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Marginal screening for high-dimensional predictors of survival outcomes

Tzu-Jung Huang, Ian W. McKeague, Min Qian

Department of Biostatistics, Columbia University

Abstract: This study develops a marginal screening test to detect the presence

of significant predictors for a right-censored time-to-event outcome under a high-

dimensional accelerated failure time (AFT) model. Establishing a rigorous screen-

ing test in this setting is challenging, because of the right censoring and the post-

selection inference. In the latter case, an implicit variable selection step needs to be

included to avoid inflating the Type-I error. A prior study solved this problem by

constructing an adaptive resampling test under an ordinary linear regression. To

accommodate right censoring, we develop a new approach based on a maximally

selected Koul–Susarla–Van Ryzin estimator from a marginal AFT working model.

A regularized bootstrap method is used to calibrate the test. Our test is more pow-

erful and less conservative than both a Bonferroni correction of the marginal tests

and other competing methods. The proposed method is evaluated in simulation

studies and applied to two real data sets.

Key words and phrases: Accelerated failure time model, Bootstrap, Family-wise

error rate, Inverse probability weighting, Multiple testing, Post-selection inference

1 Introduction

The problem of detecting informative predictors of a survival outcome has received much

attention over the past decade, especially since the advent of high-throughput genomic data.

For example, a specific gene expression may influence a patient’s survival time from diffuse

large B-cell lymphoma (DLBCL). Identifying such associations from massive collections of

gene-expression data remains a challenging issue. Motivated by a DLBCL study (Rosenwald

et al. (2002)), we consider the fundamental detection problem of whether there exists at

least one predictor (or genetic feature) that is associated with the survival outcome in the
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presence of right censoring.

To address this problem, we develop an adaptive resampling test for survival data (ARTS),

related to the approach developed by McKeague and Qian (2015) (henceforth, MQ) for un-

censored outcomes. This test provides marginal screening of the predictors, along with

rigorous control of the family-wise error rate (FWER) resulting from the implicit multiple

testing. Furthermore, our testing procedure adjusts for low-dimensional baseline clinical

covariates that are not included in the systematic screening of the gene-expression measure-

ments. To identify the full set of active predictors, we propose a forward-stepwise version

of the ARTS procedure that adjusts for previously included predictors at each step, and

continues until no further significant predictors are found.

We specify the link between the survival outcome and the predictors in terms of a general

semiparametric accelerated failure time (AFT) model that does not make any distributional

assumption on the error term. Our approach also applies when the error distribution is mod-

eled parametrically (as in Kalbfleisch and Prentice (2002), Medeiros et al. (2014)), although

we focus on the semiparametric case. Let T be the (log-transformed) time-to-event outcome,

and U = (U1, . . . , Up)
T denote a p-dimensional vector of predictors. Here, p can be large,

although it is taken to be fixed for the purpose of developing the asymptotic theory. The

AFT model is given by

T = α0 +UTβ0 + ε, (1)

where α0 ∈ R is an intercept, and β0 ∈ Rp is a vector of regression coefficients. We assume

that the error term ε has a zero mean and finite variance, and is uncorrelated with U . The

transformed survival outcome T is possibly right-censored by C, which is assumed to be

independent of (T,U) and bounded above by τ , the time to the end of the follow-up. We

also make the standard assumption that P (T ≤ C) > 0 to ensure that sufficient failure times

are observed over the follow-up period (asymptotically).
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In the framework of semiparametric AFT models, Koul et al. (1981) (henceforth, KSV)

introduced the technique of inversely weighting the observed outcomes by the Kaplan–Meier

estimate for the censoring, enabling them to apply standard least squares estimators from

the uncensored linear model. Subsequently, two additional sophisticated methods were pro-

posed to fit the semiparametric AFT model. The Buckley–James estimator replaces the

censored survival outcome by the conditional expectation of T , given the data (Buckley and

James (1979), Ritov (1990)). The rank-based method is an estimating equation approach

formulated in terms of the partial likelihood score function (Tsiatis (1990), Lai and Ying

(1991a), Lai and Ying (1991b), Ying (1993), Jin et al. (2003)). Our proposed marginal

screening test is based on the KSV estimator, which has an advantage over the Buckley–

James and rank-based methods in that it preserves a direct link with the linear model. In

particular, it maintains the marginal correlations between the inversely weighted response

and the predictors.

An especially attractive feature of the AFT model is that the marginal association between

T and each predictor can be represented directly in terms of a correlation. As discussed

below, this allows us to reduce the high-dimensional screening problem to a single test of

whether the most correlated predictor with T is significant. The most popular approach to

the screening of predictors in survival analyses is to use relative or excess conditional hazard

function representations of associations. However, the AFT approach has the advantage that

a lack of any marginal correlation implies the absence of all correlation between T and U ;

in the hazard-rate setting, there is no such connection.

Another attractive feature of the AFT model is that it is relatively insensitive to unmea-

sured heterogeneity, because the error term can act as a latent variable representing omitted

confounders (Keiding et al. (1997)). In hazard-rate approaches, latent variables are typically

included using inflexible parametric frailty models that are not easily applied in practice.

In general, the presence of unmeasured heterogeneity causes the attenuation of parameter

estimates. This is especially pronounced in hazard-rate approaches, such as the Cox model
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or additive risk models (Lin and Ying (1994), McKeague and Sasieni (1994)). On the other

hand, such attenuation is much less problematic for the AFT model because the error term

is only assumed to be uncorrelated with the predictors, and requires no special distributional

assumption.

Under the AFT model (1), we test the null hypothesis β0 = 0, that is, that no predictor

is linearly associated with T , against the omnibus alternative. The data consist of inde-

pendent and identically distributed (i.i.d.) copies (Xi, δi,U i), for i = 1, . . . , n, of (X, δ,U),

where X = min(T,C) and δ = 1(T ≤ C). The ARTS marginal screening procedure fits a

series of working AFT models using one component of U at a time, and then selects the

marginal KSV regression parameter estimate θ̂n that has the maximal absolute value. When

the predictors are pre-standardized, the maximal regression parameter corresponds to the

maximal correlation between T and any component of U , motivating
√
nθ̂n as a suitable

test statistic. The limiting distribution of this test statistic is nonregular (discontinuous

at zero as a function of β0), making it difficult to calibrate the test, as explained in the

standard linear regression setting by MQ. Furthermore, the presence of censoring introduces

additional (discontinuous) dispersion in the limiting distribution of
√
nθ̂n, which needs to be

addressed.

The marginal KSV estimates stem from regressing the estimated synthetic response Y =

δX/Ĝn(X) on successive components of U , where Y is regarded as an inverse probability

weighted estimate, and Ĝn is the standard Kaplan–Meier estimator of the survival function of

C (denoted by G0). Under independent censoring (as stated earlier), the use of least squares

estimators, treating Y as a response variable, is justified in view of the uniform consistency of

Ĝn under mild conditions (e.g., when the distribution functions of T and C have no common

jumps; see Stute and Wang (1993)). Independent censoring is a common assumption in the

high-dimensional screening of predictors for survival outcomes (He et al. (2013), Song et al.

(2014), Li et al. (2016)). However, it is much less restrictive to assume that T and C are

conditionally independent, given U , in which case the conditional survival function G0(·|U)
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of C given U can depend on the predictors. Estimating G0(·|U) is challenging unless there is

prior knowledge that only a single predictor is involved, using a local Kaplan–Meier estimator

(Dabrowska (1989)). For simplicity, however, we assume independent censoring throughout.

