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Abstract

We study the problem of community recovery in stochastic block models and degree
corrected block models. We show that a simple sample splitting trick can refine almost
any approximately correct community recovery method to achieve exactly correct
community recovery when the expected node degrees are of order log n or higher. Our
results simplify and extend some of the previous work on exact community recovery
using sample splitting, and provide better theoretical guarantees for degree corrected
stochastic block models.

1 Introduction

Stochastic block models (Holland et al. (1983)) are a popular tool in modeling the co-

occurrence of pairwise interactions between individuals in a population of interest. In recent

years, the stochastic block model and its variants, such as the degree corrected block model

(Karrer and Newman (2011)), have been the focus of much research e↵ort in statistics and

machine learning, with wide applications in social networks (Faust and Wasserman (1992)),

biological networks and information networks (see, e.g., Kemp et al. (2006); Bickel and Chen

(2009)).

Consider a network data set on n nodes recorded in the form of an n by n adjacency matrix

A, where an entry Aij = 1 if an interaction is observed between nodes i and j, and Aij = 0

otherwise. The stochastic block model assumes that the nodes are partitioned into K disjoint
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communities, and that given the community partition, Aij is an independent Bernoulli random

variable whose parameter only depends on the community membership of i and j. Such a

model naturally captures the community structure commonly observed in network data. It is

also possible to incorporate node specific connectivity parameters, and the resulting degree

corrected block model allows the network data to have arbitrary degree distribution.

A key inference problem in the stochastic block model and its variants is to recover the hidden

communities from an observed adjacency matrix. Various methods have been developed in

the last decade, including modularity based methods (Newman and Girvan (2004)), likelihood

methods (Daudin et al. (2008); Bickel and Chen (2009); Zhao et al. (2012); Celisse et al.

(2012)), convex optimization (Chen et al. (2012); Le et al. (2014); Abbe et al. (2014)), spectral

methods (McSherry (2001); Coja-Oghlan (2010); Rohe et al. (2011); Jin (2012); Chaudhuri

et al. (2012); Fishkind et al. (2013); Massoulie (2013); Lei and Rinaldo (2015); Vu (2014)),

and others (Decelle et al. (2011); Mossel et al. (2013b); Anandkumar et al. (2014)). These

methods are proved to be successful under di↵erent assumptions with di↵erent types of

performance guarantee. A related problem, in a setting where the membership is assumed

to be generated at random, is to estimate the membership probability and the community-

wise edge probability (see Bickel et al. (2013) for example). In this paper we focus on the

community recovery problem.

There are three levels of accuracy for community recovery methods usually considered.

The first is proportional recovery, which means that an algorithm can correctly recover the

community memberships for a subset of nodes whose proportion is bounded away from one

but better than random guessing. Such a proportional recovery is usually of interest in very

sparse networks, where the node degrees are of constant order and do not grow as the number

of nodes increases. In this di�cult regime, theory and e�cient algorithms are available only

for simple special cases and have been studied in Coja-Oghlan (2010); Decelle et al. (2011);

Mossel et al. (2012, 2013a,b); Massoulie (2013); Krzakala et al. (2013). The second level is
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approximate recovery, where the proportion of correctly clustered nodes tends to one as the

number of nodes grows. Approximate recovery can only be achieved when the expected node

degrees diverge to infinity as the number of nodes grows. In this regime, more general models

and more practical algorithms have been studied, such as Rohe et al. (2011); Jin (2012); Lei

and Rinaldo (2015); Amini et al. (2012).

We focus on the third level of recovery accuracy, exact recovery. With exact recovery,

an algorithm can correctly recover the community memberships for all nodes with high

probability. Understanding the problem of exact recovery provides useful insight to both the

model and the algorithms. There has been much research e↵ort on exact community recovery

for stochastic block models in recent years. Existing methods and results vary in terms of

model generality and theoretical sharpness, as we now summarize.

Many authors in probability, machine learning, and theoretical computer science focus on

the special case of stochastic block model where there are two equal-sized communities,

with edge probability p within community and q between communities. Under this model,

sharp threshold for exact recovery can be established, using convex optimization (Abbe et al.

(2014); Hajek et al. (2014); Bandeira (2015)), and spectral methods (Mossel et al. (2014)).

The method studied in Mossel et al. (2014) uses a sample splitting technique, called the

“replica trick”, which is similar to the sample splitting considered here. Roughly speaking,

these results imply that exact recovery is possible only when the average node degree is of

order log n or higher. Yun and Proutiere (2014) extended the spectral method to the case

of more than two communities, with edge probabilities p within community and q between

communities.

Exact recovery for general stochastic block models was first studied by McSherry (2001),

where a combinatorial projection spectral method was combined with sample splitting.

