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Censored Kernel Quantile Regressions
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Abstract: In survival data analysis, a central interest is to identify the relationship

between a possibly censored survival time and explanatory covariates. In this article,

a new censored quantile regression method is proposed and studied in the framework

of reproducing kernel Hilbert spaces (RKHS). We first establish the joint piecewise

linearity of the regression parameters as a function of regularization parameter λ

and quantile level τ . An efficient algorithm is then developed to compute the entire

two-dimensional solution surface over the (λ× τ)-plane. Finally, a piecewise linear

conditional survival function estimator is constructed based on the solution surface.

The method provides a new and flexible survival function estimator without requir-

ing such rigid model assumptions as linearity of the survival time or proportionality

of the hazards. One important advantage of the estimator is that it can handle

moderately high-dimensional covariates. We carry out an asymptotic analysis to

justify the proposed method theoretically, and numerical results are shown to illus-

trate its competitive finite-sample performance under various simulated scenarios

and real applications.

Key words and phrases: Censored kernel quantile regression; Conditional survival

function; Solution surface.

1 Introduction

In censored survival data analysis, the survival function can be regarded as a counterpart of

the distribution function. But its estimation is difficult due to the presence of censoring. The
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2 SEUNG JUN SHIN, HAO HELEN ZHANG AND YICHAO WU

Kaplan-Meier (KM) estimator (Kaplan and Meier (1958)) is a milestone in survival function

estimation and has been widely used in lifetime data analysis.

In a medical study, let T denote the survival time of a subject. Often a d-dimensional

baseline covariate X is collected for each subject, containing such as treatment assignment, age,

gender, and genetic information. One main purpose of survival analysis is to characterize the

relationship between survival time and explanatory covariates. For example, the conditional

survival function (CSF) given certain covariates, defined as S(t|x) = P (T > t|X = x), is of

primary interest for survival prediction. A variety of regression methods have been proposed

over the last few decades, including the Cox proportional hazards (PH) model (Cox (1972)) and

the accelerated failure time (AFT) model (Kalbfleisch and Prentice (1980)). The Cox PH model

assumes that the hazard ratio for any two different configurations of covariates is constant, and its

CSF estimator can be derived using the relationship between the hazard function and the survival

function. Though the Cox PH model provides a flexible class of semi-parametric estimators, its

estimation consistency relies heavily on the proportional hazards assumption. Also, the CSF

estimator obtained from the Cox PH regression is piecewise constant, not continuous. Moreover,

when the number of covariates is large, the standard PH procedure is computationally intensive

and may fail to produce a reasonable estimate. A variety of penalized Cox regression methods

have been studied (Tibshriani (1997); Fan and Li (2002); Zhang and Lu (2007); Zou (2008);

Wang, Nan, Zhou and Zhu (2009), and many others), but they all rely on the PH assumption

to assure valid estimation.

The AFT model assumes

T = β0 +XTβ + ǫ, (1)

where T denotes the true survival time or its known monotone transformation; X is a d-

dimensional covariate vector; ǫ is the random error with an unspecified distribution function

F with mean zero and finite variance. The AFT model provides a useful alternative to the Cox

PH regression (Kalbfleisch and Prentice (1980); Wei (1992)) thanks to its simplicity and easy

interpretation. However, the classical AFT model is predominately fully parametric and (1)

only provides estimates of the conditional mean of the survival time T rather than its entire

CSF. Although semi-parametric extensions of the AFT model (Buckley and James (1979); Jin,

Lin, Wei and Ying (2003); Zeng and Lin (2007); Zhang and Peng (2007)) have been studied,
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they are not widely used in applications. In addition, when the covariate dimension d is large,

the computational cost of fitting the classical AFT model with an unspecified error distribution

can be very high.

Motivated by the AFT model (1), a variety of linear quantile regression methods have been

proposed (Portnoy (2003); Peng and Huang (2008); Wang and Wang (2009); Leng and Tong

(2013)). In this paper, we consider the nonparametric censored quantile regression model:

P (T ≤ fτ (x)|X = x) = τ, ∀τ ∈ [0, 1], (2)

where the unknown function fτ (x) denotes the τth conditional quantile of T |X = x. Conceptu-

ally, one can consider any conditional quantile estimates that solve (2) for all τ ∈ [0, 1]. However,

it is well known that some regression quantiles for censored response may not be estimable when

τ is closed to 1 due to lack of information available from the data (Powell (1986); Peng and

Huang (2008); Wang and Wang (2009)). We assume that the model (2) is estimable for any

τ ∈ [0, τ0] where τ0 < 1 denotes the upper limit of estimable quantile levels. In Section 5.3, we

discuss how to determine τ0 from the data.

Based on (2), it is possible to handle more complicated data with heteroscedastic or heavy-

tailed error distributions. However the estimation is not straightforward due to the presence of

censoring. A natural way of dealing with censored data is to impose a weight on each observed

data point, since the censoring essentially provides us biased information about observations that

should be taken into account. The inverse censoring probability weighting (ICPW) technique

provides a proper weight to adjust the biased information due to censoring. In the literature, the

ICPW-based approaches have been used in various applications under the context of classical

linear censored regression (Ying, Jung and Wei (1995); Bang and Tsiatis (2002); Zhou (2006),

and many others).

We propose a censored kernel quantile regression (CKQR) to fit the model (2). The kernel

trick is a widely-used nonparametric technique in machine learning, support vector machines

(SVMs) for example. One of its main attractions is that it allows us to deal with a large number

of covariates by offering great computational advantages (Zhang (2002); Mallick, Ghosh and

Ghosh (2005)). The proposed CKQR is closely related to kernel quantile regression (KQR)
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that has an L1-type loss subject to a quadratic penalty, and a piecewise linear solution path

(Hastie, Rosset, Tibshirani and Zhu (2004); Rosset and Zhu (2007)). There are two quantities

associated with the KQR problem: the quantile level τ and the regularization parameter λ

that controls the balance between the data fit and the model complexity. Correspondingly, the

optimization problem has two types of marginal solution paths: the λ-path as a function of λ

with τ being fixed, and the τ -path as a function of τ with λ being fixed. The computation

of marginal KQR paths has been studied by Li, Liu and Zhu (2007) and Takeuchi, Nomura

and Kanamori (2009). Here, we are not restricted to the marginal paths; instead we study the

property of the CKQR solution as a bivariate function of (λ, τ) and establish joint piecewise

linearity. This joint piecewise linearity enables us to develop an efficient algorithm to compute

the entire two-dimensional CKQR solution surface over the (λ× τ) plane. This two-dimensional

solution surface contains the complete information of the CKQR and therefore greatly facilitates

the process of selecting the optimal regularization parameter λ.