Variable selection methods for right-censored survival data are widely available, although

formal testing procedures are far less prevalent. For example, variants of the regularized Cox

regression have been studied by Tibshirani (1997), Fan and Li (2002), Bunea and McKeague

(2005), Zhang and Lu (2007), Bøvelstad et al. (2009), Engler and Li (2009), Antoniadis et al.

(2010), Binder et al. (2011), Wu (2012), and Sinnott and Cai (2016). Penalized AFT models

have been considered by Huang et al. (2006), Datta et al. (2007), Johnson (2008), Johnson

et al. (2008), Cai et al. (2009), Huang and Ma (2010), Bradic et al. (2011), Ma and Du

(2012), and Li et al. (2014). These methods ensure the consistency of variable selection only

(i.e., the oracle property), and do not address the issue of post-selection inference. Fang et al.

(2017) have established asymptotically valid confidence intervals for a preconceived regres-

sion parameter in a high-dimensional Cox model after variable selection on the remaining

predictors, but this does not apply to marginal screening (where no regression parameter is

singled out, a priori). Zhong et al. (2015) have considered the same problem for preconceived

regression parameters within a high-dimensional additive risk model. Taylor and Tibshirani

(2018) recently proposed a method of finding post-selection corrected p-values and confi-

dence intervals for the Cox model based on conditional testing. However, to the best of our

knowledge, their method has not been explored theoretically (except in a linear regression

setting with independent normal errors; see Lockhart et al. (2014)).

Statistical methods for variable selection based on marginal screening on survival data

have been studied by Fan et al. (2010), who extended sure independence screening to survival

outcomes based on the Cox model. Their method applies to the selection of components

of ultra-high-dimensional predictors, although no formal testing is available. Other relevant

references include Zhao and Li (2012), Gorst-Rasmussen and Scheike (2013), He et al. (2013),

Song et al. (2014), Zhao and Li (2014), Hong et al. (2018b), Li et al. (2016), and Hong et al.

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0298



6 TZU-JUNG HUANG, IAN W. MCKEAGUE, AND MIN QIAN

(2018a).

The remainder of the paper is organized as follows. In Section 2, we formulate the testing

problem and introduce the proposed test statistic based on marginal KSV estimators. The

adaptive bootstrap procedure used to calibrate the test is provided at the end of Section 2.

In Section 3, we propose a variant of ARTS that adjusts for the effect of baseline clinical

covariates. A forward-stepwise ARTS procedure is developed in Section 4. Various competing

methods are discussed in Section 5. The numerical results reported in Section 6 show that

ARTS performs favorably compared with these competing methods. In Section 7, we present

applications to gene-expression data and primary biliary cirrhosis data. Concluding remarks

are given in Section 8. The proofs of all the results are provided in the online Supplementary

Material.

2 ARTS procedure

2.1 Preliminaries

The method proposed by Koul et al. (1981) for fitting the AFT model (1) replaces T by the

synthetic response Ỹ = δX/G0(X), which is justified by the property

E[Ỹ |U ] = E

[
δX

G0(X)
| U
]
= E

[
T

G0(T )
E [δ|T ] | U

]
= E[T |U ], (2)

where G0 is unknown, but can be estimated by its Kaplan–Meier estimator. In other words, T

and Ỹ have identical conditional means, given U , assuming independent censoring. There-

fore, we can recast the AFT model as Ỹ = α0 + UTβ0 + ε̃, using a new error term ε̃

that still has a zero mean and finite variance, and is uncorrelated with U (see the Sup-

plementary Material for a detailed proof). Using similar arguments, we can show that

E[Ỹ 2] = E[T 2/G0(T )] ≥ E[T 2] and E[UjỸ ] = E[UjT ], for j = 1, . . . , p. Hence, this property

implies that the correlation between T and Uj is uniformly proportional to the correlation
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between Ỹ and Uj over j, leading to the equality

arg max
j=1,...,p

|Corr(Uj, T )| = arg max
j=1,...,p

|Corr(Uj, Ỹ )|. (3)

In the next section, we use (3) to reduce the screening problem to a test of whether the

most correlated predictor with T (or, equivalently, with Ỹ ) is significant. In practice, we

recommend the pre-standardization of the predictors (as is common in variable selection) to

provide scale-invariance. However, we develop the ARTS procedure in terms of the unstan-

dardized predictors for simplicity of notation.

2.2 Maximally selected KSV estimator

To specify the predictor that is the most correlated with T , we introduce the notation

j(b) = arg max
j=1,...,p

|Corr(Uj,U
Tb)| for any b ∈ Rp. (4)

Under model (1), it is natural to have Corr(Uj, T ) = Corr(Uj,U
Tβ0), which indicates that

j(β0) = arg maxj=1,...,p |Corr(Uj, T )|. We assume j(β0) is unique when β0 ̸= 0. Thus,

testing whether β0 = 0 is equivalent to a test of

H0 : θ0 = 0 versus HA : θ0 ̸= 0,

where θ0 denotes the marginal regression coefficient of Uj(β0), the most correlated predictor

with T (or, equivalently, with Ỹ by (3)). Henceforth, for notational simplicity, we denote

the label j(β0) by j0.

The synthetic response Ỹ is not observed, but it can be estimated by Y = δX/Ĝn(X),

which leads to the sample version of j0 given by

ĵn = arg max
j=1,...,p

∣∣∣∣Pn(Uj − PnUj)Y

SjSY

∣∣∣∣ , (5)
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where Pn is the empirical distribution, and Sj and SY are the sample standard deviations of

Uj and Y , respectively. The best fitting marginal linear model for T with predictor Uj0 has

the intercept and slope

(a0, θ0) =

(
ET − θ0EUj0 ,

Cov(Uj0 , T )

Var(Uj0)

)
.

The maximally selected KSV estimator of (a0, θ0) is

(α̂n, θ̂n) =

(
PnY − θ̂nPnUĵn

,
1

S2
ĵn

Pn(Uĵn
− PnUĵn

)Y

)
, (6)

where S2
ĵn

denotes the sample variance of Uĵn
. We reject H0 in favor of HA for extreme values

of the test statistic
√
nθ̂n.

2.3 Local behavior of θ̂n

The challenge of calibrating a test based on
√
nθ̂n is to adapt to its nonregular limiting

behavior at β0 = 0 (as shown in Theorem 1 below). To accurately capture the asymptotic

behavior of θ̂n in
√
n-neighborhoods of β0 = 0, we consider the local linear model

T (n) = α0 +UTβn + ε, (7)

where βn = β0 + b0/
√
n, with a local parameter b0 ∈ Rp, and ε is unchanged.

Under model (7), the observed time and the censoring status are denoted by X(n) =

min(T (n), C) and δ(n) = 1(T (n) ≤ C), respectively. We also define the synthetic response

Ỹ (n) and the estimated synthetic response Y (n) in an analogous fashion:

Ỹ (n) =
δ(n)X(n)

G0(X(n)−)
and Y (n) =

δ(n)X(n)

Ĝn(X(n)−)
.

