1, · · · , xq)

is a setting of q control variables, F (x) = (f1(x), · · · , fr(x))T is an r × p

matrix of regression functions, θ is a vector of p unknown parameters, and

ε is an r-dimensional vector of random errors, with mean zero and nonsin-

gular covariance matrix Σ = (σij)r×r. The following are three examples of

multiresponse linear models.

Example 1. Linear and quadratic model (see Krafft and Schaefer (1992)).

The linear and quadratic model on X = [−1, 1] is as follows:
y1(x) = θ10 + θ11x+ ε1,

y2(x) = θ20 + θ21x+ θ22x
2 + ε2,

(2.2)
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2.1 Model specification

or simply by (2.1), where

F (x) =

 1 x 0 0 0

0 0 1 x x2

 , θ = (θ10, θ11, θ20, θ21, θ22)
T .

Models of this type are frequently used to describe chemical reactions, where

x may represent time or temperature and yi describes concentrations of the

various substances involved. Consider, by way of illustration, an experimen-

t on the decomposition of aspartame, a synthetic sweetener (see Soo and

Bates (1996), Sect.5). The principal product of the decomposition of aspar-

tame (APM) is diketopiperazine (DKP). Model (2.2), with x ∈ [a, b] = [0, 5],

can be used to describe the concentrations of APM and DKP during the

first five seconds of the experiment.

Example 2. The Berman model in Berman (1983).

The Berman model on a circular arc X = [−α/2, α/2], for an arc of

length α ∈ [0, 2π], is represented by
y1(t) = θ1 + θ3 cos t− θ4 sin t+ ε1,

y2(t) = θ2 + θ3 sin t+ θ4 cos t+ ε2,

(2.3)

or simply by (2.1), where

F (t) = (I2, A(t)), where A(t) =

cos t − sin t

sin t cos t

 ,
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2.1 Model specification

and θ = (θ1, θ2, θ3, θ4)
T . The covariance matrix of ε = (ε1, ε2)

T is assumed

to be Σ = σ2I2.

This model was proposed by Berman (1983) with two particular ap-

plications: (i) the calibration of an impedance measuring apparatus in mi-

crowave engineering, and (ii) the analysis of megalithic sites in Britain, in

which archaeologists need to fit circles to stone rings. Model (2.3) assumes

that the angular differences between sample points are known in advance,

either from the special structure of the problem or through experimental

design. It is a frequently used model for fitting circular data.

Example 3. Parallel linear model with two responses (see Huang et al.

(2006)).

The parallel linear model on X = [−1, 1]2 is described by
y1(x) = θ01 + θ1x1 + ε1,

y2(x) = θ02 + θ1x2 + ε2.

(2.4)

The covariance matrix of ε = (ε1, ε2)
T is assumed to be Σ = (1−ρ)I2 +ρJ2,

where I2 is the identity matrix of order 2 and J2 is an all-ones matrix of

order 2.

In this model, r = 2, p = 3, and

F (x) =

1 0 x1

0 1 x2

 , θ = (θ01, θ02, θ1)
T .
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2.1 Model specification

This model can be used in analyses of bioassay experiments to measure

responses from different doses of the standard and test preparations. The

expectation of the response at a dose level d ∈ [a, b] under the standard

preparation is E(y1|d) = η1(d). The expected response for the test prepa-

ration is E(y2|d) = η2(d) = η1(τd), where τ is an unknown constant rep-

resenting the relative potency between the standard and test preparations.

It is common practice to assume η1(d) is linearly related to x = log(d), and

that the two responses are correlated.

This study investigates approximate designs that are probability mea-

sures on the design region X with finite support, which we denote by

ξ =


x1 x2 · · · xn

w1 w2 · · · wn

 , 0 < wi ≤ 1,
n∑

i=1

wi = 1.