Recently Vu (2014) modified and improved this method using singular value decomposition

combined with multiple sample splittings. Bickel and Chen (2009) proved exact recovery for
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a profile likelihood estimator, for models with node degrees growing faster than log n. It is

computationally demanding to maximize the profile likelihood, and commonly used heuristic

algorithms are not guaranteed to converge to the global maximum. Abbe and Sandon (2015)

provided sharp thresholds for exact community recovery in general stochastic block models,

where the recovery is achieved using a spectral method.

There are fewer exact recovery results for degree corrected block models. Chaudhuri et al.

(2012) extended the method of McSherry (2001) to a special case of degree corrected block

models under stronger assumptions on the growth rate of node degrees. Zhao et al. (2012)

extended the method of Bickel and Chen (2009) to general degree corrected block models,

requiring the node degree to grow faster than log n.

A common idea used in many of the aforementioned works is sample splitting (McSherry

(2001); Chaudhuri et al. (2012); Vu (2014); Mossel et al. (2014)). In this paper we further

study the sample splitting approach for exact community recovery in stochastic block models

and degree corrected block models. We provide further insights to exact recovery methods

using sample splitting. Given a preliminary algorithm that achieves approximate recovery,

we prove that sample splitting can refine the result to exactly recover the communities with

high probability when the expected node degrees are at least C log n for some constant C.

Compared with previous methods using sample splitting, our method is more general and

can be combined with many natural and simpler initial community recovery algorithms. In

particular, we show that exact recovery can be achieved by combining sample splitting with

the simple spectral clustering method, which applies k-means to the top eigenvectors of the

adjacency matrix. This insight extends beyond the stochastic block model. We give the first

exact recovery method for general degree corrected block models with expected node degrees

of order log n.
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2 Background

In a stochastic block model, the nodes of a network are partitioned intoK disjoint communities.

Let gi 2 {1, ..., K} be the community label of node i. The observed data is an n⇥n symmetric

binary random matrix A with independent upper-diagonal entries Aij (1  i < j  n):

P (Aij = 1) = 1 � P (Aij = 0) = Bgigj , where B 2 [0, 1]K⇥K is a symmetric matrix

representing the community-wise edge probabilities. For convenience we assume Aii = 0 for

all i. Throughout this paper we assume that K, the number of communities, is known.

The community recovery problem concerns estimating the membership vector g = (g
1

, ..., gn),

up to a label permutation. It is well-known that the di�culty of community recovery depends

on (i) the sample size n, (ii) the number of communities K, (iii) the di↵erences between the

rows of B, and (iv) the magnitude of the entries in B, which controls the overall density

of edges in the observed network. In most theoretical studies of community recovery, it is

common to consider the large sample behavior as n grows to infinity, while other model

parameters, such as K and B, change as functions of n. For simplicity, we focus on the

network edge density and fix other parameters as constants. Our analysis can be used to

investigate dependence on other model parameters, as discussed in Section 6. To this end,

we assume that

B = ↵nB0

, (1)

where B
0

is a K ⇥K non-negative symmetric constant matrix with maximum entry 1. In

Abbe et al. (2014) it is shown that, for a special class of stochastic block models where K = 2

and B
0

(1, 1) = B
0

(2, 2) = 1, exact recovery is possible if and only if ↵n > C log n/n for a

constant C depending on the o↵-diagonal entry B
0

(1, 2). For general stochastic block models,

McSherry (2001) studied a spectral method with exact recovery when ↵n � (log n)3.5/n. Vu

(2014) improved this result to ↵n � C log n/n for a su�ciently large C. Other methods, such

as convex optimization (Chen et al. (2012)) and profile likelihood (Bickel and Chen (2009)),

require stronger conditions on ↵n.
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Algorithm 1: Cross Clustering (CrossClust)

Input: adjacency matrix A; subset of nodes V
1

; subset of nodes V
2

;
membership vector ĝ(1) on V

1

.
Require subroutine: distance based clustering algorithm D.

1. For each v 2 V
2

, let ĥv = (ĥv,1, ..., ĥv,K) with

ĥv,k =

P

v02V
1

,ĝ
(1)

v0 =k
Av,v0

#{v0 : v0 2 V
1

, ĝ
(1)

v0 = k}
.

2. Output ĝ(2) = D({ĥv : v 2 V
2

}, K).

We argue that a single sample splitting can lead to exact recovery when combined with a

wide range of community recovery methods with approximate recovery. The key idea is that

once we have a roughly correct community membership for a subset of the nodes, it can

be used to produce exact recovery for the remaining nodes. This is described in detail in

Algorithm 1 (CrossClust).