After computing f̂τ (·) for all τ ∈ [0, τ0] with an appropriate λ, we can treat f̂τ (x) as a

continuous function of τ for any given x, and we propose to aggregate the information contained

in f̂τ (x) to construct an estimator of S(t|x). We show that the proposed CSF estimator is

piecewise linear in time t since it is obtained from the piecewise linear solution surface of the

CKQR. The new estimator is a flexible nonparametric estimator, and its prediction performance

does not depend heavily on the covariate dimension d thanks to the kernel trick.

The rest of the article is organized as follows. In Section 2 we develop the CKQR by

employing the ICPW scheme. In Section 3, a piecewise linear CSF estimator is proposed based

on the joint piecewise linearity of the CKQR solution. An efficient algorithm for computing the

entire CKQR solution surface is described in Section 4. Additional issues regarding the proposed

CSF estimator are addressed in Section 5. Simulation studies and data analysis results are shown

in Section 6 and 7, respectively. Final discussion follows in Section 8. Technical proofs and details

of the solution surface algorithm are in the supplementary materials.
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2 Censored Kernel Quantile Regression

Suppose that we have a set of survival data (Yi, δi,xi), i = 1, · · · , n, where Yi = min(Ti, Ci),

δi = 1(Ti ≤ Ci), and xi is a d-dimensional covariate vector for the ith subject. Here Ti and Ci

denote the survival and censored time or their known monotone transformations, respectively.

For identifiability, it is commonly assumed that the censoring time C is conditionally independent

of the survival time T given the covariate X, T⊥C|X.

Standard quantile regression is characterized by minimizing the check loss function ρτ (u) =

u(τ − 1{u ≥ 0}). Without censoring, a nonparametric quantile regression model can be fitted

by solving the optimization problem:

argmin
fτ∈F

n
∑

i=1

ρτ (Ti − fτ (xi)) + λJ(fτ ), (3)

where F is a function space, J is a functional defined on F controlling the estimator’s complexity

to avoid over-fitting, and λ > 0 is the regularization parameter which balances the data fitting

and the model complexity.

In survival analysis, the survival time T is often censored and not completely observed for all

individuals. The ICPW scheme is a widely used approach for adjusting possible biases induced

by censoring, which utilizes

E[ρτ (T − f(X)|X)] = E

[

δ

G(Y |X)
ρτ (Y − f(X))|X

]

, (4)

where G(t|X) = P (C ≥ t|X) denotes the CSF of the censoring time C given covariate X.

Equation (4) follows from the assumption T⊥C|X. Let Ĝn(·|X) denote a reasonable estimator

of G(·|X) and then, by (4), it is natural to solve

argmin
fτ∈HK

n
∑

i=1

δi

Ĝn(Yi|xi)
ρτ (Yi − fτ (xi)) +

λ

2
‖fτ‖2HK

, (5)

where HK is the reproducing kernel Hilbert space (RKHS, Wahba (1990)) generated by a non-

negative kernel function K(x,x′). Here the term ‖ · ‖2HK
denotes the squared-norm in RKHS.

Censoring can be regarded as a special case of missing and the ICPW is one type of the inverse

Statistica Sinica: Preprint 
doi:10.5705/ss.202014.0071



6 SEUNG JUN SHIN, HAO HELEN ZHANG AND YICHAO WU

probability weighting (IPW) commonly used in missing data analysis. The IPW provides an

effective way of correcting or reducing the bias in the complete-case-only analysis. Compared

to other methods of handling missing data, the IPW method is generally simpler and does not

require rigid model assumptions (Tsiatis (2007) and references therein). The implementation of

IPW requires a model for the probability that data are missing, for which a variety of choices

are available.

The proposed method based on the ICPW scheme does not require the global linearity

assumption, as needed by Portnoy (2003) and Peng and Huang (2008). Ying, Jung and Wei

(1995) and Leng and Tong (2013) consider a slightly different weight Ĝn(fτ (xi)|xi) under the

linear quantile model fτ (x) = xTβτ to develop unbiased estimating equations. Under the

linear quantile regression models, Wang and Wang (2009) introduce a different weighting scheme

based on the redistribution-mass idea (Efron (1967)) and propose another way of formulating

the censored quantile regressions. By contrast, our method does not depend on the possibly

nonlinear quantile function fτ (x) of the survival time and thus the weights are constant when

estimated properly. Thus the ICPW idea can be naturally embedded in the loss-based quantile

regression framework and we can derive the complete solution surfaces due to the joint piecewise

linearity. This enables us to recover the entire quantile functionals and to construct a new CSF

estimator by aggregating the complete quantile information.

For modeling the missing probability in the ICPW scheme, it is crucial to choose a proper

estimator Ĝn(·|X) for G(·|X). One simple choice is the KM estimator of the censored time (Zhou

(2006); Shows, Lu and Zhang (2010)), but it ignores the information of X for modeling G(·|X)

and requires the additional assumption C⊥X. The local Kaplan-Meier estimator (Dabrowska,

1989) is another choice (Wang and Wang (2009); Leng and Tong (2013)), but it cannot handle

a large d due to the curse of dimensionality. In principle, the proposed CKQR does not rely on

the specific choice of Ĝn(·|X) as long as it consistently estimates G(·|X). We refer to Lu and

Li (2011) for more discussion of the choice of Ĝn(·|X). We use the Cox PH regression to model

the censoring time. The Cox model is more flexible than the parametric AFT model, but it still

requires the PH assumption for valid estimation. Based on our limited empirical experiences,

the proposed piecewise linear CSF estimator from the Cox-model-based weight is not overly

sensitive to model misspecification.
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Note that (5) has the form of weighted nonparametric quantile regression with pre-specified

weights. Using the Representer theorem (Kimeldorf and Wahba (1971)), it is easy to show that

the optimizer of (5) has a finite-parameter representation given by

fτ (x) = bτ +
1

λ

n
∑

j=1

θj,τK(x,xj). (6)