For any fixed n, Ỹ (n) has the same mean and covariance with U as those of T (n). The

error term associated with Ỹ (n) is ε̃n = Ỹ (n) − α0 −UTβn, which also has zero mean and is

Statistica Sinica: Preprint 
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uncorrelated with U . Instead of j0, the label of the predictor most correlated with T (n) is

jn ≡ j(βn) = arg max
j=1,...,p

|Corr(Uj, T
(n))| = arg max

j=1,...,p
|Corr(Uj, Ỹ

(n))|,

and our earlier hypotheses become

H0 : θn = 0 versus HA : θn ̸= 0,

where

θn =
Cov(Ujn , T

(n))

Var(Ujn)
. (8)

Note that jn = j(b0) when β0 = 0, but b0 ̸= 0, and j(b0) is assumed unique. Otherwise, jn

is not well defined, and the null hypothesis θn = 0 holds when β0 = 0 and b0 = 0. If j0 is

unique, then jn → j0. The estimators ĵn and θ̂n are now defined by replacing Y by Y (n) in

(5) and (6).

We develop the limiting distribution of
√
nθ̂n in the following theorem under assumptions

(A.1)–(A.4) below. The proof is based on the functional delta method (van der Vaart (2000),

Chap. 20) and a functional central limit theorem (Pollard (1990), Sec. 10), and is provided

in the Supplementary Material.

(A.1) The predictors Uj, for j = 1, . . . , p, are bounded, and |Corr(Uj, Uk)| < 1, for all j ̸= k.

(A.2) The error term ε in (7) has a zero mean and finite variance, and is uncorrelated with

U .

(A.3) The censoring time C is independent of (T,U) and is bounded above by τ (the time

to the end of the follow-up).

(A.4) The marginal survival function of the censoring, G0, is continuous on T , and there

exists a positive constant cg such that G0(τ) > cg > 0. In addition, the marginal

Statistica Sinica: Preprint 
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survival function of T , F0, is continuous on T , and there exists a positive constant cf

such that F0(τ) > cf > 0.

Theorem 1. Suppose that j0 = j(β0) is unique when β0 ̸= 0; j(b0) is unique when β0 = 0

and b0 ̸= 0, and that the regularity conditions (A.1)–(A.4) hold. Under the local model (7),

√
n(θ̂n − θn)

d→

 (Mj0 + φj0(L))/Vj0 if β0 ̸= 0,

(MJ + φJ(L))/VJ + (CJ/VJ − Cj(b0)/Vj(b0))
Tb0 if β0 = 0,

where Vj = Var(Uj), Cj = Cov(Uj,U ), J = argmaxj=1,...,p{Mj + φj(L) + CT
j b0}2/Vj, M =

{Mj, j = 1, . . . , p} is a mean-zero normal random vector, L is a mean-zero Gaussian process,

and (M ,L) is a mean-zero Gaussian process, the covariance of which is provided in the

Supplementary Material. The j-indexed functional φj : ℓ
∞
τ → R is defined by

φj(h) = E

[
(Uj − EUj)Th(T )

G0(T )

]
,

where ℓ∞τ denotes the space of bounded functions on T .

Remark 1. The Gaussian process L is the weak limit of the process
√
n(Ĝn − G0). When

there is no censoring, Ĝn(t) = G0(t) = 1, for all t, such that L is a zero process. Then,

φj(L) = 0 for all j, and the limiting distribution reduces to that given by MQ. When there

is censoring, L is a nontrivial Gaussian process and introduces further dispersion into our

limiting distribution.

Remark 2. When there is censoring and β0 ̸= 0, we have T and U correlated, leading to

nonzero φj(L) for all j. Along with the nontrivial process L, the additional term φj0(L) will

be present.

Remark 3. When there is censoring and β0 = 0, φj(L) will vanish everywhere, almost

surely (a.s.) for all j, if ε and U are independent. As a result, the additional term φJ(L)
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disappears. Given the independence between ε and U , the limiting distribution simplifies to

MJ/VJ + (CJ/VJ − Cj(b0)/Vj(b0))
Tb0.

This less complex form of the limiting distribution can be estimated easily from the data.

In addition to the possibility of evaluating the asymptotic power (discussed in Section 6),

it enables calibration via simulation from the estimated null limiting distribution of
√
nθ̂n

(later introduced as “CEND” in Section 5). However, the validity of this approach relies on

the highly restrictive assumption that ε and U are independent.

The discontinuity of the limiting distribution at β0 = 0 introduces difficulties when de-

signing a screening test based on θ̂n. If β0 ̸= 0, naive resampling methods can give consistent

estimates of the limiting distribution of
√
n(θ̂n − θn). However, if β0 = 0, resampling meth-

ods that fail to consider the local behavior of
√
nθ̂n around β0 = 0 will give inconsistent

estimates of the limiting distribution. To accommodate this nonuniform weak convergence

at the point of nonregularity (i.e., β0 = 0), our proposed ARTS allows for the flexibility of

using different bootstrap strategies to approximate the limiting distribution when β0 ̸= 0 or

β0 = 0. Recall that S2
j is the sample variance of Uj, for all j. We decompose

√
n(θ̂n − θn)

into

√
n(θ̂n − θn)1(|Tn| > λn or β0 ̸= 0) +

√
n(θ̂n − θn)1(|Tn| ≤ λn,β0 = 0), (9)

where Tn =
√
nθ̂n/σ̂n is the maximally selected studentized statistic, and

σ̂2
n = Pn(Y − α̂n − θ̂nUĵn

)2/S2
ĵn

with (α̂n, θ̂n, ĵn) defined in (5) and (6). The statistic Tn serves as a pretest to identify the

nonregular situation in which we need a more accurate bootstrap strategy to capture the local

asymptotic behavior of θ̂n. Although the asymptotic variance of the KSV estimator in the
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fixed design case is known (Zhou (1992), Srinivasan and Zhou (1994)), in the present random

design case it is simpler to avoid using such a complex standard error estimator. Instead,

we base the pretest on the relatively simple statistic Tn. We show that σ̂2
n is asymptotically

bounded away from zero and bounded above (the proof is provided in the Supplementary

Material). Together with the results in Theorem 1, we prove that |Tn|
a.s.→ ∞ when β0 ̸= 0,

and |Tn| = Op(1) when β0 = 0. The specification of λn is presented in the next section.

We isolate the possibility of β0 = 0 by comparing |Tn| with some screening threshold

λn. The first term in (9) can be estimated consistently using a centered percentile bootstrap

whenever λn = o(
√
n) and λn → ∞, because we show 1(|Tn| > λn)

p→ 1(β0 ̸= 0) (stated

as Lemma 4.1 in the Supplementary Material, along with a detailed proof). Estimating the

second term in (9) entails additional work. Recall that Pn is the empirical distribution, P is

the distribution of (X(n), δ(n),U), and Gn =
√
n(Pn − P ). For j = 1, . . . , p, we define

Mn,j = Gnε̃n(Uj − PnUj) and Dn,j =
√
nPn(Uj − PnUj)(Y

(n) − Ỹ (n)).

For b ∈ Rp, we define

Jn(b) = arg max
j=1,...,p

(Mn,j + Dn,j + Pn(Uj − PnUj)U
Tb)2/S2

j ,

and a b-indexed process

Qn(b) = (Mn,Jn(b) + Dn,Jn(b) + Pn(UJn(b) − PnUJn(b))U
Tb)/S2

Jn(b) − CT
j(b)b/Vj(b).