Here, xi denotes a support point at which a measurement is taken, and wi

is the weight assigned to each level in the design. The information matrix

of a design ξ for the model (2.1) is given by

M(ξ) =

∫
X
F T (x)Σ−1F (x)dξ(x). (2.5)

We use the notation Ξ for the set of all approximate designs, andM(Ξ) for

the set of all information matrices on Ξ. It is assumed that Ran(F T (x))⊂

Ran(M(ξ)), which implies that the r responses are estimable by the design

ξ, where Ran(A) denotes the range of matrix A.
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2.2 Model reformulation

2.2 Model reformulation

In this subsection, we reformulate the multiresponse model (2.1) and its

information matrix (2.5), which are used in the following sections.

Let f(x) = (l1(x), · · · , lk(x))T be a vector consisting of all different

elements in F (x), where k is the total number of different elements in

F (x). Then the i-th regression vector is denoted as fi(x) = V T
i Uif(x),

where Ui and Vi, for i = 1, · · · , r, are full row-rank matrices satisfying

fT
i (x)θ = fT (x)UT

i Viθ, for i = 1, · · · , r. Then, the r × p matrix F (x) in

(2.1) can be rewritten as

F (x) = (f1(x), · · · , fr(x))T = (V T
1 U1f(x), · · · , V T

r Urf(x))T (2.6)

=


fT 0 · · · 0

...
... · · · ...

0 0 · · · fT




UT
1 V1

...

UT
r Vr


= [Ir ⊗ fT (x)]LUV , (2.7)

where LUV = (V T
1 U1, · · · , V T

r Ur)
T . Consequently, model (2.1) can be rewrit-

ten in the following form:

Y (x) = [Ir ⊗ fT (x)]LUV θ + ε. (2.8)

Correspondingly, the information matrix (2.5) of design ξ is expressed as
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2.2 Model reformulation

follows:

M(ξ) =

∫
X

([Ir ⊗ fT (x)]LUV )TΣ−1[Ir ⊗ fT (x)]LUV dξ(x) (2.9)

=

∫
X
LT
UV [Σ−1 ⊗ (f(x)fT (x))]LUV dξ(x)

= LT
UV [Σ−1 ⊗Mf (ξ)]LUV ,

where

Mf (ξ) =

∫
X
f(x)fT (x)dξ(x) (2.10)

is the information matrix of ξ under the following single-response linear

model with homoscedastic errors:

y(x) = fT (x)β + e. (2.11)

The above reformulations are demonstrated by the three examples giv-

en in the previous section. The linear and quadratic model (2.2) can be

represented in the form of (2.8), with

f(x) = (1, x, x2)T , U1 = (I2, 02×1) , U2 = I3, V1 = (I2, 02×3), V2 = (03×2, I3).

The Berman model in (2.3) can be represented in the form of (2.8), with

f(t) = (1, cos t, sin t)T , U1 = diag(1, 1,−1), U2 = (e1, e3, e2),

V1 = (e1, 03×1, e2, e3), V2 = (03×1, I3),

where ei is the i-th unit vector in R3, that is, ei has all-zero elements,

except the i-th, which is unity. The parallel linear model in (2.4) can be
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represented in the form of (2.8), with

f(x) = (1, x1, x2)
T , U1 = (I2, 02×1) , U2 = (e1, 02×1, e2),

V1 = U2, V2 = (02×1, I2),

where ei is the i-th unit vector in R2.

3 Admissible designs

To discuss the admissibility of designs in multiresponse linear models, we s-

tart with the concept of admissibility introduced by Pukelsheim (1993). We

first introduce some notation: A ≥ 0 means that A is a positive semidefinite

(i.e., nonnegative definite) matrix. Two matrices A,B are said to satisfy

the inequality A ≥ B in the Loewner partial ordering if A − B is positive

semidefinite. Moreover, we use NND(p) for the set of nonnegative definite

matrices of order p, and Sym(p) for the set of symmetric matrices of order

p.

Definition 1. An information matrix M ∈ M(Ξ) is called admissible in

M(Ξ) when every competing information matrix A ∈M(Ξ), with A ≥M ,

is actually equal to M . A design ξ is called admissible in Ξ when its

information matrix M(ξ) is admissible in M(Ξ).