Let ωi = δi/Ĝn(Yi|xi) and θτ,0 = λbτ . By plugging (6) into (5), we obtain the optimization

problem

argmin
θ0,τ ,θ1,τ ,··· ,θn,τ

n
∑

i=1

ωiρτ

(

Yi −
1

λ







θ0,τ +
n
∑

j=1

θj,τK(x,xj)







)

+
λ

2

n
∑

i=1

n
∑

j=1

θi,τθj,τK(xi,xj), (7)

which we call the censored kernel quantile regression. Its minimizer, denoted by θ̂τ = (θ̂0,τ , θ̂1,τ , · · · , θ̂n,τ )T ,

is referred to as the CKQR solution. The CKQR solution depends on the value of λ and τ ,

so it can be viewed as a function of (λ, τ). For this reason, we use f̂(x; τ, λ) = λ−1{θ̂0,τ +
∑n

j=1 θ̂j,τK(x,xj)} to denote the estimated conditional quantile function for a given pair of

(λ, τ). We next establish that the CKQR solution is jointly piecewise linear over (λ× τ)-plane.

From now on, we may omit the subscript τ in fτ , bτ and θτ,j, as long as the τ value is fixed

and clearly defined from the context.

3 Survival Function Estimation

We show here that the CKQR solution θ̂τ enjoys joint piecewise linearity as a function of (λ, τ),

which implies the piecewise linearity of marginal paths. We propose a novel nonparametric

estimator of the CSF for a given λ from the estimated conditional quantile function, and show

that it is also piecewise linear.
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3.1 Joint Piecewise Linearity of the CKQR solutions

By introducing nonnegative slack variables, we can rewrite (7) as

min
θ0,θ1,··· ,θn

τ

n
∑

i=1

wiξi + (1− τ)

n
∑

i=1

wiζi +
λ

2

n
∑

i=1

n
∑

j=1

θiθjK(xi,xj)

subject to −ζi ≤ Yi − f(xi) ≤ ξi, i = 1, 2, · · · , n,

ξi ≥ 0, ζi ≥ 0, i = 1, 2, · · · , n,

where ξi and ζi are the nonnegative slack variables. Similar to Li, Liu and Zhu (2007) for the

standard KQR, we consider the three sets for any given pair of (λ, τ):

E = {i : yi = f̂(xi), − (1− τ)wi ≤ θ̂i ≤ τwi} (elbow),

L = {i : yi < f̂(xi), θ̂i = −(1− τ)wi} (left),

R = {i : yi > f̂(xi), θ̂i = τwi} (right).

The three sets and the solution θ̂ change as λ and τ vary; we call it an event whenever the

configuration of three sets changes.

Theorem 1 states that the CKQR solution moves linearly as long as no event happens, and

therefore each component of θ̂ forms a piecewise linear surface over (λ × τ)-plane. Proof of

Theorem 1 is relegated to the supplementary materials.

Theorem 1. Let (λℓ, τ ℓ) be a point on the (λ × τ)-plane and θ̂
ℓ
= (θ̂0, θ̂1, · · · , θ̂n)T be the

CKQR solution obtained at (λℓ, τ ℓ) with the associated sets Eℓ, Lℓ, and Rℓ. If Sℓ is the largest

region on the (λ × τ)-plane containing (λℓ, τ ℓ) such that no event happens within Sℓ, then

θ̂0,E = {θ̂i, i ∈ {0} ∪ Eℓ, (λ, τ) ∈ Sℓ}T moves as

θ̂0,E ≡ θ̂0,E(λ, τ) = θ̂
ℓ
0,E +Gℓ∆, ∀(λ, τ) ∈ Sℓ, (8)

where θ̂
ℓ

0,E = {θ̂ℓi , i ∈ {0} ∪ Eℓ}T and ∆ = (∆λ,∆τ )
T = (λ− λℓ, τ − τ ℓ)T . The gradient matrix

Gℓ is given by

Gℓ = A−1
ℓ Bℓ =





0 1Tℓ

1ℓ Kℓ





−1



0 −∑j /∈Eℓ wi

yℓ −k∗
ℓ



 .
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Here Kℓ = {K(xi,xj) : for i, j ∈ Eℓ}; k∗
ℓ = {

∑

j /∈Eℓ wjK(xi,xj) : i ∈ Eℓ}T ; yℓ = {yi : i ∈ Eℓ}T ;

1ℓ is the one vector of length |Eℓ|, where |S| denotes the cardinality of a set S.

It is easy to update the solution components corresponding to L or R from their definitions.

The linear updating equation (8) provides us the complete information of the CKQR solutions

for any pair (λ, τ) ∈ Sℓ. Theorem 1 can be regarded as a generalization of one-dimensional

piecewise linearity of the KQR marginal solution path, as a function of either λ or τ (separately

explored by Li, Liu and Zhu (2007) and Takeuchi, Nomura and Kanamori (2009)).

Corollary 1. For any given τ0, the solution θ̂0,E moves linearly in λ ∈ {λ : (λ, τ0) ∈ Sℓ} as

θ̂0,E = θ̂
ℓ

0,E + gℓ
1∆λ. (9)

Similarly, θ̂0,E changes in τ ∈ {τ : (λ0, τ) ∈ Sℓ} for a given λ0 as

θ̂0,E = θ̂
ℓ
0,E + gℓ

2∆τ , (10)

where gℓ
1 = {gℓi1 : i ∈ {0} ∪ Eℓ}T and gℓ

2 = {gℓi2 : i ∈ {0} ∪ Eℓ}T denote the first and second

columns of Gℓ in (8), respectively.