Below, we express the second term in (9) as a function Qn(b0). When β0 = 0, it is easy to

see that

√
nθ̂j =

√
nPn(Uj − PnUj)Ỹ

(n)/S2
j +

√
nPn(Uj − PnUj)(Y

(n) − Ỹ (n))/S2
j

= (Gnε̃n(Uj − PnUj) +
√
nPn(Uj − PnUj)(Y

(n) − Ỹ (n)) + Pn(Uj − PnUj)U
Tb0)/S

2
j

= (Mn,j + Dn,j + Pn(Uj − PnUj)U
Tb0)/S

2
j ,

Statistica Sinica: Preprint 
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for all j. Along with ĵn = Jn(b0) and jn = j(b0) when β0 = 0, we have
√
nθn = CT

j(b0)
b0/Vj(b0)

and therefore,
√
n(θ̂n − θn) = Qn(b0). Hence, the decomposition of

√
n(θ̂n − θn) can be

expressed as

√
n(θ̂n − θn) =

√
n(θ̂n − θn)1(|Tn| > λn or β0 ̸= 0) +Qn(b0)1(|Tn| ≤ λn,β0 = 0). (10)

In Theorem 2 below, we show that Qn(b) can be consistently bootstrapped for any given

b. Provided that b0 is known, we can directly bootstrap the expression in (10) to consistently

estimate the limiting distribution of
√
n(θ̂n − θn). Hereafter, the superscript ∗ is used to

indicate the bootstrap version of an estimator.

Theorem 2. Suppose that all conditions for Theorem 1 hold, and the tuning parameter λn

satisfies λn = o(
√
n) and λn → ∞ as n → ∞. Under the local model (7),

√
n(θ̂∗n − θ̂n)1(|T∗

n| > λn or |Tn| > λn) +Q∗
n(b0)1(|T∗

n| ≤ λn, |Tn| ≤ λn)

converges to the limiting distribution of
√
n(θ̂n−θn) conditionally (on the data) in probability.

2.4 ARTS screening procedure
The ARTS screening procedure uses a bootstrap calibration for the test statistic

√
nθ̂n based

on a special case of Theorem 2, specifically, b0 = 0. To approximate the limiting distribution

of
√
nθ̂n under the null, it suffices to bootstrap

Bn =
√
n(θ̂n − θn)1(|Tn| > λn or β0 ̸= 0) +Qn(0)1(|Tn| ≤ λn,β0 = 0), (11)

and the corresponding bootstrap version is

B∗
n =

√
n(θ̂∗n − θ̂n)1(|T∗

n| > λn or |Tn| > λn) +Q∗
n(0)1(|T∗

n| ≤ λn, |Tn| ≤ λn). (12)

For some nominal level α, define the critical values cl and cu, respectively, by the lower and

upper 100(α/2)-th percentiles of 1000 replications of B∗
n. We reject the null hypothesis, and
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conclude that there is at least one significant predictor if
√
nθ̂n falls outside the interval

[cl, cu].

Given the conditions that λn = o(
√
n) and λn → ∞, the pretest demonstrates an

asymptotically negligible Type-I error rate P (|Tn| > λn|θn = 0) → 0, because we have

shown that P (|Tn| > λn) → 1(β0 ̸= 0) in Lemma 4.1, stated in the Supplementary Mate-

rial. Provided that ε̃ and U are independent, a special case of Theorem 1 indicates that

Tn
d→ maxj=1,...,p |Zj| at the null, where {Zj, j = 1, . . . , p} is a vector of standard normal

random variables. Using similar arguments to those of MQ, the asymptotic Type-I er-

ror rate of the pretest can be controlled below level α if we set λn ≥ Φ−1(1 − α/(2p)),

where Φ denotes the standard normal distribution function. To satisfy the conditions

that λn = o(
√
n) and λn → ∞, one reasonable selection of the threshold would be λn =

max{
√
a log n,Φ−1(1− α/(2p))}, for some constant a > 0.

To determine the value of the constant a in practice, we use a double-bootstrap. That

is, we produce 1000 bootstrap estimates θ̂∗n, and apply the ARTS to a further 1000 nested

double-bootstrap samples to obtain the acceptance region [c∗l , c
∗
u] for each θ̂∗n. If the test

statistic
√
n(θ̂∗n − θ̂n) falls outside [c∗l , c

∗
u], we record this as a rejection. The constant a

is specified as the value that results in 5% of these 1000 ARTS procedures being rejected.

This data-driven selection of a is adopted in our numerical studies and applications to real

data. Note that in each bootstrap and nested double-bootstrap sample, we set τ as the 90%

empirical percentile of the observed time and control the censoring rate around the same

level, as in the original data.

3 ARTS adjusted for baseline covariates
When screening high-dimensional predictors of survival outcomes, it is common practice

to adjust for baseline demographic and clinical covariates. These baseline covariates in-

clude age, disease stage, tumor thickness, and lymph node status; in the DLBCL study, we

have the International Prognostic Index (IPI). The IPI is a widely used prognostic index
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that reflects the combination of clinical covariates (cf., The International Non-Hodgkin’s

Lymphoma Prognostic Factors Project (1993)). Such baseline covariates (with moderate

dimensionality) do not need to be screened, but do need to be incorporated as covariates in

the AFT model. In this section, we modify the ARTS (as adjusted ARTS) to account for

the effect of these covariates.

Let Ũ = (Ũ1, . . . , Ũq)
T be a vector of baseline covariates. With Ũ included, the true AFT

model (1) can be expressed as

T = α0 +UTβ0 + Ũ
T
γ0 + ε, (13)

where γ0 ∈ Rq, Ũ is assumed to be bounded, and the error term ε is uncorrelated with Ũ .

We wish to test whether β0 = 0, which includes an adjustment for Ũ . Projecting Ũ on the

space spanned by U , we reformulate the AFT model (13) as

T = α′
0 +DTβ0 + ε′, (14)

where D = (D1, . . . , Dp)
T with Dj = Uj − α̃j − Ũ

T
γ̃j; at the same time,

(α̃j, γ̃
T
j ) = (E[Uj]− E[Ũ

T
γ̃j], (Σ

−1

Ũ
Cov(Uj, Ũ ))T ) ,

α′
0 = α0 + (α̃1, . . . , α̃p)β0 + E[Ũ

T
((γ̃1, . . . , γ̃p)β0 + γ0)] ,

ε′ = Ũ
T
((γ̃1, . . . , γ̃p)β0 + γ0)− E[Ũ

T
((γ̃1, . . . , γ̃p)β0 + γ0)] + ε,

and ΣŨ is the covariance matrix of Ũ . Note that α̃j + Ũ
T
γ̃j is the best linear unbiased

predictor of Uj based on Ũ . According to the definition of (α̃j, γ̃j), it is obvious that

E[Dj] = 0 and Cov(Dj, Ũ
T
γ) = 0, for all j and any vector γ ∈ Rq. The new error term

ε′ inherits the properties of ε and satisfies the moment conditions required for the ARTS:

E[ε′] = 0, E[(ε′)2] < ∞, and ε′ is uncorrelated with D. To test whether β0 = 0 under model

(14), it suffices to test
H0 : θ

′
0 = 0 versus HA : θ′0 ̸= 0,
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where θ′0 = Cov(Dj′(β0), T )/Var(Dj′(β0)), and j′(b) = arg maxj=1,...,p |Corr(Dj,D
Tb)| for any

b ∈ Rp, implying j′(β0) = arg maxj=1,...,p |Corr(Dj, T )|.