The intuition behind Algorithm 1 is natural. Suppose we have approximately correct

memberships for nodes in V
1

. Then we can use this membership to estimate the community-

wise edge probability for each node in V
2

. For v 2 V
2

we must have ĥv,k ⇡ Bgv ,k, k = 1, ..., K.

Therefore, if two nodes v and v0 are in the same community, their corresponding ĥ vectors

are close to the same row of B. This gives us a good embedding of these nodes in a K

dimensional Euclidean space with a nearly perfect clustering structure. If such an embedding

is good enough, for example, the distance between any two cluster centers is at least four

times larger than the distance between any point to its center; then, as pointed out in Vu

(2014), some classical distance-based clustering algorithms such as minimum spanning tree

can perfectly recover the communities.

Our main algorithm for stochastic block models based on sample splitting is described in a

more general form in Algorithm 2 (V-Clust), where we further extend the sample splitting

method to a full V -fold cross clustering method. In V -fold cross clustering, the nodes

are divided into V disjoint subsets (folds), and for the jth fold, we apply the preliminary
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Algorithm 2: V-fold Community Recovery (V-Clust)

Input: adjacency matrix A; number of communities K; number of folds
V
Require subroutine: CrossClust; Merge; initial community recovery
algorithm S.

1. Randomly split the nodes into V equal sized subsets,
V (1), · · · ,V(V ).

2. For j = 1, · · · , V :
(a) ĝ(�j) = S(A(�j), K), where A(�j) is the induced adjacency

matrix over V(�j) = [j0 6=jV (j0).
(b) ĝ(j) = CrossClust(A,V (�j),V (j), ĝ(�j)).

3. Output ĝ = Merge(A, (V(j) : 1  j  V ), (ĝ(j) : 1  j  V )).

community recovery algorithm on the remaining V �1 folds, and use Algorithm 1 (CrossClust)

to obtain exact community recovery on the jth fold. Finally, the exact community recovery

on all V folds are combined to obtain a single community recovery for the whole set of nodes.

The detailed algorithms are described in Algorithm 2 (V-Clust) and Algorithm 3 (Merge)

for stochastic block models. The special case of V = 2 corresponds to a half-half split. In

practice, V -fold cross clustering with more than two folds may lead to better performance

due to a larger sample size used in the preliminary step.

The initial community recovery algorithm S can be chosen by the user. As shown in Section 3,

it only needs to satisfy some mild accuracy requirements that can be achieved by such popular

and practical methods as spectral methods and likelihood-based methods.

The computational cost of our method depends on the initial clustering method chosen by

the user. Here we assume that simple spectral clustering is used. For the special case of

V = 2, the cost of our method is less than that of McSherry (2001), because our method

applies clustering to two n ⇥K matrices, while the method of McSherry (2001) needs to

cluster the columns of an n⇥ n matrix. The cost of our method is also lower than that of Vu

(2014), because both methods use spectral clustering but the latter may require more than

one split.

Remark 1. We consider the particular form of Algorithm 3 (Merge) for its generality in our
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Algorithm 3: Merge V-fold Labels (Merge)

Input: adjacency matrix A; the nodes and estimated community membership
labels in V folds {V (j), ĝ(j)}j=1,...,V .

1. For each j = 1, · · · , V , calculate B̂(j) = (B̂(j)
kl )

K
k,l=1

by

B̂(j)(k, ·) =
P

e2V(j), ĝ
(j)
e =k

ĥe

#{e : e 2 V(j), ĝ
(j)
e = k}

,

where ĥe = (ĥe,1, · · · , ĥe,K) is calculated by

ĥe,l =

P

e02V(1), ĝ
(1)

e0 =l, e 6=e
Ae,e0

#{e0 : e0 2 V(1), ĝ
(1)

e0 = l, e 6= e0}
.

2. For each j = 2, · · · , V :

�̂j = argmin
�

X

1kK

�

�

�

B̂(j)(�(k), ·)� B̂(1)(k, ·)
�

�

�

2

,

where the minimum is taken over all permutations over {1, · · · , K}.
3. Output ĝ = (ĝ(1), �̂

2

(ĝ(2)), · · · , �̂V (ĝ(V ))).

theoretical development. In practice, after Step 2(b) in Algorithm 2 (V-Clust), the estimated

community in each fold is usually more accurate than the initial estimate. One can actually

use many other simpler heuristic methods instead of Algorithm 3. If we know that the within-

community edge probability is higher than between-community edge probability, then we

can merge the sub-clusters in all folds by maximizing the total number of within-community

edges among all label permutations.

