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Abstract: Modeling high-dimensional functional responses utilizing multi-dimensional func-

tional covariates is complicated by spatial and/or temporal dependence in the observations

in addition to high-dimensional predictors. To utilize such rich sources of information we

develop multi-dimensional spatial functional models that employ low-rank basis function

expansions to facilitate model implementation. These models are developed within a hier-

archical Bayesian framework that accounts for several sources of uncertainty, including the

error that arises from truncating the infinite-dimensional basis function expansions, error in

the observations, and uncertainty in the parameters. We illustrate the predictive ability of

such a model through a simulation study and an application that considers spatial models

of soil electrical conductivity depth profiles using spatially dependent near-infrared spectral

images of electrical conductivity covariates.

Key words and phrases: Basis functions, Diffuse reflectance spectroscopy, Karhunen-Loève,

Matrix normal, Penetrometer, Principal components, Soil electrical conductivity.

1 Introduction
With advances in instrumentation such as satellites, sensor networks, data storage tags,

and spectroscopes, scientists are often faced with the challenging problem of incorpo-

rating extremely high-dimensional covariates into statistical models. The efficient use

of such “big data” is the subject of much active research in the statistics and computer

science communities. Such problems are compounded when these data are collected

over space and/or time, thereby introducing dependence. In cases where the response is

also spatial and/or temporal, this dependence may be accounted for through covariates,

but may also require temporal and/or spatially-explicit error structures. Another com-

plication arises when the responses themselves are inherently functional (e.g., “curves”
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2 YANG, WIKLE, HOLAN, MYERS AND SUDDUTH

in time and/or space). This paper presents methodology that can accommodate multi-

dimensional covariates that vary in space, as well as purely spatial scalar covariates, in

the context of modeling spatially-dependent functional responses, with the goal being

spatial prediction. The methodology is presented using a hierarchical Bayesian approach

to account for uncertainties that arise in the observations, process, and parameters.

The use of two-dimensional functional predictors (i.e., “image predictors”) has seen

increased utility in statistical models over the last few years (e.g., see Reiss and Ogden

(2010); Morris et al. (2011); Holan et al. (2010, 2012); Martinez et al. (2013); Yang

et al. (2013)). Holan et al. (2010) showed in the context of insect communication that

one could treat a time-frequency representation of a high-frequency nonstationary time

signal as a two-dimensional “image” and, with suitable functional dimension reduction

and stochastic search variable selection (SSVS), easily incorporate such big data covari-

ates into traditional generalized linear mixed models. This type of modeling was subse-

quently considered in the context of business cycle estimation (Holan et al. (2012)) and

in characterizing spawning success of shovelnose sturgeon by incorporating nonlinear

interactions into the model (Yang et al. (2013)). Recently, Martinez et al. (2013) con-

sidered a functional mixed model approach to modeling acoustic signals associated with

bats. To our knowledge, modeling spatially-correlated functional data with spatially-

dependent image predictors has not been considered to date.

The use of spatially-dependent image predictors is compounded when one has re-

sponses that are spatially-dependent functions as well. Although functional responses

have been considered in the context of image predictors (e.g., Morris et al. (2011)), the

spatially-dependent functional case has not been considered. Functional data analysis

is fairly mature in statistics (e.g., Bosq (2000); Ramsay and Silverman (2005), among

others), yet spatial functional data analysis has just recently become an active sub-field

of spatial statistics and functional data analysis. Excellent reviews of recent work in

the area can be found in Delicado et al. (2010), Ruiz-Medina (2012a), and Kokoszka

(2012). In general, geostatistical predictive and clustering approaches have focused

on co-kriging ideas (e.g., Goulard and Voltz (1993); Monestiez and Nerini (2008); Gi-

raldo et al. (2010, 2012)) and the general theory of spatial autoregressive and mov-

ing average Hilbertian processes (Ruiz-Medina (2011, 2012b); Ruiz-Medina and Es-

pejo (2013)). In addition, a more traditional functional principal components approach

to spatially-dependent functions, where interest is on estimation of mean functions, is
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given in Gromenko et al. (2012) and Gromenko and Kokoszka (2013). These approaches

have been from the classical perspective, with relatively few Bayesian implementations.