The adjusted ARTS regresses each screening predictor on baseline covariates and applies

the ARTS with the corresponding residuals D̂ = (D̂1, . . . , D̂p)
T as predictors. Because D̂j

involves a least-squares-type estimate of (α̃j, γ̃j) for j = 1, . . . , p, we can use the strong con-

sistency of the estimates over all j (implied by SLLN and fixed p) to justify the replacement

of D by D̂. The bootstrap consistency is also guaranteed. Thus, we only need to resample

the residuals in the procedures of the bootstrap and double-bootstrap. This offers a consid-

erable saving in terms of computation cost (caused by implementing projections every time

we have bootstrap or double-bootstrap samples), especially when p is large. We tailor the

adjustment of Ũ to fit within the ARTS framework to avoid using a test statistic in matrix

form, which is inevitable when fitting a multi-variable AFT model to adjust for Ũ . This

idea is crucial because it has the advantage of extending the theoretical results developed

for the ARTS to the adjusted ARTS.

4 Forward-stepwise ARTS
Given one significant predictor detected by the ARTS, it is natural to continue searching

for other potential predictors, conditional on the information provided by the identified

predictor. We implement the idea used in the adjusted ARTS procedure to fulfill this task

in a forward and stepwise direction. The conditional screening continues until no further

significance is detected. We refer to this screening procedure as the forward-stepwise ARTS,

implemented as follows:

1. Given the predictor Uĵn
detected by the ARTS, obtain residuals from regressing Uj on

Uĵn
whenever j ̸= ĵn. Treat the residuals as screened predictors and run the adjusted

ARTS. If no significant results are returned, stop the procedure; otherwise, collect the

newly found significant predictor Uj̃n
.

2. Use the residuals from regressing Uj on (Uĵn
, Uj̃n

) as updated predictors, for all j /∈
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(ĵn, j̃n). Implement the adjusted ARTS based on these updated predictors, in order to

detect the next significant predictor.

3. Keep accumulating predictors until no further significant predictors are detected.

Our forward-stepwise ARTS procedure successively updates the predictors using the residuals

from regressing on previously identified predictors. Compared with the residual analysis

suggested by MQ, our forward-stepwise procedure allows the regression coefficients of all

already included predictors to be refitted at each step. This implies the detection of further

significant predictors, adjusting for those already-included.

5 Competing methods
We compare the performance of the ARTS with several procedures that are widely applied

to detect the presence of significant predictors for the survival outcome. When considering

the adjustment of baseline covariates, these procedures can be modified as alternatives to

the adjusted ARTS procedure.

5.1 AFT model approaches
Marginal parametric AFT models with Bonferroni correction (BONF-AFT). A marginal

parametric AFT model is often used to predict T from each predictor by specifying a para-

metric form of the error distribution, from which we obtain the maximum likelihood estimate

of the marginal regression coefficient of each predictor. A Z-test with a Bonferroni correction

is carried out to test whether each marginal regression coefficient is zero. This method can

be implemented using the survreg function from the survival package of R. To adjust for

baseline covariates, we treat the residual D̂j as the predictor in a marginal parametric AFT

model, for j = 1, . . . , p. In our finite-sample simulations, we specify that the error term

follows a standard normal distribution.

Marginal AFT models with higher criticism correction (HC). The higher criticism

method is a test proposed by John Tukey for determining the overall significance of a col-
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lection of independent p-values. We use the statistic developed by Donoho and Jin, which is

expected to perform well if the predictors are nearly uncorrelated (Donoho and Jin (2004),

Donoho and Jin (2015)).

Centered percentile bootstrap with AFT model (CPB-AFT). In contrast to the ARTS,

this procedure works on the premise that there is at least one active predictor. Thus, it only

bootstraps the first part of (10) to estimate the upper and lower 100(α/2)-th percentiles of

the limiting distribution of
√
n(θ̂n−θn). The estimated percentiles provide critical values for

the test statistic
√
nθ̂n (Efron and Tibshirani (1993)). Note that this method yields a special

case of the ARTS with λn = 0. We can easily modify this method to adjust for baseline

covariates by replacing θn and θ̂n with their counterparts in the framework given in Section

3.

Calibration by simulation from the estimated null distribution (CEND). The asymp-

totic acceptance region is used to calibrate the test, and can be constructed from the special

case in which ε and U are independent. Here, we simulate the limiting distribution of the

scaled test statistic
√
nθ̂n/s under the null, where s2 = Pn(Y

(n)
i − α̂n − θ̂nUĵn

)2. At the

null, Theorem 1 implies that
√
nθ̂n/s

d→ M̃J/VJ , where {M̃j, j = 1, . . . , p} ∼ Np(0,ΣU ),

ΣU is the covariance matrix of U , and J = argmaxj M̃
2
j /Vj. With ΣU estimated using the

sample covariance matrix of U , we generate 1000 realizations from Np(0,ΣU ), which we to

obtain 1000 random copies of
√
nθ̂n. Then, we use the corresponding percentiles to develop

the acceptance region. We reject the null hypothesis if
√
nθ̂n falls outside this region. The

version that adjusts for baseline covariates can be developed analogously by taking D̂ as

predictors.

5.2 Cox model approaches

The other popular approach for linking predictors to the survival outcome is the Cox model,

where the related statistical inference can be developed based on the partial likelihood (Cox

(1972), Cox (1975)).
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Partial likelihood ratio test (PLRT). This test uses the likelihood ratio test statistic Λ,

which is the ratio of the partial likelihood from the full Cox model to that from the reduced

model at the null. Provided that Λ d→ χ2
p (chi-square distribution with p degrees of freedom),

comparing Λ with a χ2
p-distributed random variable gives the p-value to calibrate the test.

However, the PLRT is only feasible in the case of n > p, because it involves a full linear

model containing all of the predictors. To adjust for baseline covariates, we define the test

statistic as the ratio of the partial likelihood from a Cox model containing (U , Ũ) to that

from a Cox model considering Ũ only. This statistic weakly converges to χ2
p.

Marginal Cox models with Bonferroni correction (BONF-COX). This procedure is sim-

ilar to the BONF-AFT, but is based on marginal Cox models to link the survival outcome

to each predictor Uj, for j = 1, . . . , p. Given the asymptotic normality of the maximum

partial likelihood estimator (MPLE) (Andersen and Gill (1982)), we conduct a Z-test with

a Bonferroni correction to investigate whether each marginal regression coefficient is zero.

To adjust for baseline covariates, we can instead fit Cox models containing (Uj, Ũ) for all j,

and use the corresponding MPLE of the regression coefficient of Uj as the test statistic.

Centered percentile bootstrap with Cox model (CPB-COX). This procedure is similar to

the CPB-AFT in general, but the selected predictor is determined in a different fashion. The

marginal p-values are obtained from Z-tests based on separate marginal Cox models, and we

select the predictor that marginally introduces the minimal p-value. We apply a centered

percentile bootstrap on the MPLE of the regression coefficient of this selected predictor (i.e.,

the most significant predictor). To consider additional baseline covariates, we consider Cox

models containing (Uj, Ũ), for all j, and bootstrap the MPLE of the regression coefficient

of the most significant predictor among Uj, while adjusting for Ũ .