Using the joint piecewise linearity, we can further show that

f̂(x; τ, λ) =
λℓ

λ
{f̂(x; τ ℓ, λℓ)− hℓ1(x)} + hℓ1(x) +

τ − τ ℓ

λ
hℓ2(x), (11)

where

hℓ1(x) = gℓ01 +
∑

i∈Eℓ

gℓi1K(x,xi),

hℓ2(x) = gℓ02 +
∑

i∈Eℓ

gℓi2K(x,xi) +
∑

i/∈Eℓ

wiK(x,xi).

The quantile function estimate f̂(x; τ, λ) is not jointly piecewise linear as a function of (λ, τ),

but it possesses the marginal piecewise linearity as a function of λ−1 or τ respectively, with the

other value being fixed.
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Rosset (2009) derived a similar result under the unweighted kernel quantile regression that

f̂(x; τ, λ) moves piecewise linearly as both λ and τ move together in a linear subspace {(λ, τ) :

τ = aλ+ b with given a, b ∈ R}. Our theorem is more general in that it uncovers the complete

behaviors of θ̂ and f̂(x;λ, τ) as a function of (λ, τ).

3.2 Piecewise Linear Survival Function Estimator

We propose a nonparametric CSF estimator based on the CKQR solutions described above.

First, (11) implies that, given any fixed λ, the conditional quantile moves piecewise linearly in

τ :

f̂λ(x; τ) = f̂(x; τ, λ) = f̂λ(x; τ ℓ) +
hℓ2(x)

λ
(τ − τ ℓ). (12)

Due to the piecewise linearity of f̂λ(x; τ) in (12), the solution path {(τ ℓ, f̂λ(x; τ ℓ)) : ℓ =

1, · · · ,mλ} contains the complete conditional quantile information of T |X = x for all τ ∈ [0, τ0],

where mλ denotes the number of knots in the piecewise linear paths. Any quantile other than

those at the path knots can be easily obtained by interpolation. Using the fact that the quantile

function is the inverse of the probability function, we propose the CSF estimator:

Ŝλ(t|x) =



















1 if t ≤ f̂λ(x; 0)

1−
{

f̂ℓ+1−t

f̂ℓ+1−f̂ℓ
τ ℓ + t−f̂ℓ

f̂ℓ+1−f̂ℓ
τ ℓ+1

}

if t ∈
(

f̂ ℓ, f̂ ℓ+1
]

1− τ0 if t > f̂λ(x; τ0),

(13)

where f̂ ℓ and f̂ ℓ+1 denote f̂λ(x; τ ℓ) and f̂λ(x; τ ℓ+1), respectively.

An advantage of the proposed estimator is that it can handle data with a moderately large

d due to the employment of the kernel trick. The estimator can also be used for data from a

heterogeneous or a heavy-tailed conditional survival time distribution of T |X = x.

3.3 Asymptotic Property

We carry out asymptotic analysis for the proposed estimator. In particular, the uniform con-

vergence of the risk of the CKQR quantile estimator is established, providing theoretical justi-

fications for the proposed CSF estimator. Under no censoring, we could consider the standard

Statistica Sinica: Preprint 
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Survival Function Estimator via CKQR 11

quantile risk

R∗(f ; τ) = E [ρτ (T − fτ (x))|X = x] (14)

that is minimized by the τth conditional quantile of T |X = x, denoted by f∗
τ = argminf R

∗(f ; τ).

However, since the risk is not feasible due to presence of censoring, we consider the weighted

quantile loss,

ϕ(Z; f, τ) =
δ

G(Y |X)
ρτ (Y − fτ (X)), (15)

where Z = (Y, δ,X). Now R(f, τ) = E [ϕ(Z; f, τ)|X = x] is identical to R∗(f ; τ) in (14) by (4).

The proposed CKQR minimizes

R̂n,reg(f ; τ) =
1

n

n
∑

i=1

δi

Ĝn(Yi|xi)
ρτ (Yi − fτ (xi)) +

αn

2
‖fτ‖2HK

, (16)

which is identical to (7) by letting αn = λ/n. Let f̂τ be the estimated quantile function from

the CKQR solution, the minimizer of R̂n,reg(f ; τ).

Theorem 2 states that, the entire trajectory of the estimated conditional quantile gets closer

to the true one as n increases, in the sense that the associated risk (14) of f̂τ converges to that

of fτ uniformly over τ ∈ [0, τ0]. This implies that the τ -path can be regarded as a reasonable

quantile function estimate, which justifies the proposed survival function (13) due to their inverse

relationship. The sketch of the proof is provided in the supplementary materials.

Theorem 2. Assume that

(A1) The quantile regression function fτ (x) is identifiable for all τ ∈ [0, τ0]

(A2) ‖ sup
x
K(·,x)‖2HK

< ∞ and ‖f‖2HK
< ∞;

(A3) There exists a constant κ such that P (C = κ) > 0 and P (C > κ) = 0;

(A4) sup
x
supt∈[0,κ] |Ĝn(t|X)−G(t|X)| → 0 almost surely.

Statistica Sinica: Preprint 
doi:10.5705/ss.202014.0071
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Under (A1) – (A4), we have

sup
τ∈[0,τ0]

∣

∣

∣
R∗(f̂τ ; τ)−R∗(f∗

τ ; τ)
∣

∣

∣
→ 0 almost surely. (17)

The first condition (A1) here states the underlying identifiability condition of the regression

function. The regularity condition (A2) is quite standard in RKHS theory. (A3) is valid in

many clinical studies with an administrative censoring and it simplifies theoretical arguments

by ensuring Y is bounded. In practice, the maximum of follow-up can be used as κ. Condition

(A4) states the strong uniform consistency of the censoring time survival function estimator. For

example, the KM estimator enjoys the strong uniform consistency (Stute and Wang (1993)). If

the PH model is correctly specified for the censoring time, then the strong uniform consistency

of the survival function estimator from the Cox PH regression follows the strong consistency of

the regression coefficient estimator (Tsiatis (1981); Andersen and Gill (1982)) and the uniform

strong consistency of the cumulative baselines hazard estimator (Kosorok (2007)).