Notable exceptions include Baladandayuthapani et al. (2008) who consider a Bayesian

hierarchical model with relatively simple spatial dependence on the functions at low lev-

els of the hierarchy. This was extended by Zhou et al. (2010) to have a more flexible

covariance structure, and was implemented using an expectation-maximization (EM)

algorithm.

The contribution of this paper is then the development of methodology for model-

ing spatially-dependent functional responses in terms of spatially-dependent functional-

image predictors, along with spatially-dependent covariates, within a Bayesian paradigm

that can account for the uncertainty associated with data, spatial processes, and parame-

ters. Section 2 describes the methodology. A motivating example of estimating electrical

conductivity in soils using visible and near-infrared (VNIR) spectral images is given in

Section 3, followed by a discussion and concluding remarks in Section 4. For conve-

nience of exposition, a comprehensive description of model choices, simulation study,

sensitivity analyses corresponding to the application, full conditional distributions, and

details of the sampling algorithm and implementation are provided in an online supple-

ment.

2 Methodology

In this section, we introduce a class of spatially-explicit functional models. Different

from traditional spatial models, the proposed models allow for functional responses and

functional covariates. In general, these functional covariates can be curves of one di-

mension, images of two dimensions, or objects of higher dimensions. For simplicity, we

focus on two-dimensional image covariates that exhibit spatial dependence, although

the method is general with regards to the use of functional objects of higher dimension,

and can be easily generalized to account for interactions of functionals (e.g., see Yang

et al. (2013)). We note that the use of multiple truncated basis expansions effectively re-

duces this complicated spatial model to a multivariate multiple mixed-effects regression

model, greatly facilitating its implementation. Inference is performed in the Bayesian

hierarchical framework, which allows one to directly account for uncertainty associated

with observations, functional truncations, and parameters.

Statistica Sinica: Preprint 
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4 YANG, WIKLE, HOLAN, MYERS AND SUDDUTH

2.1 Spatially-Dependent Functional-Image Process Model
We denote a response functional to be a continuous spatial process {Y (s, d) : s ∈ D ⊂
R2, d ∈ D ⊂ R}, where D is a continuous spatial domain and D represents a con-

tinuous one-dimensional domain such as time or depth. For convenience of exposition,

we refer to this dimension as “depth” to coincide with the application presented in Sec-

tion 3, but note that there are many applications in which this index would correspond

to time. Also, denote Xj(s,uj) the jth observed two-dimensional functional covariate,

j = 1, . . . , J , at spatial location s with {uj = (d, ωj)
′ : d ∈ D, ωj ∈ Ω} corresponding

to the index of the two image dimensions of interest (e.g., depth and wavelength). The

j subscript on uj serves to indicate that the functional coordinates may be different for

the different covariates. However, to simplify notation, we subsequently assume that the

functional coordinates are the same for all “image” covariates and drop the subscript.

To give this notation some perspective relative to our application in Section 3, we let Ω

correspond to the continuous frequency (or wavelength) domain.

The primary model can be written at location s and depth d as the relation between

the response functional, Y (s, d), and functional covariates as follows

Y (s, d) =

J∑
j=1

∫
Xj(s,u)βj(u, d)du + z′(s)δ(d) + η(s, d), (2.1)

where βj(u, d) is a square integrable functional coefficient corresponding to Xj(s,u),

δ(d) is a np-vector of depth-specific regression coefficients associated with the np × 1

spatially indexed covariate vector z(s), and η(s, d) is a mean zero random process cap-

turing spatial and depth dependence. Typically, we specify η(s, d) to be a Gaussian pro-

cess with covariance function C(s, s′; d, d′) ≡ cov(η(s, d), η(s′, d′)). In a traditional

spatial analysis, one might consider a three-dimensional spatial covariance function if

d corresponds to the vertical dimension, or a spatio-temporal covariance function if d

corresponds to time (e.g., Cressie and Wikle (2011)). Here, we deliberately keep these

indices separate given that the response and covariate vary functionally in the dimension

d, and, motivated by the application in Section 3, this depth dimension is assumed to op-

erate on a different scale of variability relative to the two-dimensional horizontal spatial

component of the process. That is, in the application that motivates this work, it is rea-

sonable to assume separability between the horizontal and vertical spatial dimensions.