Global test based on Cox model (GLOBAL). A score test is proposed to investigate

whether the predictors U contribute to the hazard rate (Goeman et al. (2005)). The com-

ponents of β0 are assumed to be random and independently follow a prior distribution with
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mean zero and common variance v. Here, it suffices to test whether v = 0 to investigate

whether β0 = 0. Let r = (r1, . . . , rn)
T , with ri = UT

i β0 for all i, and note that r is not

observed because the unknown parameter vector β0 is included. By the assumptions on

β0, r has mean zero and covariance matrix vUUT . Under the noninformative censoring

assumption, the marginal likelihood function of v is defined by

L(v) = Er

[
exp

(
n∑

i=1

[δi(ln(h0(Xi)) + ri)− exp(ri)H0(Xi)]

)]
, (15)

where H0(t) =
∫ t

0
h0(s)ds is the cumulative baseline hazard function up to time t. Applying

the second-order Taylor expansion to the exponential term in (15) with respect to r, L(v)

can be expressed by the first and second moments of r (Le Cessie and van Houwelingen

(1995)). This implies that we can establish the desired test statistic in terms of the score

function of v, which only involves the first and second moments of β0, without specifying

the prior distribution. There are two ways to calculate the p-value: using asymptotic theory,

and using permutation arguments. We compare both to the ARTS in our numerical studies.

This global test can be modified to adjust for baseline covariates by simultaneously including

U and Ũ in the Cox model, and the test statistic is constructed conditional on the MPLE

of the regression coefficients of Ũ .

6 Numerical studies
6.1 Finite-sample simulations
The performance of the ARTS is evaluated using numerical studies under different data-

generating scenarios. The underlying survival outcome can follow either an AFT model or

a proportional hazards model. For the former, we consider three data-generating models:

Model 1 T = ε;

Model 2 T = U1/4 + ε;

Model 3 T =
∑p

j=1 βjUj + ε with β1 = . . . = β5 = 0.15, β6 = . . . = β10 = −0.1,

and βj = 0 for j ≥ 11,

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0298



MARGINAL SCREENING ON SURVIVAL DATA 21

where ε denotes the noise, which follows a standard normal distribution and is indepen-

dent of U . In Model 1, there is no active predictor, whereas there is only a single active

predictor in Model 2. In Model 3, we have 10 active predictors and the most correlated

predictor is not unique. The censoring time C follows an exponential distribution with var-

ious rate parameters for light censoring (10% of subjects with censored survival outcomes),

moderate censoring (20%), and heavy censoring (40%). The vector of predictors U follows a

p-dimensional normal distribution with each component Uj ∼ N (0, 1), and an exchangeable

correlation structure Corr(Uj, Uk) = 0.5 for j ̸= k.

We also generate the survival outcome based on the following proportional hazards models

(Bender et al. (2005)):

Model 4 h(t|U) = 2 exp(t);

Model 5 h(t|U) = 2 exp(t) exp(U1/4);

Model 6 h(t|U) = 2 exp(t) exp(
∑p

j=1 βjUj) with the value of (β1, . . . , βp) as stated

in Model 3.

To achieve the designed censoring rates, we generate the censoring time as an exponential

random variable, for various choices of the rate parameter. We use Models 1 and 4 as the

null models, Models 2 and 5 as the alternative models with a sparse signal, and Models 3

and 6 as the alternative models with weak dense signals.

For each data-generating scenario, we consider two sample sizes (n = 100 and 200), and

five values for the dimension of the predictors (p = 10, 50, 100, 150, and 200). A nominal

significance level of 5% is used throughout. The number of bootstrap replications is set as

1000. The selection of the threshold λn follows the steps stated in Section 2.4. To provide

a full comparison, we compare the performance of the ARTS with the competing methods

introduced in Section 5. The empirical rejection rates based on 1000 Monte Carlo replications

under various censoring rates are displayed in Figures 1–2. The panels for Models 1 and 4

give Type-I error rates, which we compare using the nominal level of 5%. The panels for

Models 2–6 indicate the power of each test.
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In Figure 1, the ARTS controls the Type-I error rates (or equivalently, FWERs) around

the nominal level, and demonstrates relatively high power for all alternative models. The

BONF-AFT method gives more conservative Type- I error rates and lower power than the

ARTS, with the exception of achieving similar power to the ARTS under alternative models

with heavy censoring and n = 200. The HC method is anti-conservative and fails to control

the Type-I errors. We suspect this is due to the relatively high correlation between the

predictors, for which HC is not designed. The BONF-COX method and the global test based

on asymptotic theory (GLOBAL-asymp) are highly conservative and lead to low power. Both

the CPB-AFT and the CPB-COX are anti-conservative, with the empirical Type-I error rates

considerably exceeding the nominal level under different sample sizes and various censoring

rates (and thus going out of range somewhere in the left panels of Figure 1). The global test

based on the permutation arguments (GLOBAL-permut) takes good control of the Type-I

error rates, but claims much lower power than the ARTS, especially under light or moderate

censoring. Both the CEND and the PLRT exhibit poor performance: the former yields

large Type-I error rates but low power, whereas the latter introduces extremely high Type-I

error rates. (The results of the PLRT are not shown here.) The unsatisfying performance

of the CEND may result from small sample sizes in the simulations, given that the CEND

is developed based on a simplified form of the limiting distribution. The power of each

approach rises as the sample size increases and the censoring rate decreases. A comparison

between the results of Models 2 and 3 shows no adverse impact on the power of the ARTS

when the maximally correlated predictor is nonunique.

In Figure 2, where the data are not generated from AFT models, the ARTS retains good

control of the Type-I error rates. On the other hand, the power of the ARTS is unstable when

n = 100 or in the case of heavy censoring. Under light or moderate censoring, the power of

the ARTS under Models 5 and 6 deteriorates sharply when n = 100 and p increases, whereas

the ARTS maintains stable power when n = 200. With a misspecified error distribution, the

BONF-AFT surprisingly controls the Type-I error rates well, but leads to much worse power.

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0298



MARGINAL SCREENING ON SURVIVAL DATA 23

In contrast, the BONF-COX yields relatively greater power when the underlying survival

outcome is generated from the proportional hazards model, although it is still conservative

at the null. Other competing methods present similar results to those in Figure 1. Despite

being unstable in terms of power owing to model misspecification, the ARTS still strikes a

better balance between controlling the Type-I error and achieving sufficient power than other

methods do, especially for light or moderate censoring and a large sample size. Comparing

Figure 1 with Figure 2, we find that the ARTS is less susceptible to model misspecification

than competing methods are. In the scenarios of the AFT data-generating models, the

ARTS apparently dominates the Cox model approaches throughout; in the scenarios where

the data are generated from proportional hazards models, the ARTS still exhibits better

performance in the FWER and power than that of the Cox-model-relevant approaches when

the censoring is light or moderate and n = 200.

6.2 Screening performance of ARTS

We further assess the performance of the ARTS as a full screening method (i.e., retaining

all covariates with marginal test statistics beyond the critical values calculated for
√
nθ̂n) in

terms of the false discovery rate (FDR), false negative rate (FNR), and false positive rate

(FPR). Using a simulation study, we compare the screening performance of the ARTS with

the Benjamini–Hochberg procedure (BH, Benjamini and Hochberg (1995)) and the Holm–

Bonferroni procedure (HB, Holm (1979)). Relevant results are presented in Section S5 of

the Supplementary Material.