4 Computational Algorithm for Two-Dimensional So-

lution Surface

Joint piecewise linearity enables us to develop an efficient algorithm to compute the entire CKQR

solution surface. Our algorithm iteratively identifies Sℓ on the (λ × τ)-plane and updates the

solutions at the boundaries of Sℓ by applying Theorem 1. A key issue is how to accurately and

efficiently identify Sℓ. In fact, Sℓ is a convex polygon that satisfies the linear constraints

∀i ∈ Eℓ : uℓi − ωi ≤ gℓi1λ+ (gℓi2 − wi)τ ≤ uℓi ,

∀i ∈ Lℓ :
{

yi − hℓ1(xi)
}

λ− hℓ2(xi)τ ≤ vℓi ,

∀i ∈ Rℓ :
{

yi − hℓ1(xi)
}

λ− hℓ2(xi)τ ≥ vℓi ,

where uℓi = gℓi1λ
ℓ + gℓi2τ

ℓ − θℓi and vℓi =
{

f̂ ℓ(xi)− hℓ2(xi)
}

λℓ − hℓ2(xi)τ
ℓ. The basic idea of the

algorithm for computing the CKQR solution surface is similar to that for the weighted support

vector machine (WSVM) developed by Shin, Wu and Zhang (2014), where the computational
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complexity of the two-dimensional solution surface algorithm is rigorously explored. We relegate

the details to the supplementary materials.

We use the lung data set in survival package in R (Loprinzi, Laurie, Wieand, Krook,

Novotny, Kugler, Bartel, Law, Bateman and Klatt (1994)) to illustrate the proposed algo-

rithm. The lung data set contains the survival times of 228 patients with advanced lung can-

cer from the North central cancer treatment group. We discarded 61 patients with at least

one missing covariate. Of the 167 patients, 120 died and 47 survived during the study pe-

riod. There were eight covariates measured at diagnosis, including the institution diagnosed at,

age in years, gender, ECOG performance score, two versions of Karnofsky performance scores,

calories consumed at meals, and weight loss in last six months. We used the radial kernel

K(x,x′) = exp{−‖x − x′‖2/(2σ2)}, where the bandwidth parameter σ was set to be the me-

dian pairwise distance of the predictors for uncensored data. It took 2.0525 minutes (on a PC

equipped with i5-3590 CPU 3.40GHz and 4GB RAM) to compute the entire solution surface

which consists of 38,777 vertices and 9,649 sets of Sℓ, i.e., the pieces of the linear surfaces. In

Figure 1, (a) depicts the Sℓs. The x-axis is λ (truncated at 1 for better visualization) and the

y-axis is τ . The red dots and the (dashed) lines represent vertices and edges of all Sℓs produced

during the algorithm. Here (b) is a three-dimensional plot of the piecewise linear solution surface

of θ̂25 over the (λ× τ)-plane. The x-, y-, and z-axis are λ, τ and θ25, respectively. In fact, (a)

can be regarded as a projection of the solution surface in (b) on the (λ× τ)-plane. Since there

are 120 uncensored observations, we have solution surfaces of θ1, · · · , θ120 in total. The other

119 solutions can be depicted as was θ25 in (b).

The proposed two-dimensional solution surface algorithm, as well as Theorem 1 and Corol-

lary 1, are not restricted to the CKQR. These results are quite general and also hold for any

WKQR problem with arbitrary non-negative weights. Censored observations have no effect on

solving the CKQR problem once they are used for estimating Ĝn(·|x), since ωi = 0 for all cen-

sored observation. It is thus enough to apply the algorithm to the reduced set of uncensored

observations. Finally, it is straightforward to obtain a marginal path from the two-dimensional

solution surface, making it convenient to tune λ as described in Section 5.1.
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(a) Vertices of Sℓ (b) A CKQR Solution Surface of θ25

Figure 1: Two-dimensional solution surfaces of CKQR for the lung data: (a) shows vertices
and edges of the Sℓs produced from the proposed algorithm and (b) depicts the solution
surface of θ̂25.

5 Additional Issues

5.1 Tuning λ

The estimator Ŝλ(t|x) depends on the value of the regularization parameter λ, since the CKQR

solution depends on both λ and τ . The choice of λ plays a crucial role in finite-sample perfor-

mance. We propose a systematic way to select the optimal λ using cross validation.

We first define a proper tuning criterion. The conditional density estimator of T |X = x,

denoted by p̂λ(t|x) or simply p̂λ, can be derived from Ŝλ(t|x) using the relationship Sλ(t|x) =
∫∞
t pλ(u|x)du. We use the Kullback-Leibler (KL) loss for p̂λ as a tuning criterion. The KL

loss is L(p, p̂λ) = E [log(p/p̂λ)], where p denotes the unknown true density of interest. Since

minimizing the KL loss is equivalent to maximizing E [log(p̂λ)], one could maximize its empirical

counter part, the conditional log-likelihood
∑

i∈{i:δi=1} log p̂λ(yi|xi) for uncensored observations,

where the density p̂λ(y|x) is obtained by differentiating the piecewise linear survival function

estimate (13) and is therefore piecewise constant. As this fails to utilize information within

censored observations, we use the complete likelihood of the censored data as a tuning criterion,

n
∑

i=1

δi log p̂λ(yi|x) + (1− δi) log Ŝλ(yi|x), (18)
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and propose to select the optimal λopt by maximizing (18). A grid search is often employed to

choose the optimal λ. To achieve this, we exploit the two-dimensional solution surface obtained

by the algorithm given in Section 4. Similar to Shin, Wu and Zhang (2014) for the WSVM,

we use all the distinctive λ values of the vertices of the Sℓs obtained during the algorithm as a

grid. One advantage about the grid based on the two-dimensional surface, when compared to

the regular lattice grid, is that the proposed grid is adaptive in the sense that the coarseness

of the grid is automatically controlled by the complexity of the two-dimensional solutions. If

the solution surface is complicated, the grid would be fine, and coarse if the solution surface is

relatively simple.

Rather than (18), the (empirical) quantile risk could be considered as an alternative. In

the standard KQR, Rosset (2009) developed an algorithm to track the path of f̂(x;λ∗, τ) as a

function of τ , where λ∗ minimizes the cross-validated quantile risk for a given τ .

5.2 Violation of Monotonicity

The monotone decreasing property is an essential feature of any survival function and should

be satisfied by its estimator. However, we may have an estimate Ŝλ(·|x) such that Ŝλ(t1|x) >

Ŝλ(t2|x) for some t1 > t2. This happens due to the so-called quantile crossing (He (1997)).