This assumption can be relaxed, however, as discussed in Section 2.1.1. Different from
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traditional geostatistics concerning scalar or vector variables at location s, our method-

ology considers that the response variable of interest is a functional (curve) in depth (or

time) and some of the covariates are also functionals. In this sense, the function βj(u, d)

can be thought of as a kernel that “distributes” the covariate Xj(s,u) to the depth of the

response variable at location s.

We now derive a basis function expansion representation for the model in (2.1).

First, assume that {φjk(u) : k = 1, 2, . . .} form a complete orthonormal basis corre-

sponding to the jth functional covariate. Then, we have the unique representation of the

functional covariate Xj(s,u) =
∑∞

k=1 ξjk(s)φjk(u), where ξjk(s) are expansion co-

efficient functions (for a given location s) associated with the jth functional covariate.

By considering the same basis, we also have βj(u, d) =
∑∞

k=1 bjk(d)φjk(u), where

bjk(d) are expansion coefficient functions (for a given depth d) associated with the jth

square integrable function. Substituting these expressions into (2.1) and making use of

the orthogonality, we obtain

Y (s, d) =
J∑

j=1

∞∑
k=1

ξjk(s)bjk(d) + z′(s)δ(d) + η(s, d). (2.2)

In addition, assume that {ψi(d) : i = 1, 2, . . .} form a complete orthonormal

basis corresponding to depth. Then, we have the unique representations Y (s, d) =∑∞
i=1 αi(s)ψi(d), bjk(d) =

∑∞
i=1 bjkiψi(d), and η(s, d) =

∑∞
i=1 θi(s)ψi(d), where

αi(s) and θi(s) are expansion coefficient functions (of s) corresponding to Y (s, d) and

η(s, d), respectively, and bjki are expansion coefficients associated with bjk(d). Re-

placing Y (s, d), bjk(d), and η(s, d) in (2.2) with these expansions, we can rewrite (2.2)

as

∞∑
i=1

αi(s)ψi(d) =

J∑
j=1

∞∑
k=1

∞∑
i=1

ξjk(s)bjkiψi(d) + z′(s)δ(d) +

∞∑
i=1

θi(s)ψi(d), (2.3)

where we could additionally write the pth element of δ(d) as δp(d) =
∑∞

i=1 hpiψi(d),

depending on whether it was determined appropriate to view the depth response to the

spatial covariates, z(s), as functions.

Finally, assume that {w`(s) : ` = 1, 2, . . .} form a complete orthonormal basis cor-

responding to s, which then gives the unique representations αi(s) =
∑∞

`=1w`(s)ai`,

ξjk(s) =
∑∞

`=1w`(s)fjk`, and θi(s) =
∑∞

`=1w`(s)gi`, where ai`, fjk`, and gi` are

Statistica Sinica: Preprint 
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the expansion coefficients associated with αi(s), ξjk(s), and θi(s), respectively. As

with the δ(d) coefficients, if one is interested in considering the spatial predictors as

functionals, then it would be appropriate to expand the pth element of z(s) as zp(s) =∑∞
`=1w`(s)qp`. Substituting the above expansions into (2.3), we obtain the representa-

tion

∞∑
i=1

∞∑
`=1

w`(s)ψi(d)ai` =

J∑
j=1

∞∑
k=1

∞∑
i=1

∞∑
`=1

w`(s)ψi(d)fjk`bjki + z′(s)δ(d)

+

∞∑
i=1

∞∑
`=1

w`(s)ψi(d)gi`. (2.4)

From a functional data analysis perspective, using the spatial basis expansions to accom-

modate spatial structure is quite reasonable. However, one could alternatively consider a

more traditional spatial co-kriging approach (see the references in Section 1). We choose

the basis expansion formulation here because our application in Section 3 is concerned

with fairly smooth functional spatial surfaces, which, along with the potential for future

“big data” applications, is facilitated by the use of rank-reduced spatial models (e.g., see

the review in Wikle (2010)).