3 Main results for stochastic block models

Terminology and notation Here the term “with high probability” means “with proba-

bility at least 1�O(n�1)”. The rate O(n�1) is chosen for convenience and can be changed to

O(n�r) for any fixed r > 0. For two community membership vectors g and ĝ, we say ĝ makes

m recovery errors as an estimate of g, where m is the smallest integer such that there exists
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a label permutation on ĝ under which ĝ and g disagree at exactly m entries. We write ĝ = g

if ĝ makes zero error. For a membership vector g on {1, ..., n}, and a subset V ✓ {1, ..., n},

g(V) denotes the membership vector obtained by confining g on V . We use g(j) in place of

g(Vj) (j = 1, 2, in the notation of Algorithm 1) for simplicity. We use k · k to denote the `
2

norm of vectors in Euclidean spaces. For any matrix A, we refer to its (i, j)-th element as

A(i, j), and its i-th row as A(i, ·). Sometimes Ai,j is used in place of A(i, j) for brevity.

Our analysis does keep track of the network sparsity and the number of communities. To

facilitate the presentation, we assume that the smallest community size is proportional to

n/K. The proofs of all theoretical results in this paper are provided in the Supplementary

Material (Lei and Zhu, 2016).

Definition 1 (Proper membership). Given a subset V ✓ {1, ..., n}, a membership vector g

on V , and a positive constant ⇡
0

2 (0, 1], we say g(V) is ⇡
0

-proper if min
1kK |{i 2 V : gi =

k}| � ⇡
0

n/K.

We make the following assumptions.

(A1) The maximum entry of B
0

is bounded by 1, and the minimum l
2

di↵erence between

two rows of B
0

is at least � = �(K) > 0:

(A2) The true community membership g is ⇡
0

-proper for some constant ⇡
0

2 (0, 1].

(A3) The initial community recovery algorithm S, with high probability, has recovery error

at most n/f(n↵n, K) when ↵n � log n/n, where f may depend on ⇡
0

and B
0

.

Assumption A1 puts a lower bound on pairwise di↵erence between the rows of B
0

, which is a

minimum requirement for the communities to be distinguishable. The largest possible value

of �(K) is
p
K. Assumption A2 puts a lower bound on the minimum community size. These

are mainly for simplicity, so that we can focus on the dependence on the network sparsity.

Our argument does allow for some mild generalizations so that the minimum community

size can change with n in a non-trivial manner, as discussed in Section 6. Assumption A3
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puts a requirement on the accuracy of the initial community recovery algorithm. Thus,

with high probability the initial algorithm S correctly recovers the membership of all but

a vanishing proportion of nodes, as the expected node degrees grow at ⌦(log n) rate or

faster. The function f specifies how fast the proportion of mis-clustered nodes decays

as the average degree increases. This assumption can be satisfied by some simple and

practical methods. For example, the spectral clustering method, which applies k-means

to the rows of leading eigenvectors of the adjacency matrix, satisfies Assumption A3 with

f(n↵n, K) = c(⇡
0

)�2

min

(B
0

)n↵n/K
2 for some function c > 0 independent of n (Lei and

Rinaldo, 2015).

In the following analysis, we consider Algorithms 1 and 2 with subroutine D being minimum

spanning tree clustering, which constructs a minimum spanning tree on the input data and

removes the K � 1 largest edges.

Theorem 2 (Exact recovery using sample splitting). Consider a membership vector g and

connectivity matrix B = ↵nB0

satisfying Assumptions A1, A2. Let ĝ be the output of V-Clust

(Algorithm 2) with input matrix A generated by the corresponding stochastic block model

and subroutine S satisfying Assumption A3. There exists a constant C, depending only on ⇡
0

and V , such that if f(n↵n/2, K)�(K) � CK5/2, ↵n � CK3 log n/(�2(K)n), and Cn � K3,

then with high probability we have ĝ = g.

Theorem 2 also imposes some requirements on the rate ↵n. In the case of simple spectral

clustering, the conditions are satisfied if ↵n � CK3 max{K3/2, log n}/n, provided the mini-

mum singular value of B
0,K is uniformly bounded away from 0 and �(K) ⇣ 1. This is the

case in the Planted Partition Model (Condon and Karp (2001); McSherry (2001)), one of the

most commonly assumed settings of stochastic block models, where the diagonal entries of

B
0

are 1 and o↵-diagonal entries of B
0

are ✓ 2 (0, 1).

Lemma 3 (Accuracy of CrossClust). Suppose A is an adjacency matrix generated by a

stochastic block model satisfying Assumptions A1 and A2, and let V
1

be a subset with
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⇡
0

-proper membership vector g(1) and |V
1

| � n/2. Let ĝ(1) be an estimated membership

vector on V
1

independent of the edges between V
1

and V
2

, with recovery error at most

|V
1

|/f(|V
1

|↵n, K). Then under the assumptions of Theorem 2, with high probability the

output of Algorithm 1 satisfies ĝ(2) = g(2).