Definition 2. A criterion function φ on NND(s) is a function φ : NND(s)
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→ R that is positively homogeneous, superadditive, nonnegative, noncon-

stant, and upper semicontinuous.

The following two lemmas provide the basic tools for the main results

on the admissibility of designs in multiresponse linear models.

Lemma 1. Let A be an n×n positive semidefinite matrix and C be a p×n

matrix of rank q (q ≤ p). Then,

a. CACT ≥ 0; in particular, CACT ≥
6=0 if A≥6=0 and C is full column

rank.

b. CA = 0 if CACT = 0.

Lemma 2. Suppose k ≤ p. Let T be an r × r positive definite matrix, L

an rk × p matrix of rank p, and ei the i-th unit vector in Rp. If esk+1, · · · ,

e(s+1)k ∈ Ran(L) for some s ≥ 0, then

A≥6=B ⇐⇒ LT [T ⊗ A]L≥6=L
T [T ⊗B]L.

Proof. By part (a) of Lemma 1, if A≥6=B, then LT [T ⊗ A]L≥6=L
T [T ⊗B]L.

To prove the converse of the statement, we suppose that L is partitioned

as [LT
1 , · · · , LT

r ]T , where Li is a k×p matrix. If esk+1, · · · , e(s+1)k ∈ Ran(L),

for some s ≥ 0, then there exist cj 6= 0 (j = 1, · · · , k) in Rp, such that

Lcj = esk+j. Thus, Ls+1C = Ik and LiC = 0 (i 6= s + 1), where C =
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[c1, · · · , ck]. If LT [T ⊗A]L≥6=L
T [T ⊗B]L, then CTLT [T ⊗A]LC ≥6=C

TLT [T ⊗

B]LC, that is, Ts+1,s+1A
≥
6=Ts+1,s+1B. Hence, A≥6=B because Ts+1,s+1 is the

(s + 1)-th diagonal element of matrix T , which is positive definite. The

proof is complete. �

The first result on admissibility in the set Ξ of all designs is about the

location of the support points of admissible designs. To this end, we define

the Elfving set by

Rf = conv ({f(x) | x ∈ X} ∪ {−f(x) | x ∈ X}) , (3.1)

where conv(c) denotes the convex hull of vectors c ∈ Rk. The Elfving set

Rf is a symmetric compact convex subset of Rk that contains the origin in

its relative interior.

The following theorem states that in order to find optimal support

points, we need to search the “extreme points” of the Elfving set Rf only.

Theorem 1. Let R̃f be the set consisting of extreme points of the Elfving

set Rf that do not lie on a straight line connecting any other two distinct

points of the Elfving set Rf . Then, for every design η ∈ Ξ with support not

included in R̃f , there exists a design ξ ∈ Ξ with support included in R̃f ,

such that

M(ξ)
≥
6=
M(η). (3.2)
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Proof. From Theorem 8.5 in Pukelsheim (1993), there is a design ξ ∈ Ξ

such that

Mf (ξ)
≥
6=
Mf (η). (3.3)

Hence,

Σ−1 ⊗Mf (ξ)
≥
6=

Σ−1 ⊗Mf (η),

and then

M(ξ) = LT
UV [Σ−1 ⊗Mf (ξ)]LUV

≥
6=
LT
UV [Σ−1 ⊗Mf (η)]LUV = M(η),

by part (a) of Lemma 1. �

Theorem 2. Let φ be a criterion function. If there is a φ-optimal infor-

mation matrix Mf for the k-dimensional full parameter vector β under the

single-response model (2.11) inMf (Ξ), then there exists a φ-optimal design

ξ for θ under the multiresponse model (2.1) in Ξ such that its support size,

] supp(ξ), is bounded according to

p/r ≤ ] supp(ξ) ≤ min(k(k + 1)/2, p(p+ 1)/2). (3.4)

