Measuring stationarity in long-memory processes

Kemal Sen, Philip Preuß, Holger Dette
Ruhr-Universität Bochum
Fakultät für Mathematik
44780 Bochum
Germany
email: kemal.sen@ruhr-uni-bochum.de
email: philip.preuss@ruhr-uni-bochum.de
email: holger.dette@ruhr-uni-bochum.de

January 31, 2014

Abstract

In this paper we consider the problem of measuring stationarity in locally stationary long-memory processes. We introduce an L_2-distance between the spectral density of the locally stationary process and its best approximation under the assumption of stationarity. The distance is estimated by a numerical approximation of the integrated spectral periodogram and asymptotic normality of the resulting estimate is established. The results can be used to construct a simple test for the hypothesis of stationarity in locally stationary long-range dependent processes. We also propose a bootstrap procedure to improve the approximation of the nominal level and prove its consistency. Throughout the paper, we will work with Riemann sums of a squared periodogram instead of integrals (as it is usually done in the literature) and as a by-product of independent interest it is demonstrated that the two approaches behave differently in the limit.

AMS subject classification: 62M10, 62M15, 62G10
Keywords and phrases: spectral density, long-memory, non-stationary processes, goodness-of-fit tests, empirical spectral measure, integrated periodogram, locally stationary process, bootstrap