Statistica Sini	ca Preprint No: SS-2016-0185.R1
Title	A Further Study of Propensity Score Calibration in
	Missing Data Analysis
Manuscript ID	SS-2016-0185.R1
URL	http://www.stat.sinica.edu.tw/statistica/
DOI	10.5705/ss.202016.0185
Complete List of Authors	Peisong Han
Corresponding Author	Peisong Han
E-mail	peisonghan@uwaterloo.ca
Notice: Accepted version subje	ct to English editing.

6 PEISONG HAN

is a model for $E(Y \mid \mathbf{X})$ and $\boldsymbol{\gamma}$ is a finite-dimensional unknown parameter. Because $R \perp Y \mid \mathbf{X}$ from the MAR mechanism, $\boldsymbol{\gamma}$ is conventionally estimated by $\hat{\boldsymbol{\gamma}}$ based on a complete-case analysis. When $a(\boldsymbol{\gamma}; \mathbf{X})$ is a reasonable model for $E(Y \mid \mathbf{X})$, $\hat{\mu}_{\text{aipw}}(\hat{\boldsymbol{\gamma}})$ usually has better efficiency than $\hat{\mu}_{\text{ipw}}$. When $a(\boldsymbol{\gamma}; \mathbf{X})$ is correctly specified in that $a(\boldsymbol{\gamma}_0; \mathbf{X}) = E(Y \mid \mathbf{X})$ for some $\boldsymbol{\gamma}_0$, $\hat{\mu}_{\text{aipw}}$ attains the semiparametric efficiency bound.

When $a(\gamma; \mathbf{X})$ is incorrectly specified, $\hat{\mu}_{aipw}(\hat{\gamma})$ can be emefficient (Chen Leung, and Qin 2008; Rubin and van der Laan 2006. There have been made recent developments on gaining efficiency in this case. The main gain been achieved: intrinsic efficiency and improved efficiency. Estimators a intrinsically efficient have influence functions of the form

Resid
$$\left\{\frac{R(Y-\mu_0)}{\pi(\boldsymbol{X})}, \frac{R-\pi(\boldsymbol{X})}{\pi(\boldsymbol{X})}h(\boldsymbol{X})\right\}$$
.

Hereafter, for any random variable ξ and finite-dime shows $dom\ vector\ \phi\ with$ $E(\xi \boldsymbol{\phi}^{\mathrm{T}})\{E(\boldsymbol{\phi} \boldsymbol{\phi}^{\mathrm{T}})\}^{-1}\boldsymbol{\phi}$ mean zero and finite second moments, Res $(\xi, \boldsymbol{\phi})$ denotes the residual of the project ϕ , the linear space spanned ctice esidual has the smallest variance by components of ϕ . Apparently among the class of influence f $Y \rightarrow \mu_0 / \pi(\mathbf{X}) - c\{R - \pi(\mathbf{X})\}h(\mathbf{X}) / \pi(\mathbf{X})$ with an arbitrary c. Var efficient estimators have been proposed udie by Ta 2010), Chen, Leung, and Qin (2008), Chan (2012) and R 012). Improved efficiency, on the other hand, is ator $\tilde{\gamma}$ instead of $\hat{\gamma}$, where $\tilde{\gamma}$ converges in probability to the minimizer of asymptotic variance of $\hat{\mu}_{aipw}(\gamma)$. Estimators of μ_0 with ve been proposed and studied by Rubin and van der Laan improved off (2008), Tan (2008; 2010), Cao, Tstiatis, and Davidian (2009) and Rotnitzky et al. (2012). Many of these estimators are doubly robust: they are still consistent if $\pi(\boldsymbol{\alpha}; \boldsymbol{X})$ is misspecified but $a(\boldsymbol{\gamma}; \boldsymbol{X})$ is not.