In the context of V-fold cross clustering, V
1

and V
2

in Lemma 3 correspond to V (�j) and

V (j) in Algorithm 2, respectively. Lemma 3 ensures that the subroutine CrossClust produces

exact recovery on V
2

with high probability. The probabilistic claim in Lemma 3 is indeed

conditional given ĝ(1). Here we do not emphasize the conditional nature of this result as the

randomness is from edges between V
1

and V
2

, and hence is independent of ĝ(1) by assumption.

The proof of Lemma 3, as detailed in Section S1, is based on a careful decomposition of

estimation error |ĥv,k � B(gv, k)| followed by concentration inequalities.

4 Extension to degree corrected block models

The degree corrected block model (Karrer and Newman (2011)) extends the stochastic

block model by introducing additional node level degree heterogeneity. In addition to the

membership vector g and community-wise connectivity matrix B, the degree corrected block

model incorporates a parameter  2 (0, 1]n to model the node level activeness. Then the edge

Aij between nodes i and j is an independent Bernoulli variable with parameter  i jBgigj .

For identifiability, we assume maxi:gi=k  i = 1, for all 1  k  K. The parameter  i reflects

the relative activeness of node i in its community. The degree corrected block model is able

to model a much wider range of network data and is more realistic than the regular stochastic

block model. There are relatively fewer results on exact recovery for degree corrected block

models. Zhao et al. (2012) extended the result of Bickel and Chen (2009), showing that

the profile likelihood estimator can recover exactly when ↵n = ⌦(log n/n). Chaudhuri et al.

(2012) extended the method of McSherry (2001) to a special case of degree corrected models

11

Statistica Sinica: Preprint 
doi:10.5705/ss.202015.0279



Algorithm 1’: Spherical Cross Clustering (CrossClustSphere)

Input: adjacency matrix A; subset of nodes V
1

; subset of nodes V
2

;
membership vector g(1) on V

1

.
Require subroutine: distance based clustering algorithm D.

1. For each v 2 V
2

, let ĥv = (ĥv,1, ..., ĥv,K) be the same as give in
Step 1 of Algorithm 1 (CrossClust).

2. Output ĝ(2) = D({ĥv/kĥvk : v 2 V
2

}, K).

with a stronger requirement on the decay rate of ↵n. In the following we consider the more

general setting where K may grow with n, and establish error probability bounds for a

variation of V -fold cross clustering under degree corrected block models. When K is fixed,

our result implies that the simple sample splitting method can be successful under general

degree corrected block models when ↵n � C log n/n for su�ciently large constant C.

Under the degree corrected block model, we need to modify the CrossClust algorithm so that

the e↵ect of nuisance parameter  is cancelled out by a normalization step. To this end, we

introduce the spherical cross clustering algorithm in Algorithm 1’.

The exact recovery property of the sample splitting approach can be established for degree

corrected block models under slightly stronger conditions, with a modified community

separation condition and an additional condition on the nuisance parameter  . Recalling

that B
0

(k, ·) denotes the k-th row of B
0

, we assume the following.

(A1’) The minimum l
2

di↵erence between two normalized-rows of B
0

is at least �̃ = �̃(K) > 0,

and the minimum l
2

norm of rows of B
0

is at least L = L(K) > 0:

min
1k<k0K

�

�

�

�

B
0

(k, ·)
kB

0

(k, ·)k � B
0

(k0, ·)
kB

0

(k0, ·)k

�

�

�

�

:= �̃(K) > 0 , min
1kK

kB
0

(k, ·)k := L(K) > 0 .

(A3’) The initial community recovery algorithm S, with high probability, has recovery error

at most n/f(n↵n, K) when ↵n � log n/n, where f may depend on ⇡
0

and B
0

.

(A4) min
1in  i �  

0

for some constant  
0

2 (0, 1].
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Algorithm 3’: Spherical Merge V-fold Labels (MergeSphere)

Input: adjacency matrix A; the nodes and estimated community membership
labels in V folds {V (j), ĝ(j)}j=1,...,V .

1. For each j = 1, · · · , V , calculate B̂
(j)
⇤ as

B̂(j)
⇤ (k, ·) B̂(j)(k, ·)

kB̂(j)(k, ·)k
,

where B̂(j) is calculated as in step 1 of Algorithm 3 (Merge).
2. For each j = 2, · · · , V :

�̂j = argmin
�

X

1kK

�

�

�

B̂(j)
⇤ (�(k), ·)� B̂(1)

⇤ (k, ·)
�

�

�

2

,

where � denotes a permutation over {1, · · · , K}.
3. Output ĝ = (ĝ(1), �̂

2

(ĝ(2)), · · · , �̂V (ĝ(V ))).