The power (as given by the average values of (1 - FNR)) is slightly less for the ARTS

than for the BH, which is expected because the acceptance region is constructed from the

critical values of the maximum correlation statistic θ̂n, leading to results that are more

conservative. We expect, however, that the forward-stepwise ARTS will outperform the

ARTS screening procedure because it re-calibrates at each step. In terms of the FDR and

FPR, the performance of the ARTS and BH are comparable, although that of the Bonferroni
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method is more conservative as expected. The HB and Bonferroni methods show similar

performance with respect to all the measures.
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Figure 1: Empirical rejection rates based on 1000 samples generated from Models 1–3, with
the dimension ranging from p = 10 to p = 200.
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Figure 2: Empirical rejection rates based on 1000 samples generated from Models 4–6, with
the dimension ranging from p = 10 to p = 200.

6.3 Asymptotic power evaluation

In this section, we conduct a simulation study to evaluate the asymptotic FWER and the

power of the ARTS, as compared with those of the BONF-AFT. We assess the asymptotic

FWER and power based on the limiting distribution shown in Theorem 1. This approach can
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be a computationally efficient alternative to the simulation method used in our finite-sample

studies, because it avoids the required double-bootstrap (for threshold selection) that incurs

a heavy computation when implementing the ARTS.

Owing to the complicated limiting distribution shown in Theorem 1, this approach is

only feasible when φj(L) can be reasonably negligible for all j. One possible situation is

when β0 = 0 and the error term ε is independent of U . This restriction on ε facilitates the

evaluation of the asymptotic FWER at the null (β0 = 0, b0 = 0) and the asymptotic power

at local alternatives (β0 = 0, b0 ̸= 0). This offers a saving in terms of computational costs,

at the price of being sensitive to model misspecification.

Consider a local model

T (n) = (n−1/2b0)U1 + ε, (16)

where U1 is the first element of U . The predictors U , the error term ε, and the censoring

time C are generated as in Section 6.1. We allow b0 to vary over a grid in [0, 5] by increments

of 0.5. Under this local model, the complex limiting distribution reduces to a simpler form:

√
n(θ̂n − θn)

d→ (MJ + b0Cov(UJ , U1))/Var(UJ)− b0, (17)

where J = argmaxj{Mj + b0Cov(Uj, U1)}2/Var(Uj), and M = {Mj, j = 1, . . . , p} is a mean-

zero normal random vector with a covariance matrix given by that of the random vector

{ε̃(Uj − EUj), j = 1, . . . , p}. This evaluation procedure is implemented as follows.

1. For each value of b0 on the grid, generate a large sample (with n = 10, 000) from the

local model (16) and compute the corresponding Y (n). Using a fixed threshold λn, use

the ARTS to develop the acceptance region [cl, cu] based on this sample.

2. For each given b0, take 10, 000 draws from the limiting distribution in (17), and then

obtain 10, 000 realizations of
√
nθ̂n.

3. The asymptotic rejection rate of the ARTS (for the given b0) is assessed by computing
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the proportion of the realizations that fall outside [cl, cu] from the 10, 000 realizations

of
√
nθ̂n.

To reflect the random variation of the asymptotic FWER and the power over the samples

generated in Step 1, we independently implement the above procedure 20 times and display

the corresponding asymptotic rejection rates in a box plot for each b0. For comparison, we

also plot the asymptotic power of the BONF-AFT, which is approximated by the rejection

rate from 1000 samples, each of size n = 10, 000.

To make the above evaluation practical for large p, say p = 1000, the threshold λn is

fixed at 0, 4.3, 6.1, and 7.4 as the constant a takes corresponding values of 0, 2, 4, and 6.

We present the results under light censoring (Figure 3), moderate censoring (Figure 4), and

heavy censoring (Figure 5). Because the plots are similar between a = 0 and a = 1 and have

no obvious difference when a ≥ 6, we only present the results for a = 0, 2, 4, 6, for conciseness.

From these figures, we observe that smaller values of a lead to the ARTS yielding results

that are more anti-conservative, as observed in previous numerical studies. When a = 0,

in particular, the ARTS reduces to the CPB-AFT. On the other hand, the ARTS behaves

more stably and provides more accurate control of the Type-I error rates as a increases. In

addition, the variation within each box plot decreases when the value of a increases.

Comparing the asymptotic power of the BONF-AFT (denoted by the circle) with the

median of each box plot, we find that the ARTS has more satisfactory performance than

that of the BONF-AFT in most cases. In terms of median power, the ARTS even provides

an extra 20% power in some situations (e.g., at b0 = 3, when a = 4 or a = 6 for all types

of censoring). To control the asymptotic FWER, a reasonable choice is a = 4 under light or

moderate censoring, because the median FWER starts to touch the nominal level and the

corresponding variation within the box plot diminishes. On the other hand, the selection of

a should fall between 2 and 4 under heavy censoring, because the median FWER remains

higher than 5% when a = 2, but drops below 5% at a = 4.
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Figure 3: Asymptotic Type-I error and power of ARTS compared with BONF-AFT for
p = 1000 under light censoring, where ARTS is implemented with a fixed threshold λn

specified by a = {0, 2, 4, 6}, and each box plot is based on 20 independent replications with
n = 10, 000.

6.4 Error dependent on predictors

In this section, we present the control on the FWER of the ARTS, when the error term ε

is still uncorrelated with but dependent on the predictors U . For simplicity, U follows a p-

dimensional normal distribution with mean zero and an identity covariance matrix, implying

that the predictors are independent of each other. The FWERs of other AFT-model-relevant

methods are also provided; here we omit the anti-conservative results of the CPB-AFT for

conciseness, focusing instead on the CEND, which requires independence between ε and U .

To produce a dependent error structure on the predictors, we generate the error term ε
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Figure 4: Asymptotic Type-I error and power, as in Figure 3, except under moderate cen-
soring.

by random replications from a normal distribution with mean zero and a standard deviation

of 0.7(|U1|+ 0.7). Then, we simulate the transformed time-to-event outcome under the null

model T = ε. Though not independent, ε remains uncorrelated with U by Cov(ε, U1) =

E[εU1] = E{U1E[ε|U1]} = 0, and Cov(ε, Uj) = E{UjE[ε|U1]} = 0 for j ̸= 1. The censoring

time C still follows an exponential distribution, with varying rate parameters specified for

different censoring rates. Figure 6 shows that only the ARTS controls the FWER around the

nominal level in the case of dependent errors, except for giving slightly conservative FWERs

for p ≥ 50, heavy censoring, and n = 100.
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Figure 5: Asymptotic Type-I error and power, as in Figure 3, except under heavy censoring.

7 Applications to real data

7.1 DLBCL data

We revisit the DLBCL data introduced earlier (Rosenwald et al. (2002)). This data set

contains the after-chemotherapy survival time from DLBCL diseases, the categorical IPI

variable (with three levels: low, medium, and high), and 7, 399 genetic features of 222

patients with complete information on genetic predictors. The censoring rate is 43%. More

details about the DLBCL data can be found in the literature (cf., Bøvelstad et al. (2009),

Binder et al. (2011)). To adjust for the prognostic information provided by IPI, we apply

the adjusted ARTS to this data set to detect the presence of significant genetic features.

To maintain the stability of the KSV estimator, the observed event times are restricted
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Figure 6: Empirical rejection rates based on 1000 samples generated from the null model
with dependent errors under various p, sample sizes, and censoring rates.

up to τ = 2.36, which corresponds to the 90% empirical percentile of the observed event

times. This excludes one observation that has an estimated synthetic response of 55.867

and severely distorts the estimation of the marginal regression coefficients. For the ARTS,

we use the double-bootstrap to select the constant a from 0 to 15, by increments of 0.5.