Quantile crossing is frequently encountered in nonparametric quantile regression. It occurs

when f̂(x; τ1) > f̂(x; τ2) for some x and quantile levels τ1 < τ2. Quantile crossing makes the

estimated quantile function not invertible and thus the associated survival function cannot be

properly defined. In the context of the standard quantile regression, Rosset (2009) proposed

a simple remedy for quantile crossing by taking f̂λ(x; τ1) to be the same as f̂λ(x; τ2) (or vice

versa). A similar idea can be applied here. If the conditional quantile path as a function of τ is

decreasing in that region, we make the curve flat within the region.

Proposition 1. For any given λ, if τ1 < τ2 but f̂λ(x; τ1) > f̂λ(x; τ2) then either

E
[

ρτ1

(

T − f̂λ(x; τ1)
)

|X = x
]

≥ E
[

ρτ1

(

T − f̂λ(x; τ2)
)

|X = x
]

or

E
[

ρτ2

(

T − f̂λ(x; τ1)
)

|X = x
]

≤ E
[

ρτ2

(

T − f̂λ(x; τ2)
)

|X = x
]

.

Proposition 1 essentially states that the quantile risk is not escalated after such a correction.
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This is a direct extension of Proposition 7 in Rosset (2009), and the proof is omitted.

5.3 Non-identifiability Issue with τ close to 1

There is an issue that the upper regression quantile with τ close to 1 may not be estimable due

to the loss of information caused by censorship. This can be true when all the censoring happens

before fτ (x) and there is not enough information available at or after fτ (x). Wang and Wang

(2009) provide a sufficient condition for fτ (x) being estimable; G(fτ (x)) > 0. In order to check

the condition at a given τ , consider Ĥn(τ) = {i : Ĝn(f̂τ (xi)|xi) = 0, i = 1, · · · , n}. If there are

not many such cases, |Ĥn(τ)|/n is smaller than a pre-specified cutoff value γ ∈ (0, 1), then fτ (x)

is said to be estimable. For any given x we have a complete solution path of f̂τ (x) as a function

of τ , and hence are able to restrict our attention to [0, τ̂0] where τ̂0 = supτ{τ : |Ĥn(τ)| ≤ γn}.

Peng and Huang (2008) discussed how to choose τ0 in practice.

6 Numerical Results

In this section, we report on numerical experiments to evaluate finite-sample performance of the

proposed CSF estimator under various scenarios. We first generated the vector of covariates

x
iid∼ Nd(0, I), with 0 and I, a d-dimensional zero vector and identity matrix, respectively. For

the survival time T , we took

log T = f(x) + v(x)ǫ, (19)

which includes the AFT model as a special case. Different choices of the error distribution for

ǫ with v(x) = 1 leads to some common survival models: extreme value distribution for the PH

model and logistic distribution for the proportional odds (PO) model.

In particular, our experiments include four different error distributions for ǫ: the standard

extreme value, logistic, standard normal, and t distribution with degrees of freedom of 5; they

are denoted by PH, PO, NR, and t(5), respectively in the tables; two different shapes for f(x):

a linear shape with f1(x) = xTβ, a non-linear shape f2(x) = cos(xTβ), where the coefficient

vector β = (1, · · · , 1)T /
√
d; two different shapes for v(x): the homoscedastic error v1(x) = 1,

the heteroscedastic error, v2(x) = xTx/d; two different input dimensions: d = 3, d = 50. The

sample size and the censoring level were fixed at n = 200 and P (δ = 0) = 0.30, respectively.
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We denote the conditional survival function estimator derived from CKQR by PLE. The

methods under comparison included the parametric AFT model (1) with the extreme value

distribution (AFT-PH), logistic distribution (AFT-PO), standard normal distribution (AFT-

NR)), the standard Cox regression (Cox) method, and a smoothing-spline based nonparametric

hazard regression (NP-Cox) of Leng and Zhang (2006). The AFT and Cox PH models were

fitted with functions in the R-{survival} package. The method of Leng and Zhang (2006) was

implemented by the R-{cosso} package. For the proposed CSF estimator, a radial kernel was

employed; the associated bandwidth σ was set as in Section 4.

To evaluate performance of the various methods, we further generated an independent test

set {Yk, δk,xk}, k = 1, · · · , ñ, with ñ = 1000. The estimators were evaluated by D̄RISE =

ñ−1
∑ñ

k=1Dk,RISE, where Dk,RISE is the root integrated squared error (RISE) of the k subject

in the test set,

Dk,RISE =

√

∫ ∞

0

[

Ŝ(t|xk)− S(t|xk)
]2

dt. (20)

The integration in Dk,RISE was numerically computed over a fine grid on 99.9% of the support

of the random variable T |xk, k = 1, · · · , ñ.

The censoring time model used for ICPW is an important factor that affects performance

of the proposed method. We took C = exp
{

γTx+ ǫ′
}

− ∆, where γ = (1, · · · , 1)T /
√
d and a

non-random constant ∆ controled the censoring level. We considered distribution of the random

error for the censoring time ǫ′ to be the extreme value (PH), logistic (PO), and standard normal

distribution (NR). We used Cox PH regression to estimate Ĝn(·|x); this is valid only when ǫ′

has an extreme value distribution.

Table 1 summarizes the performance of different methods in terms of D̄RISE when ǫ′ follows

the extreme value and Ĝn(·|x) is estimated under the correctly specified model. With (f1, v1),

the AFT model assumption is satisfied, so it is not surprising that the AFT model with the

true error distribution performs the best. For example, the AFT model under the extreme

value distribution error (AFT-PH) outperforms all of the others. However, the AFT model’s

performance is not good when f(x) is highly nonlinear. The AFT assumes iid errors, so the

model also suffers when h(x) is not constant. This is echoed in Table 1.