Assumption A1’ modifies Assumption A1 to account for the normalization step in Cross-

ClustSphere, which is necessary for degree corrected block models because two rows in B

di↵ering only by a constant scaling are indistinguishable due to the node activeness parameter.

Assumption A4 prevents any node from being too inactive, otherwise there are too few edges

for that node, making exact recovery unlikely. Under these assumptions, the spherical spectral

clustering method described and analyzed in Lei and Rinaldo (2015) satisfies Assumption A3’

with f(n↵n, K) /  
0

�
min

(B
0

)
p
n↵n/K, provided B

0

has full rank and the communities have

balanced sizes.

The row scaling indistinguishability problem also requires a di↵erent merging algorithm to

combine the communities cross di↵erent folds. Here we introduce the spherical merging

algorithm MergeSphere (Algorithm 3’).

Theorem 4 (Exact recovery for degree corrected block models). Let A be an adjacency

matrix generated from a degree corrected block model with membership vector g, connectivity

matrix B = ↵nB0

, and node activeness vector  satisfying Assumptions A1’, A2, and A4.

Let ĝ be the output of V-Clust (Algorithm 2) using subroutine CrossClustSphere (Algorithm

1’) and MergeSphere (Algorithm 3’), with initial recovery algorithm S satisfying Assumption
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A3’. There exists a constant C = C(⇡
0

, 
0

, V ) such that if f(↵nn/2, K)�̃(K)L(K) � CK5/2,

↵n � CK3 log n/(�̃2(K)2L2(K)n), and Cn � K3, then ĝ = g with high probability.

In the case of sphere spectral clustering, the conditions required in Theorem 4 are satisfied

if ↵n � CK2 max{K4, log n}/n in the common situation that �
min

(B
0

) ⇣ 1, �̃(K) ⇣ 1, and

L(K) ⇣
p
K.

The proof of Theorem 4 is similar to that of Theorem 2, and uses the following analogous

result of Lemma 3. Proofs of these results are given in the Supplementary Material (Lei and

Zhu (2016)).

Lemma 5 (Accuracy of CrossClustSphere). Suppose A is an adjacency matrix generated by

a degree corrected block model satisfying Assumptions A1’ and A2, and let V
1

be a subset

with ⇡
0

-proper membership vector g(1). Let ĝ(1) be an estimated membership vector on V
1

independent of the edges between V
1

and V
2

, with recovery error at most |V
1

|/f(|V
1

|↵n, K).

There exists a constant C such that if ↵n � CK3 log n/(�̃2(K)L2(K)n), then with high

probability, ĝ(2), the output of CrossClustSphere (Algorithm 1’), satisfies ĝ(2) = g(2).

Remark 2. As seen in our simulations, for regular stochastic block models Algorithm 1

usually outperforms Algorithm 1’ when the signal is very weak, because the latter tends to

introduce extra error in the redundant normalization step. Moreover, Theorem 4 generally

requires a higher average degree than Theorem 2, where the main di↵erence is in their

dependence on K, the number of communities.

Remark 3. As in the case for regular stochastic block models when more information is

available about the model, there are other practical and simple alternatives to Algorithm 3’.

If within-community edge probability is higher than between-community edge probability,

the same heuristic merging method given in Remark 1 applies to the degree-corrected model.
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5 Numerical examples

5.1 Simulation 1: a diagonal dominant SBM

We considered a stochastic block model (SBM) with K = 2, |I
1

| = |I
2

| = 500, and

B =

0

B

@

a b

b a

1

C

A

, for some a, b 2 (0, 1) , a > b . (2)

Our focus was the community separation measured by a� b, and overall sparsity measured by

a. In particular we considered combinations of (a, b) over a 40 by 40 grid in (0, 1)2. To reduce

redundancy, we only report combinations of (a, b) such that b 2 [a�0.3, a) so that community

recovery is less trivial. We considered two implementations of our proposed Algorithm 2

(V-Clust).

Method I uses simple spectral clustering to obtain initial community recovery and

CrossClust (Algorithm 1) for refinement. This method is designed for SBM’s and not

suitable for degree corrected block models (DCSBM).

Method II uses spherical spectral clustering (Lei and Rinaldo, 2015) to obtain initial

community recovery and CrossClustSphere (Algorithm 1’) for refinement. This method

works for both SBM’s and DCSBM’s.

Both implementations use the heuristic merge method described in Remark 1, since we always

have a > b.