Proof. By Corollary 8.3 in Pukelsheim (1993), for a design η that has Mf

as its information matrix, there is an improved design ξ with support size

bounded from above by k(k + 1)/2 and some δ ≥ 1 such that

φ(M(ξ)) = φ(LT
UV [Σ−1 ⊗Mf (ξ)]LUV )
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= φ(LT
UV [Σ−1 ⊗ (δMf (η))]LUV )

= δφ(LT
UV [Σ−1 ⊗Mf (η)]LUV )

= δφ(M(η))

≥ φ(M(η)). (3.5)

On the other hand, Theorem 5.1.1 in Fedorov (1972) yields that

p/r ≤ ] supp(ξ) ≤ p(p+ 1)/2. (3.6)

This completes the proof of the theorem. �

Theorem 3. Suppose k ≤ p. If esk+1, · · · , e(s+1)k ∈ Ran(LUV ), for some

s ≥ 0, then a design ξ is admissible in Ξ for the multiresponse model (2.1)

if and only if ξ is admissible in Ξ for the single-response model (2.11).

Proof. The proof follows immediately from Lemma 2 and Definition 1.

�

To illustrate the results given by Theorems 1–3, let us consider the

linear and quadratic model in Example 1. The Elfving set corresponding

to model (2.2) is given by

R1 = conv ({f(x) | x ∈ [−1, 1]} ∪ {−f(x) | x ∈ [−1, 1]}) , (3.7)

where f(x) = (1, x, x2)T . Its graph is shown in Pukelsheim (1993). In order

to find optimal designs, we need only consider designs supported on the
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extreme points of R1. Furthermore, the support size is not more than six

by Theorem 2. Finally, note that esk+1, · · · , e(s+1)k ∈ Ran(LUV ) for s = 1.

Then the admissible designs in the linear and quadratic model (2.2) are

described by the following corollary.

Corollary 1. A design ξ ∈ Ξ is admissible in the linear and quadratic

model (2.2) on the experimental region [−1, 1] if and only if ξ has at most

one support in the open interval (−1, 1).

Proof. The proof follows immediately from Theorem 3 above and Claim

10.7 in Pukelsheim (1993). �

4 Invariant designs

In order to discuss the invariance of designs for the multiresponse model,

we need the following concepts.

Definition 3. The design problem for θ inM(Ξ) is said to be Q-invariant

when Q is a subgroup of the general linear group of order p, GL(p), and all

transformations Q ∈ Q fulfill

QM(Ξ)QT =M(Ξ). (4.1)

Definition 4. A criterion function φ on NND(p) is called H-invariant when
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H is a subgroup of the general linear group GL(p) and all transformations

H ∈ H fulfill

φ(C) = φ(HCHT ) for all C ∈ NND(p). (4.2)

Definition 5. Let L: NND(s)→ Sym(p) be the mapping L(B) = LTBL,

where L has full column rank p. Assume Q is a subgroup of the general

linear group GL(s), and that there exists a group homomorphism H from

Q into GL(p), such that

L(QBQT ) = H(Q)L(B)H(Q)T , for all B ∈ NND(s), Q ∈ Q, (4.3)

holds for the matrix H(Q) in the image groupHQ = {H(Q)|Q ∈ Q}. Then,

the mapping L is said to be Q−HQ-equivariant.

To present the main result on the invariance of designs for multiresponse

linear models, we need the following lemma.