Before implementing the ARTS, we perform a pre-processing step to filter out genes that

lack significant differentiation between the censored group (patients still alive at the end of

the follow-up) and the uncensored group (patients who died of DLBCL diseases within the

follow-up). For each gene, a standard two-sample t-test is conducted to determine whether

the gene-expression measurement differentiates between these two groups. By comparing

the corresponding p-values with the nominal level of 5%, this pre-processing step reduces
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the number of screening genetic features to 1026 (p = 1026).

To give a fair comparison with the ARTS, we also apply the following AFT-model-relevant

competing methods: BONF-AFT and CPB-AFT, with IPI information adjusted. The CEND

method is not included, because it is challenging to verify the required assumption of inde-

pendence between the error and the predictors. In addition, the HC method is not consid-

ered because it is designed for nearly uncorrelated predictors, which is unrealistic in gene-

expression data. The three implemented approaches yield similar p-values. The minimal

Bonferroni corrected p-value from the BONF-AFT is 4.39%. The ARTS procedure reduces

to a special case with λn = 0 and gives the same p-value of 3.40% as that of the CPB-AFT,

from 1000 bootstrap samples. Figure 7 shows the sampling distribution of the test statistics

used by the ARTS and CPB-AFT based on these bootstrap samples, as well as how the cor-

responding p-values are obtained. Given the nominal level of 5%, these three approaches all

indicate one significant gene for the survival time of patients. The ID of the detected gene is

“27766,” which belongs to the group of major histocompatibility class (MHC) II signatures.

This finding supports the notion that a loss of MHC II expression correlates with a worse

survival outcome, and corresponds to the results provided by Miller et al. (1988), Rosenwald

et al. (2002), Rimsza et al. (2004), Roberts et al. (2006), and Higashi et al. (2016), among

others.

7.2 Primary biliary cirrhosis data

In this example, we demonstrate how to apply the forward-stepwise ARTS to successively

identify interaction effects, provided that the main effects of some covariates have been shown

statistically or clinically significant. We use data from the Mayo Clinic trial in primary biliary

cirrhosis (PBC) of the liver conducted between 1974 and 1984 (Fleming and Harrington

(1991), Appendix D.1). A total of 312 PBC patients participated in the randomized placebo

controlled trial of the drug D-penicillamine; in our data analysis, we restrict our attention

to the 276 patients for whom we have complete covariate information. The censoring rate is

Statistica Sinica: Preprint 
doi:10.5705/ss.202017.0298



MARGINAL SCREENING ON SURVIVAL DATA 33

ARTS

-15 -10 -5 0 5 10
0

50

100

150

200

250

300

350

400

450

F
re

qu
en

cy

CPB-AFT

-15 -10 -5 0 5 10
0

50

100

150

200

250

300

350

400

450

F
re

qu
en

cy

1.7% 1.7%

Figure 7: DLBCL example. Left panel: histogram of B∗
n, giving the two-sided ARTS p-value

3.40%. Right panel: histogram of
√
n(θ̂∗n − θ̂n), giving the two-sided CPB-AFT p-value

3.40%.

60%.

The survival outcome is the time from registration to death. Over the follow-up, there

is no significant treatment effect (Fleming and Harrington (1991)). Only five of the 16

risk factors were found to be statistically significant under the setting of the Cox model

(Dickson et al. (1989)) or under the AFT model (Jin et al. (2003)). Furthermore, they

were identified as a subset of the active predictors under the general Cox model (Bunea and

McKeague (2005)). These significant risk factors are age (in years), presence of edema (0 =

no; 0.5 = resolved; 1 = unresolved with therapy), serum bilirubin (in mg/dl), albumin (in

gm/dl), and protime (standardized blood clotting time, in seconds). Of these risk factors,

serum bilirubin, albumin, and protime are log-transformed. We successively locate significant

pairwise interaction terms of 17 variables, adjusting for the five aforementioned risk factors.

These 17 variables include the treatment indicator and 16 clinical risk factors for the survival
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time (p =
(
17
2

)
= 136).

Figure 8 displays the pattern of p-values for the newly entered interaction term at each

step. The forward-stepwise ARTS procedure detects one significant interaction term, where

the constant a and the end of the follow-up τ are selected as in Section 7.1. This detected

interaction is between platelet (platelets per cubic ml/1000) and alk.phos (alkaline phos-

phatase, in U/liter). For comparison, we also present the successive p-values given by the

CPB-AFT. The conclusion remains the same, but the p-values of the CPB-AFT are smaller,

as expected.

To examine the effect of taking covariate-dependent censoring into account when applying

the ARTS in this example, we run the forward-stepwise ARTS as before, except we replace

Ĝn by a Cox-model-based estimate, conditional on selected covariates (alkaline phosphotase

and log-transformed protime). In contrast to our earlier finding of one significant interaction

term, here we find none (results not shown). The CPB-AFT procedure (with the same Cox

model estimate of G0) leads to the same conclusion.
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Figure 8: PBC example. The patterns of p-values for forward-stepwise ARTS and CPB-AFT.
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8 Discussion

We have developed an adaptive resampling test for survival data (ARTS) to detect the pres-

ence of significant predictors for right-censored survival outcomes. We use marginal correla-

tion screening to reduce the high-dimensional detection problem to a single test of whether

θ0 = 0, where θ0 is the marginal regression coefficient of the most correlated predictor with

the survival outcome. In the setting of marginal screening for survival data, few studies

have examined the problem of post-selection inference. The problem is challenging, not only

because of the nonregular asymptotic behavior of the test statistic at the null (i.e., θ0 = 0),

but also because of the presence of censoring. Within this framework, the ARTS is designed

to adapt to the nonregularity, while dealing with the increased dispersion introduced by

the censoring. The advantage of the ARTS is that it provides a post-selection-corrected

p-value without sacrificing power, while avoiding distributional assumptions, specific corre-

lation structures between predictors, and a preconceived choice of the regression parameters

of interest. The ARTS procedure is also versatile for practical use. Various extensions of the

ARTS are proposed to adjust for additional baseline covariates of clinicians’ interests and to

successively identify further active predictors.

We recognize that the ARTS requires an independent-censoring assumption that may be

violated in some clinical contexts. One direction for future work is to develop rigorous the-

oretical results for the ARTS under the assumption of conditionally independent censoring,

given the predictors. To address this type of censoring mechanism, we can use the Cox

model or the local Kaplan–Meier estimator to incorporate covariates into the estimation of

the conditional survival function of the censoring on the predictors G0(·|U). The general-

ization of the censoring mechanism could still be challenging in our framework, even with

some of the proposals for estimating G0(·|U) listed above. One challenge is how to deter-

mine the covariates to be included in the estimation of G0(·|U ) under the high-dimensional

AFT model. Then, we need to find out whether the post-selection inference results would be
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affected, because these included covariates may not be completely contained under a series

of working AFT models using one predictor per time. To the best of our knowledge, this

question has not been fully answered in the area of marginal screening based on survival

data, and is worth further attention.

Although our simulation results show that the ARTS performs well when p ≫ n, we

have provided theoretical support only, assuming a fixed p. Formal testing procedures that

can adjust to the nonregular behavior of θ̂n under diverging p appear to be challenging.

A potential alternative approach that might be able to handle a diverging p would be to

extend the efficient influence function technique of Luedtke and van der Laan (2018) to the

right-censored setting in terms of a regularized version of the KSV estimator.
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Supplementary Material

The online Supplementary Material includes detailed proofs of the theorems, as well as

additional simulation results.
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