Similar to applications in traditional functional data analysis, one can consider finite

approximations to the infinite summations in (2.4), e.g.,

ni∑
i=1

n∑̀
`=1

w`(s)ψi(d)ai` =
J∑

j=1

nkj∑
k=1

ni∑
i=1

n∑̀
`=1

w`(s)ψi(d)fjk`bjki + z′(s)δ(d)

+

ni∑
i=1

n∑̀
`=1

w`(s)ψi(d)gi`. (2.5)

In practice, the truncations nkj , ni, and n` are typically problem specific and can be

chosen based on percent of variance explained, cross-validation, and/or sensitivity anal-

ysis. Critically, with a hierarchical Bayesian implementation (see Section 2.2), one

can account for potential truncation and observation error correspond to the response

and covariate functionals. Given these truncations, we denote the basis vectors asso-

ciated with depth and spatial location by ψ(d) ≡ [ψ1(d), . . . , ψni(d)]′ and w(s) ≡

Statistica Sinica: Preprint 
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[w1(s), . . . , wn`
(s)]′, respectively. Then, we can rewrite (2.5) in matrix form as

w′(s)Aψ(d) =
J∑

j=1

w′(s)FjBjψ(d) + z′(s)δ(d) + w′(s)Gψ(d), (2.6)

where A and G are n`×ni random matrices (see below) with elements {a`i} and {g`i},
respectively, Fj is an n`×nkj matrix with elements {fj`k}, and Bj is an nkj×ni matrix

with elements {bjki}, for i = 1, . . . , ni, k = 1, . . . , nkj , and ` = 1, . . . , n`. Thus, A is

related to the functional response, G the spatial error process, Fj the image covariates,

and Bj the “regression” coefficients associated with the image covariates.

In practice one is typically interested in prediction at a specific set of spatial lo-

cations and depths, say {s1, . . . , sns} and {d1, . . . , dnd
}, respectively. In this case, we

denote the ni × nd depth basis matrix as Ψ ≡ [ψ(d1), . . . ,ψ(dnd
)] and the ns × nl

spatial basis matrix as W ≡ [w(s1), . . . ,w(sns)]
′. Consequently, we can write (2.6)

for these specific locations and depths as

WAΨ =
J∑

j=1

WFjBjΨ + Z∆ + WGΨ, (2.7)

with ns×np matrix Z ≡ [z(s1), . . . , z(sns)]
′ and np×nd matrix ∆ ≡ [δ(d1), . . . , δ(dnd

)].

Assuming that W and Ψ are known orthogonal matrices of rank n` and ni, respectively

(which is true if nd > ni and ns > n`), it follows that W′W = In`
and ΨΨ′ = Ini

and we can simplify (2.7) to

A =
J∑

j=1

FjBj + W′Z∆Ψ′ + G.

In the case mentioned above where we treat z(s) and δ(d) as functionals expanded in

terms of spatial and depth basis functions, this further reduces to

A =
J∑

j=1

FjBj + QH + G, (2.8)

where Z = WQ, Q is an nl × np matrix of expansion coefficients associated with

the spatial covariates, and H ≡ ∆Ψ′ is an np × ni matrix of associated expansion

coefficients associated with the depth-specific regression coefficients. Consequently,

Statistica Sinica: Preprint 
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one advantage of our approach is that by using multiple reduced-rank basis expansions,

our model effectively reduces to a multivariate multiple mixed-effects regression model

with response matrix A, covariates Fj and Q, and parameters Bj , where G is a random

error matrix.