The two Cox PH models do not perform well when the PH assumption is violated. The

NP-Cox shows better performance than the standard Cox model when d is large due to the use
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p (f, v) ǫ AFT-PH AFT-PO AFT-NR Cox NP-Cox PLE

3

(f1, v1)

PH 0.367 0.598 0.699 0.551 0.997 0.911
PO 0.982 0.410 0.441 0.676 1.061 0.970
NR 0.734 0.464 0.433 0.764 1.259 1.047
t(5) 0.578 0.382 0.463 0.679 1.013 0.911

(f1, v2)

PH 1.831 1.954 2.300 1.764 2.047 1.294
PO 1.681 1.645 1.883 1.705 1.916 1.412
NR 1.975 1.758 1.954 1.906 2.154 1.446
t(5) 1.734 1.605 1.875 1.728 2.019 1.280

(f2, v1)

PH 0.955 1.087 1.171 1.034 1.238 0.943
PO 1.246 0.729 0.761 0.878 1.167 0.999
NR 1.344 1.222 1.221 1.290 1.526 1.082
t(5) 1.030 0.938 0.991 1.037 1.182 0.935

(f2, v2)

PH 2.274 2.422 2.701 2.144 1.964 1.359
PO 1.868 1.845 2.075 1.681 1.892 1.423
NR 2.297 2.217 2.383 2.045 2.100 1.463
t(5) 2.010 1.958 2.193 1.779 1.972 1.298

50

(f1, v1)

PH 1.717 1.856 1.898 1.899 2.425 1.769
PO 1.902 1.668 1.650 1.921 2.139 1.490
NR 1.963 1.901 1.819 2.155 2.898 2.079
t(5) 1.685 1.613 1.643 1.867 2.411 1.674

(f1, v2)

PH 1.839 1.945 2.026 1.975 2.511 1.849
PO 1.925 1.740 1.747 1.986 2.114 1.563
NR 2.070 1.971 1.919 2.229 2.993 2.135
t(5) 1.773 1.687 1.738 1.936 2.463 1.722

(f2, v1)

PH 2.002 1.906 1.920 2.131 1.803 1.245
PO 2.031 2.123 2.147 2.150 1.722 1.255
NR 2.109 1.822 1.799 2.081 2.008 1.219
t(5) 2.350 2.285 2.208 2.454 1.779 1.556

(f2, v2)

PH 2.143 2.230 2.289 2.229 2.189 1.371
PO 2.130 1.898 1.904 2.142 1.886 1.303
NR 2.420 2.356 2.306 2.525 1.840 1.633
t(5) 2.054 1.968 2.002 2.171 1.863 1.305

Table 1: Averaged D̄RISE over 100 independent repetitions for different scenarios when
the censoring time error satisfies the PH assumption: The proposed PLE outperform
or at least comparable to all other competing methods except the case with p = 3
and (f1, v1). Five number summary of the MC standard deviations of each cells is
(0.074, 0.134, 0.193, 0.242, 0.971).
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p (f, v) ǫ
PO NR

AFT Cox NPCox PLE AFT Cox NPCox PLE

3

(f1, v1)

PH 0.365 0.547 1.008 0.908 0.362 0.553 0.999 0.994
PO 0.410 0.661 1.080 0.930 0.401 0.691 1.164 1.101
NR 0.435 0.777 1.308 1.034 0.432 0.764 1.241 1.202
t(5) 0.385 0.700 1.050 0.906 0.394 0.694 1.226 1.065

(f1, v2)

PH 1.861 1.802 1.973 1.300 1.831 1.762 1.849 1.404
PO 1.661 1.714 1.998 1.396 1.638 1.706 1.843 1.548
NR 1.976 1.975 2.147 1.448 1.944 1.884 2.133 1.578
t(5) 1.622 1.789 1.982 1.295 1.611 1.726 1.968 1.383

(f2, v1)

PH 0.956 1.033 1.282 0.929 0.955 1.033 1.271 1.023
PO 0.729 0.820 1.098 0.884 0.728 0.881 1.170 1.052
NR 1.218 1.275 1.595 1.066 1.216 1.299 1.490 1.207
t(5) 0.937 1.005 1.227 0.891 0.941 1.067 1.296 1.040

(f2, v2)

PH 2.293 2.147 2.024 1.352 2.271 2.143 1.997 1.410
PO 1.854 1.672 1.903 1.368 1.846 1.698 1.872 1.509
NR 2.390 2.047 2.208 1.452 2.384 2.048 2.150 1.568
t(5) 1.963 1.774 1.854 1.261 1.968 1.789 1.959 1.380

50

(f1, v1)

PH 1.706 1.909 2.458 1.750 1.719 1.874 2.387 1.817
PO 1.687 1.941 2.033 1.425 1.649 1.918 2.101 1.551
NR 1.843 2.182 2.892 2.062 1.767 2.109 2.938 2.118
t(5) 1.642 1.909 2.342 1.652 1.575 1.828 2.345 1.710

(f1, v2)

PH 1.825 1.980 2.478 1.816 1.837 1.949 2.478 1.887
PO 1.764 2.019 2.182 1.506 1.722 1.991 2.160 1.628
NR 1.939 2.250 2.976 2.115 1.857 2.159 2.967 2.168
t(5) 1.714 1.972 2.436 1.706 1.654 1.903 2.406 1.771

(f2, v1)

PH 2.022 2.161 1.820 1.207 2.005 2.107 1.850 1.326
PO 1.840 2.049 1.643 1.076 1.795 2.073 1.786 1.308
NR 2.227 2.456 2.080 1.472 2.171 2.417 2.036 1.618
t(5) 1.925 2.132 1.791 1.161 1.881 2.134 1.812 1.295

(f2, v2)

PH 2.132 2.237 1.883 1.316 2.119 2.201 1.858 1.425
PO 1.921 2.123 1.862 1.165 1.889 2.139 1.741 1.386
NR 2.325 2.535 2.215 1.552 2.286 2.507 2.109 1.693
t(5) 1.983 2.166 1.783 1.237 1.958 2.190 1.812 1.357

Table 2: Averaged D̄RISE over 100 independent repetitions for different scenarios when
the censoring time errors do not satisfy the PH assumption: The results are similar to
the case when the censoring time is correctly specified, meaning that the proposed PLE
is not overly sensitive against the model misspecification for C. Five number summary of
the MC standard deviations of each cells is (0.076, 0.130, 0.184, 0.233, 1.030).
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of penalization. Furthermore, it is observed that the Cox PH regression does not perform so

well as expected under the PH assumption with homogeneous variance (v1), regardless of the

shape of the mean function. One reason for this is that some survival functions from the Cox

regression never touch zero even for a very large survival time due to the censoring. In this

regard, D̄RISE (20) is not a favorable measure for the Cox regression estimator although the

support for integration is truncated.