Lemma 3. Let LT : NND(k) → Sym(p) be the matrix mapping LT (A) =

LT (T ⊗ A)L corresponding to an rk × p matrix L of full column rank p

and a positive-definite matrix T of order r. Assume Q is a subgroup of

the general linear group GL(k). Define NQ : NND(rk) → NND(rk) by

NQ(B) = (Ir ⊗ Q)B. Denote by NQ the set {NQ|Q ∈ Q}. We then have

the following claims.
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a. (Equivariance) There exists a group homomorphism H : Q → GL(p)

such that LT is equivariant under H,

LT (QAQT ) = H(Q)LT (A)H(Q)T , for all A ∈ NND(k), Q ∈ Q,(4.4)

if the range of L is invariant under each transformation NQ ∈ NQ,

Ran(NT
QL) = Ran(L) for all NQ ∈ NQ. (4.5)

b. (Uniqueness) Suppose LT is equivariant under the group homomor-

phism H : Q → GL(p). Then, H(Q) or −H(Q) is the unique non-

singular p× p matrix H that satisfies NT
QL = LH, for all NQ ∈ NQ.

c. (Orthogonal transformation) Suppose LT is equivariant under the group

homomorphism H : Q → GL(p). If matrix L fulfills LTL = Ip and

Q ∈ Q is an orthogonal matrix of order k, then H(Q) = ±LTNT
QL is

an orthogonal matrix of order p.

Proof. We only prove part (a). Let gT : NND(k)→ NND(rk) be the matrix

mapping gT (A) = T ⊗ A. Define N :Q → NQ by N(Q) = NQ. Then, N

is a group isomorphism such that the mapping gT is Q − NQ-equivariant

under N ; that is,

gT (QAQT ) = N(Q)gT (A)N(Q)T , for all A ∈ NND(k), Q ∈ Q. (4.6)
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On the other hand, by a similar argument to Lemma 13.5 in Pukelsheim

(1993), there exists a group homomorphism H : NQ → GL(p) such that

the mapping L is equivariant under H,

L(NQBN
T
Q) = H(NQ)L(B)H(NQ)T , for all B ∈ NND(rk), NQ ∈ NQ,(4.7)

if and only if the range of L is invariant under each transformation NQ ∈

NQ,

Ran(NT
QL) = Ran(L) for all NQ ∈ NQ. (4.8)

Therefore, H = H ◦ N :Q → GL(p) is a group homomorphism such that

the mapping LT is equivariant under H. �

The set

HQ =
{
H ∈ GL(p) | NT

QL = LH for some NQ ∈ NQ
}

(4.9)

is called the equivariance group induced by the NQ-invariance of the de-

sign problem for the multiresponse model (2.1) in M(Ξ). Accordingly, the

mapping LT is then said to be Q−HQ-equivariant.

The main result on invariant designs for the multiresponse model (2.1)

is an immediate consequence of Lemma 3.

Theorem 4. Let Q be a subgroup of the general linear group GL(k) and
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NQ the set {NQ|Q ∈ Q}. If all transformations Q ∈ Q fulfill

QMf (Ξ)QT =Mf (Ξ) (4.10)

and

Ran(NT
QLUV ) = Ran(LUV ) for all NQ ∈ NQ, (4.11)

then the design problem for the multiresponse model (2.1) in M(Ξ) is HQ-

invariant.

As an example, consider the linear and quadratic model (2.2) and the re-

flection transformation acting on the experimental domain X : x→ R(x) =

−x. The reflection R(x) = −x leads to the 3×3 matrix QR=diag (1,−1, 1),

which reverses the sign of the linear component x in the power vector

f(x) = (1, x, x2)T ; that is, f(−x) = (1,−x, x2)T = QRf(x). Then, the

reflection R(x) = −x and the identity transformation induce a group Q of

order 2:

Q = {I3, QR} =




1 0 0

0 1 0

0 0 1


,


1 0 0

0 −1 0

0 0 1




⊂ GL(3). (4.12)

Because LUV = (e1, e2, e4, e5, e6) and (I2 ⊗QR)LUV = (e1,−e2, e4,−e5, e6),

where ei is the i-th unit vector in R6, this implies that LUV and (I2 ⊗
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QR)LUV have the same range. By Theorem 4, this means that the design

problem for the linear and quadratic model (2.2) is HQ-invariant. Here,

the equivariant group HQ is of order 2, as is Q, containing the identity I5

and HR=diag (1,−1, 1,−1, 1), which is obtained by part (c) of Lemma 3,

because LT
UVLUV = I5 and QR ∈ Q is an orthogonal matrix.