2.1.1 Error Distributions
As previously described, η(s, d) is a mean-zero spatial Gaussian random process that,

in the application that motivates our work (Section 3), is reasonably assumed to be sep-

arable in the horizontal and vertical dimensions. A convenient way to represent a matrix

variate separable Gaussian process is via a matrix normal distribution, as introduced

by Dawid (1981). That is, generally, if an m × t matrix U follows a matrix normal

distribution, it can be expressed as U ∼ Nm,t(L,Σm,Σt), where L is an m × t ma-

trix of mean values, Σm is an m × m covariance matrix between rows, and Σt is an

t × t covariance matrix between columns. This can also be written as a multivariate

normal distribution with vec(U) ∼ MVN(vec(L),Σt ⊗ Σm), where vec(U) is the

vectorization of a matrix U, and one can see by the Kronecker product that the stan-

dard matrix normal representation implies a separable covariance structure between the

matrix row and column variables. In addition, matrix normal distributions have the

property that linear transformations of U still follow a matrix normal distribution; i.e.,

MUT′ ∼ Nm,t(MLT′,MΣmM′,TΣtT
′).

Therefore, given that η(s, d) is assumed to be a separable and mean-zero Gaus-

sian random process, G in (2.8) has a matrix normal distribution after discretization

via basis functions. In our model, we then note that G ∼ Nn`,ni(0,Σn`
,Σni), where

Σn`
= W′CsW and Σni = ΨCdΨ

′. In this case, Cd and Cs are nd × nd and

ns × ns depth and spatial covariance matrices, respectively. These can be specified, as

is typical in geostatistics, according to some valid spatial covariance function (e.g., a

Matérn model) or empirically, as in functional principal components analysis. Alterna-

tively, in the Bayesian paradigm Σn`
and Σni can be assigned prior distributions (e.g.,

inverse-Wishart distributions) to increase model flexibility. Note that a non-separable

covariance structure could be specified between depth and space if desired, but given

that the complicated joint dependence is likely accommodated by the functional covari-

ates, the separable structure on the errors is reasonable for most applications. Certainly,

the added simplicity of the separable structure makes it appealing in this complex mod-

eling framework, especially for “big data” applications.

Statistica Sinica: Preprint 
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Upon estimation of the parameters, one can then perform prediction of the response

at any location and depth by utilizing the appropriate basis expansions to obtain the

posterior predictive distribution of the functional response at desired spatial locations.

Importantly, one must have basis functions that are defined at any desired spatial and

depth location. In addition, one should account for the uncertainty associated with the

observations of the response and covariates, as well as the uncertainty associated with

the basis truncations as they apply to the data. We prefer to approach this problem using

the hierarchical Bayesian paradigm.

2.2 Hierarchical Representation
As summarized in Cressie and Wikle (2011), the hierarchical Bayesian framework can

facilitate the quantification of uncertainty in complicated spatial and spatio-temporal

models. Here we consider it to accommodate the functional model presented in Sec-

tion 2.1 in a way that uncertainty in the observed quantities, the basis functions and the

parameters are accounted for.

2.2.1 Data Models
We consider the possibility that the spatial locations at which we have observations

are not the same as those at which we wish to predict. We start with two-dimensional

spatial observations at locations {r1, . . . , rnr}which could be a subset of the predictions

prediction {s1, . . . , sns}. We could easily make a similar assumption for the depths,

but in the application in Section 3 we predict at the same depths at which we have

observations and so avoid the extra cumbersome notation of allowing for different depth

observation locations.