We observe that the proposed estimator (PLE) generally outperforms the competing meth-

ods in terms of D̄RISE , except in the simplest case with p = 3 and (f1, v1). In addition, its

performance is quite stable over various scenarios, while other methods depend on the under-

lying data generating structure which is unknown a priori. This is not surprising because our

estimator is constructed from the flexible CKQR solution, which does not heavily rely on the

particular model assumption. Finally, the PLE performs very well for d = 50, since the CKQR

exploits the kernel trick and is stable even for a large-dimensional covariate (Zhang (2002)).

Table 2 reports performance of the methods when ǫ′ follows a logistic or normal distribution

and the censoring time C does not satisfy the PH assumption. To avoid redundancy, we only

report the best AFT model fit among the three. Throughout all the experiment settings, the

proposed PLE performs very well compared to other methods, even when C does not satisfy

the PH assumption, implying that the proposed estimator is not overly sensitive to the model

misspecification of the censoring time.

In summary, the proposed piecewise linear survival function estimator is promising in practice

when the covariate dimension d is moderately large, and/or when there is not enough information

about underlying data structure.

7 Data Analysis

In this section, we revisit the lung cancer data set to demonstrate performance of the proposed

piecewise linear CSF estimator. Based on the two-dimensional solution surface in Section 4,

we obtained an adaptive tuning grid for λ and the corresponding survival function estimator

Ŝλ(t;x) defined in (13). We then applied a leave-one-out cross validation (LOOCV) to tune λ.

The cross-validated conditional log-likelihood (18) is plotted for different values of λ in Figure
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2-(a), and the likelihood is maximized at λopt = 0.0677 (red vertical line). In Figure 2–(b),

the τ -paths of θ̂1, · · · , θ̂120 at the optimal λopt for τ ∈ [0, τ0] are depicted. The τ -paths are

simply cross-sections at λopt of the two-dimensional solution surfaces, and are piecewise linear,

as shown by Corollary 1. We estimate the upper limit of the estimable quantile level τ̂0 = 0.892

with a cutoff value of γ = 0.05 (the blue solid vertical line at the right-end). Panel (c) illustrates

the proposed piecewise linear estimates for the first five patients in the data set, along with the

estimates given by the competing methods described in Section 6. The proposed PLE estimates

are horizontally cut at 1 − τ̂0 = 0.108 (marked by the blue horizontal line) below which the

function value is not estimable.

In order to evaluate the performance of the proposed method, we further carried out the

LOOCV and report the cross-validated log-likelihood. The Cox-regression-based models cannot

be evaluated in terms of the log-likelihood since they return piecewise constant survival function

estimates, which often gives zero values of likelihood, and are therefore not considered here.

For the same reason, it is not fair to directly compare the proposed piecewise estimator to the

smooth ones from the AFT model. To overcome this, we consider an additional step to make

the associated CSF estimates smooth: we first generate N random samples from the estimated

survival function, then compute the kernel density estimate (KDE) from these N samples. The

likelihood can be evaluated based on the smooth KDEs. Although the AFT models do not

require such an additional step, we applied it for a fair comparison. This additional step cannot

be applied to the estimate from the Cox model, which often provides incomplete survival curves

in the sense that some of them may fail to converge to zero even for large T . The cross-validated

log-likelihood evaluated from the KDE is a random quantity, and its standard error gets smaller

as N increases; we set N sufficiently large, say 10, 000. Figure 2–(d) depicts the boxplot of the

LOOCV log-likelihoods. It is clear that the PLE performs significantly better than the AFT

models.

8 Discussion

We develop nonparametric quantile regression in RKHS and propose a survival function estima-

tor for censored data analysis. The new nonparametric estimator works very well even in the
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Figure 2: Conditional survival function estimator for lung Data: the panel (a) shows cross-
validated conditional log-likelihood for different λ and the (red) vertical line represents
the selected optimal λopt; (b) depicts solution paths of θ̂1, · · · , θ̂48 as a function τ ∈ [0, τ0]
at λopt where τ0 is estimated by 0.892 at a cutoff value of γ = 0.05 (blue solid vertical
line); (c) shows estimated CSFs for the first five patients and the results look similar; (d)
depicts boxplots of LOOCV log-likelihoods computed from different CSF estimates and
PLE outperforms all others.
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case of large-dimensional covariates or heteroscedastic errors, showing favorable finite-sample

performance. The asymptotic analysis provides a theoretical justification for the proposed ap-

proach.

It is not clear yet how to build a reasonable confidence band of the survival function estimator

obtained from the CKQR solution surface. The asymptotic distribution of the quantile for any

given τ can be possibly derived by extending the asymptotic results for SVM (Jiang, Zhang and

Cai (2008); Li, Artemiou and Li (2011)). What we need, however, is the variability of survival

probability for any given time, t. This is not straightforward and is worth further exploration.

Another interesting problem for the proposed estimator is how to incorporate variable selection

in the estimation. Penalized regression is an appealing approach, but there are some difficulties

in this context. For each fixed τ and λ, one can conduct variable selection using some shrinkage

methods, but how to assemble sparse estimators at different quantile levels to obtain an overall

sparse survival function estimator is an open question. This is one of the research directions in

our follow-up investigation.

In practice, the proposed algorithm for computing the two-dimensional solution surface may

be slow when n is large. Instead we can use the marginal solution path algorithm developed by

Takeuchi, Nomura and Kanamori (2009). In this case, the exhaustive grid search for λ based on

cross-validation may be infeasible due to heavy computation. Our experiences suggest setting

λ = cn for a value of c smaller than .1.

Supplementary Materials

Proofs of Theorem 1 and 2, and the two-dimensional solution surface algorithm for the censored

kernel quantile regression can be found in the supplementary materials.
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