Let H be a finite subgroup of GL(s) of order ]H and C : Sym(s)→

Sym(s) be the balancing operator defined by

C =
1

]H
∑
H∈H

HCHT for all C ∈ NND(s). (4.13)

If φ is an H-invariant criterion function, then the balancing operator leads

to an improvement of a given information matric C,

φ(C) = φ

(
1

]H
∑
H∈H

HCHT

)
≥ 1

]H
∑
H∈H

φ(HCHT ) = φ(C), (4.14)

utilizing the concavity and H-invariance of the criterion function φ. To-

gether with Corollary 1, we obtain a complete class Ξcom with minimum

support size for the linear and quadratic model (2.2), composed of the fol-

lowing designs:

ξ =


−1 0 1

w 1− 2w w

 , w ∈ [0, 1/2]. (4.15)

Note that the equality condition (4.11) is only sufficient. When it does not

hold, there may exist a group HQ such that the design problem for the

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0332



multiresponse model (2.1) in M(Ξ) is HQ-invariant. A simple example is

provided by the Berman model in (2.3), where the group Q, induced by the

reflection R(t) = −t and the identity transformation, has order 2:

Q = {I3, QR} =




1 0 0

0 1 0

0 0 1


,


1 0 0

0 1 0

0 0 −1




⊂ GL(3). (4.16)

Because LUV = (e1, e4, e2 + e6,−e3 + e5) and (I2 ⊗ QR)LUV = (e1, e4, e2 −

e6, e3 + e5), where ei is the i-th unit vector in R6, it is easy to see that

Ran(LUV ) is not the same as Ran((I2 ⊗QR)LUV ). However, there exists a

group H of order 2:

H = {I4, HR} =


 I2 0

0 I2

 ,

 0 I2

I2 0


 ⊂ GL(4). (4.17)

To this end, for every design ξ ∈ Ξ, we consider the reflected design

ξR given by ξR(t) = ξ(−t), for all t ∈ X = [−α/2, α/2]. The information

matrix of ξ is

M(ξ) =

 I2 A(ξ)

AT (ξ) I2

 ,

where

A(ξ) =

∫
X
A(t)dξ =

c(ξ) −s(ξ)
s(ξ) c(ξ)

 , c(ξ) =

∫
X

cos tdξ, s(ξ) =

∫
X

sin tdξ.
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The information matrix of ξR is

M(ξR) =

 I2 A(ξR)

AT (ξR) I2

 =

 I2 AT (ξ)

A(ξ) I2



=

 0 I2

I2 0


 I2 A(ξ)

AT (ξ) I2


 0 I2

I2 0


T

.

That is, the information matrix M(ξR) is obtained from M(ξ) by the con-

gruence transformation,

M(ξR) = HRM(ξ)HT
R .

Consequently, M(Ξ) is invariant under transformation HR. According to

Theorem 3 and Lemma 1 in Wu (2002), we obtain a complete class Ξcom

with minimum support size for the Berman model (2.3), composed of the

following designs:

ξ =


−t 0 t

w 1− 2w w

 , t ∈ [0, α/2], w ∈ [0, 1/2]. (4.18)

5 Elfving’s theorem for D-optimality

In this section, we establish Elfving’s theorem for D-optimality for mul-

tiresponse linear models. Define an Elfving set for the multiresponse linear
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model (2.1) by

Rp = conv
{
F T (x)Σ−1/2K

∣∣ x ∈ X , K ∈ Rr×p, ‖K‖ = 1
}
⊆ Rp×p, (5.1)

where conv(B) denotes the convex hull of matrices B ⊆ Rp×p, and ‖K‖ is

the Frobenius norm of the matrix K; that is, ‖K‖2 = tr(KTK). Note that

the Elfving set Rp is a compact, symmetric, and convex subset of Rp×p and

contains the origin 0.