For the functional response variables, we have j = 1, . . . , nr observations ỹ(rj) ≡
[ỹ(rj , d1), . . . , ỹ(rj , dnd

)]′, which can be written in terms of the nr × nd matrix Ỹ ≡
[ỹ(r1), . . . , ỹ(rnr)]′. This is then related to the “true” ns × nd response matrix Y =

[Y(s1), . . . ,Y(sns)]
′, where Y(si) = [Y (si, d1), . . . , Y (si, dnd

)]′. We consider the

matrix data model

Ỹ = K(y)Y + Em,y = K(y)WAΨ + Et,y + Em,y = K(y)WAΨ + Eỹ,

where K(y) is an nr × ns observation matrix (typically, an incidence matrix of 1’s and

0’s, but can accommodate change of spatial support as summarized in Cressie and Wikle

(2011)), Em,y is an nr × nd measurement error matrix, Et,y is an nr × nd truncation

Statistica Sinica: Preprint 
doi:10.5705/ss.2013.245w



10 YANG, WIKLE, HOLAN, MYERS AND SUDDUTH

error matrix, and W, A, and Ψ were defined previously. In this case, A corresponds

to the process component specified at the next level of the hierarchy according to the

model in (2.8). The main assumption here is that we are interested in doing prediction

on the smooth functionals (WAΨ) and so the truncation error is accommodated in

the covariance structure of Eỹ = Et,y + Em,y. In general, we consider the matrix

normal error distribution, Eỹ ∼ Nnr,nd
(0,Σy,nr ,Σy,nd

). In practice, typically one must

have fairly reliable prior information concerning these error structures, as they are not

otherwise identifiable (for example, see Section 2.2.2 and our motivating application and

associated sensitivity analysis in Sections 3 and the online supplement, respectively).

The functional image covariates are also measured at locations {r1, . . . , rnr}, and

we denote them by the nu-vectors, x̃(ri) for i = 1, . . . , nr, which is an nu-dimensional

vectorization of the nd × nω observed image. We then denote the nr × nu data matrix

X̃j , with each row given by x̃(ri) for i = 1, . . . , nr, and let the corresponding latent

true image be denoted by the ns × nu matrix Xj . We then consider the data model

X̃j = K(xj)Xj + Em,xj = K(xj)WFjΦ + Et,xj + Em,xj = K(xj)WFjΦ + Ex̃j ,

where K(xj) is an nr×ns observation matrix, Φ is an nkj×nu matrix of basis functions

for the image covariates, Em,xj is an nr × nu measurement error matrix, Et,xj is an

nr × nu truncation error matrix, and W and Fj were defined in Section 2.1. The

crucial portion of the covariates, Fj , are given prior distributions at the next level of

the hierarchy. As with the response, we consider the Ex̃j error matrix as the sum of the

truncation and measurement error matrices and assume this follows a matrix normal,

Ex̃j ∼ Nnr,nu(0,Σxj ,nr ,Σxj ,nu), with specific choices depending on the application

(e.g., see Section 2.2.2, Section 3, and the online supplement).

Consider then the spatial covariates associated with z(s), which are also observed at

spatial locations {r1, . . . , rnr}. In particular, consider observations as a nr × np matrix

Z̃, where the ith row is given by z′(ri), a np-vector associated with the p covariates at

site ri. Given the ns × np true covariate matrix of interest, Z, we have the data model

Z̃ = K(z)Z + Em,z = K(z)WQ + Et,z + Em,z = K(z)WQ + Ez̃,

where K(z) is an nr×ns observation matrix as above, Q and W were defined previously,

and Em,z and Et,z are the measurement and truncation error matrices, respectively. As

Statistica Sinica: Preprint 
doi:10.5705/ss.2013.245w
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before, Ez̃ corresponds to the sum of these two matrices and is assigned the matrix

normal distribution Ez̃ ∼ Nnr,np(0,Σz,nr ,Σz,np), with specific choices depending on

the application (e.g., see Section 2.2.2, Section 3, and the online supplement).

2.2.2 Prior Distributions
We specify prior distributions that provide a tradeoff between computational conve-

nience (given the “big data” nature of the applications of this methodology) and model

flexibility. However, as in any complex Bayesian hierarchical model, the choice of prior

distributions is subjective and can typically be modified if suggested by a particular ap-

plication. Specific choices for our application and sensitivity analyses are discussed in

the online supplement.