Figure 1 summarizes the results for the SBM, where we plot average proportion of correctly

clustered nodes over 100 repetitions. The top row shows results for Method I, and the bottom

row is for Method II where we treat the SBM as a DCBM. For each method we also compare

2-fold cross clustering (left column), 10-fold cross clustering (middle column), and self-cross

clustering (right column). Here self-cross clustering is like an n-fold cross clustering, except
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Figure 1: Average accuracy over 100 repetitions under regular stochastic block models with
K = 2, within-community edge probability a and between-community edge probability b.
Each community has size 500. Top row: Cross clustering; bottom row: sphere cross clustering.
Left column: 2-fold; middle column: 10-fold; right column: self cross clustering.

that the initial clustering is obtained from the entire network. We see a clear phase transition

pattern in all plots, where the algorithm achieves exact recovery when a� b is su�ciently

large. We also observe that 10-fold and self-cross clustering have slightly better performances.

In this simple case, CrossClustSphere (Algorithm 1’) gives almost identical performance as

CrossClust (Algorithm 1).

5.2 Simulation 2: a more general SBM

Our second experiment was also conducted under an SBM, but without the diagonal dominant

structure as in Simulation 1. We considered community-wise edge probability matrices of the
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Figure 2: Average accuracy over 100 repetitions under regular stochastic block models with
K = 2, and community-wise edge probability given in (3). Each community has size 500.
Top row: Cross clustering; bottom row: sphere cross clustering. Left column: 2-fold; middle
column: 10-fold; right column: self cross clustering.

form

B =

0

B

@

a b

b b

1

C

A

(3)

with the same grid of (a, b) values as in Simulation 1. The merging was implemented using

Algorithm 3 for Method I and Algorithm 3’ for Method II, as here the heuristic merging

method described in Remark 1 is not applicable.

The results summarized in Figure 2 shows something di↵erent than in the previous case.

Here both methods are less accurate due to the reduced signal strength. But spherical cross

clustering is significantly less accurate than cross clustering, because the normalization step

becomes much more noisy when the minimum singular value of B is very small. This confirms
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our claim that when the true model is SBM, it is preferable to use methods designed for

SBM’s, rather than those for more general DCSBM’s.

5.3 Simulation 3: degree corrected block models

We also examined the performance of both methods in a DCSBM model with node hetero-

geneity. We assumed the same matrix B as in (2), and P (Aij = 1) =  i jBgigj , where the

node activeness parameter  i’s were independently generated from a uniform distribution

on (0.5, 1). We applied Method I and Method II, each with 2-fold, 10-fold, and self cross

clustering. As in Simulation 1, heuristic merging was used here. Figure 3 shows that Method

I fails in DCSBM, while Method II achieves much better accuracy.

We also checked how the initial recovery accuracy on V
1

a↵ects the cross-clustering accuracy

on V
2

in Algorithm 1 (CrossClust). Specifically, in Method I with 2-fold cross clustering

under regular SBM, we recorded the accuracy of the initial community recovery using simple

spectral clustering on the first half and the accuracy of the cross-clustering on the independent

second half. Figure 4 shows the results from 500 trials randomly selected from all repetitions.

It is obvious that the cross-clustering step boosts the accuracy in most cases when the output

ĝ(1) of the initial algorithm has high accuracy.

5.4 Simulation 4: networks with more than two communities

Here we investigate the performance of cross clustering for larger values of K. For simplicity

we focused on regular stochastic block models with similar settings as in Section 5.1, except

that K was larger than 2 and n was increased to 5000, because n needs to grow faster than

K as indicated by the theory.

Figure 5 shows that the 2-fold cross clustering works reasonably well when K = 5, 10, for

stochastic block models with 5000 nodes. The results for 10-fold cross-clustering are similar
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Figure 3: Average accuracy over 100 repetitions under degree corrected stochastic block
models with K = 2, within-community egde probability a and between-community edge
probability b, and node activeness  i ⇠ Uniform(0, 1). Each community has size 500. Top
row: Method I; bottom row: Method II. Left column: 2-fold; middle column: 10-fold; right
column: self cross clustering.

and hence are omitted. It is worth noting that when K gets larger, the merge algorithm

is computationally demanding as it needs to search over all K! label permutations. Here

we use the fact that the edge density is higher within-community than between-community,

which leads to a faster greedy merge method. Using the notation in Algorithm 3, let V (1),

V (2) be two subsets of nodes with clusters ĝ(1), ĝ(2), respectively. For k = 1, ..., K, take

�(k) = argmax
1lK B̂(2)(k, l), where B̂(2) is defined in step 1 of Algorithm 3. Then we

permute the labels in ĝ(2) by replacing k with �(k), and directly combine the permuted

(V (2), �(ĝ(2))) with (V (1), ĝ(1)).

In Figure 6 we report the results for even larger values of K. We see that the performance
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Figure 4: Initial recovery accuracy on V
1

and the cross-clustering accuracy on V
2

in 500 trials.
Left: comparison of initial accuracy and cross-clustering accuracy. Right: the improvement,
defined as the di↵erence between the refined accuracy and the initial accuracy, when initial
accuracy is low ( 90%) and high (> 90%).

decreases as K increases. For K = 100, the algorithm can pick up part of the signal for well

separated values of a and b.