Theorem 5. A design ξ = {xv, wv}sv=1 is D-optimal in Ξ for the multire-

sponse linear model (2.1) if and only if (pM(ξ))−1/2 ∈ Rp×p is a supporting

hyperplane of the Elfving set Rp, with supporting points F T (xv)Σ
−1/2Kv,

where Kv = (pΣ)−1/2F (xv)M
−1/2(ξ), for v = 1, · · · , s.

The proof Theorem 5 is based on the general equivalence theorem for

D-optimality in multiresponse linear models (see Theorem 5.2.1 in Fedorov

(1972)) and is similar to that of Theorem 3 in Liu et al. (2013). Thus, the

details of the proof are omitted here. To illustrate Theorem 5, we consider

the parallel linear model given in (2.4).

The D-optimal design for estimating θ in model (2.4) is

ξ∗D =


(−1, 1) (1,−1)

1/2 1/2

 if ρ > 0, (5.2)
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and

ξ∗D =


(−1,−1) (1, 1)

1/2 1/2

 if ρ < 0 (5.3)

(see Huang et al. (2006)). Now, Theorem 5 provides another way to verify

that ξ∗D is D-optimal for model (2.4). Only the case ρ > 0 is shown below.

The case ρ < 0 can be treated in a similar way. The information matrix of

design ξ∗D is

M(ξ∗D) =
1

1− ρ2


1 −ρ 0

−ρ 1 0

0 0 2(1 + ρ)


. (5.4)

Let H(x) = (Hij)3×3 = F T (x)Σ−1/2K, for x = (x1, x2) ∈ X = [−1, 1]2 and

K ∈ R2×3, with ‖K‖ = 1. The Elfving set R3 defined in (5.1) is given by

Liu et al. (2013) as follows:

R3 =
{(
Hij

)
3×3

∣∣ ∑2
i=1

∑3
j=1H

2
ij + 2ρ

∑3
j=1H1jH2j ≤ 1,

|H3j| ≤ |H1j −H2j|, j = 1, 2, 3
}
,

and the boundary of R3 is obtained from the points x = (−1, 1) and x =

(1,−1). Therefore, (−1, 1) and (1,−1) are the support points of the D-

optimal design in the case ρ > 0. Corresponding to the two support points

(−1, 1) and (1,−1), we take

K1 = (pΣ)−1/2F (−1, 1)M−1/2(ξ∗D) and K2 = (pΣ)−1/2F (1,−1)M−1/2(ξ∗D).
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From (5.4) and the Cauchy–Schwarz inequality, we get

(tr{(pM(ξ∗D))−1/2F T (x)Σ−1/2K})2

≤ tr(KTK)tr{(pM(ξ∗D))−1F T (x)Σ−1F (x)}

=
4 + 4ρ+ x21 + x22 − 2ρx1x2

6 + 6ρ
≤ 1,

for all x ∈ X , whenever the matrix K satisfies the equation ‖K‖ = 1.

Moreover, a straightforward calculation gives

tr{(pM(ξ∗D))−1/2F T (−1, 1)Σ−1/2K1} = 1,

tr{(pM(ξ∗D))−1/2F T (1,−1)Σ−1/2K2} = 1,

and ‖Kv‖2 = tr(KT
v Kv) = 1, for v = 1, 2. It follows that tr(M−1/2(ξ∗D)H) ≤

1 for every H ∈ R3, and that each Kv is on the boundary of R3. Thus, by

Theorem 5, ξ∗D is D-optimal for model (2.4).

6 Concluding remarks

Motivated by real applications, it is increasingly recognized that the mul-

tiresponse model is a useful tool for analyzing data from experiments with

a multiple-outcome variable. While numerous excellent studies examine

admissibility and invariance in single-response models, few address multire-

sponse models at the design stage.
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In this study, we obtained the necessary and sufficient conditions for a

design to be admissible and invariant, which are always helpful when in-

vestigating optimal designs for multiresponse linear models. We also estab-

lished Elfving’s theorem for D-optimality, which can be used to characterize

D-optimal designs.
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