5.5 Political blog data

As an example, we considered the political blog data (Adamic and Glance, 2005), where

the edges represent hyperlinks among 1222 weblogs on U.S. politics in 2004. Each weblog

belongs to one of the two communities recognized as “liberal” and “conservative”, with sizes

586 and 636, respectively. It is widely believed that the degree corrected block model with

K = 2 fits the data well (Zhao et al. (2012); Jin (2012); Yan et al. (2014)). We started

with an initial community recovery given by the spherical k-median spectral clustering (Lei

and Rinaldo (2015)), and applied the proposed method in Algorithm 1’ (CrossClustSphere)

with 2-fold, 10-fold and self cross clustering, followed by heuristic merging as described in

Remark 3. For 2-fold and 10-fold cross clustering implementation, we repeated the data

splitting 100 times. The average proportion of correctly clustered nodes was 90.68% for

2-fold cross clustering, 94.60% for 10-fold cross clustering, and 95.17% for self-cross clustering.

20

Statistica Sinica: Preprint 
doi:10.5705/ss.202015.0279



0−50%
50−70%
70−80%
80%−90%
90%−95%
95%−100%

SBM, K=5
2−fold cross clustering

0.05 0.20 0.35 0.50 0.65 0.80 0.95

0.
05

0.
20

0.
35

0.
50

0.
65

0.
80

0.
95

a

b

0−50%
50−70%
70−80%
80%−90%
90%−95%
95%−100%

SBM, K=10
2−fold cross clustering

0.05 0.20 0.35 0.50 0.65 0.80 0.95

0.
05

0.
20

0.
35

0.
50

0.
65

0.
80

0.
95

a

b

Figure 5: Average recovery accuracy over 100 repetitions for 2-fold cross clustering with
n = 5000 nodes. Left: K = 5; right: K = 10.
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Figure 6: Average recovery accuracy over 10 repetitions for 2-fold cross clustering with
n = 5000 nodes. Left: K = 20; middle: K = 50; right: K = 100.

Directly applying spherical spectral clustering on the entire data set yielded an accuracy of

94.76%. This reflects a trade-o↵ between computational e�ciency and estimation accuracy in

the cross-clustering method. If V is small, then the initial clustering is less accurate due to

the reduced sample size. If V is large, then the initial accuracy improves, but the algorithm

requires more computation resources for the estimation.
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6 Discussion

In this paper we demonstrate that sample splitting can be combined with almost any

approximately correct community recovery algorithms to obtain better clustering results

for stochastic block models and degree corrected block models. Under general conditions,

satisfied by spectral clustering in particular, we show that such a method can achieve exact

community recovery with optimal dependence on the rate of network sparsity. Our results

unify and simplify such existing works as McSherry (2001) and Vu (2014), and lead to a more

general V-fold cross clustering algorithm.

We investigate exact community recovery with a special focus on the overall network sparsity

and number of communities. In the study of stochastic block models, the e↵ect of other

model parameters, such as community size imbalance, may also be of interest. The arguments

used in here, for example Lemma 6, do keep track of these parameters and hence can be used

to study the more general scenario where these parameters are also allowed to change with

n, non-trivially. In particular, when K = 2 with I
1

, I
2

being the two communities, one can

show that the sample splitting approach succeeds with high probability when ↵n is bounded

away from zero and min(|I
1

|, |I
2

|) � C
p
n for large enough C.

Open problems The only step in our proof that requires sample splitting is the large

deviation bound for the term T
1

in the proofs of Lemmas 6 and 10, where the summation of

Av,v0 is over a random set {v0 2 V
1

: ĝ(1)v0 6= g
(1)

v0 }. The sample splitting makes the summand

Av,v0 independent of this index set, allowing us to condition on the index set and apply

Bernstein’s inequality. As mentioned earlier in Section 2, a natural alternative is to obtain a

preliminary community estimate for the entire set of nodes, and then cross-cluster each node

using this preliminary community partition. In other words, we use V
1

= V
2

= {1, 2, ..., n}

in Algorithm 1. Such a self-cross clustering approach gives very competitive practical

performance as demonstrated in our numerical examples. A heuristic explanation of its
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success is its close similarity to the n-fold (leave-one-out) cross-clustering, which is further

refined and analyzed by Gao et al. (2015) after completion of the first draft of the current

paper. It would be interesting to provide rigorous performance guarantees for the self-cross

clustering method.

Supplementary Materials

The Supplementary Material (Lei and Zhu (2016)) contains proofs of our theoretical re-

sults.
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