Consider the data model error covariances given in Eỹ ∼ Nnr,nd
(0,Σy,nr ,Σy,nd

),

Ex̃j
∼ Nnr,nu(0,Σxj ,nr ,Σxj ,nu), and Ez̃ ∼ Nnr,np(0,Σz,nr ,Σz,np). As mentioned

previously, in hierarchical spatial and spatio-temporal models, it is typically difficult

to identify such general covariance structures in data models given fairly complex de-

pendence structures in the process model. Thus, it is common in Bayesian hierarchical

spatial and spatio-temporal analyses to assume that the data model error covariance

matrices are diagonal (e.g., Cressie and Wikle (2011)). This is generally a reason-

able assumption and is important for computational tractability in “big data” applica-

tions. We assume Σy,nr = diag(τ y,nr), Σy,nd
= diag(τ y,nd

), Σxj ,nr = diag(τ xj ,nr),

Σxj ,nu = diag(τ xj ,nu), Σz,nr = diag(τ z,nr) and Σz,np = diag(τ z,np). We could then

specify conjugate (inverse gamma) priors for these variance components. However, this

still generally requires fairly strong prior information in order to identify these compo-

nents. As described in the online supplement, we do have prior information available

and, thus, further simplify these prior distributions accordingly.

Recall that the process model was given by (2.8). In the Bayesian paradigm, the

finite expansion coefficient matrices Fj and Q are random matrices and we assume that

they follow matrix normal distributions given by Fj ∼ Nn`,nkj
(µFj

,ΣFj ,n`
,ΣFj ,nkj

)

and Q ∼ Nn`,np(µQ,ΣQ,n`
,ΣQ,np), respectively. The matrix normal prior distribu-

tions are selected based on computational convenience in the sense that they facili-

tate conjugate sampling and the inherent separability accommodates high-dimensional

data applications. Further, to facilitate conjugate sampling and to increase model flex-

ibility, the inverse covariance (precision) matrices associated with ΣFj ,n`
, ΣFj ,nkj

,

ΣQ,n`
, and ΣQ,np are assigned Wishart distributions, Σ−1Fj ,n`

∼ Wn`
(VFj ,n`

, vFj ,n`
),
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Σ−1Fj ,nkj
∼Wnkj

(VFj ,nkj
, vFj ,nkj

), Σ−1Q,n`
∼Wn`

(VQ,n`
, vQ,n`

), and finally Σ−1Q,np
∼

Wnp(VQ,np , vQ,np), respectively. The matrices VFj ,n`
, VFj ,nkj

, VQ,n`
and VQ,np are

specified scale matrices and vFj ,n`
, vFj ,nkj

, vQ,n`
, and vQ,np are specified degrees of

freedom, with the specific choices depending on the particular application (e.g., see the

online supplement).

In the process model (2.8), Bj is the matrix of truncated expansion coefficients as-

sociated with the jth functional (image) covariates. To facilitate conjugate computation

and accommodate high-dimensional data, we specify matrix normal prior distributions

Bj ∼ NP,ni(0,ΣB,Σni). The row components of Bj are associated with the column

components of Fj and Q. These covariance matrices can be specified as warranted by

specific applications. It is fairly common in high-dimensional Bayesian applications to

specify diagonal priors for these covariance matrices, e.g., ΣB = diag(τB,1, . . . , τB,P ),

where τB,p, p = 1, . . . , P , are hyperparameters. Alternatively, if there is no a prior

scientific preference of specific parameters, to facilitate computation we might consider

the simpler form, ΣB = τBIP , with hyperparameter τB. In both cases, one typically

specifies fairly large values (relative to the scale of the data) for the hyperparameters

to make the priors less informative (e.g., see Section 3). We note also that one could

fairly easily perform stochastic search variable selection (see George (2000) for detailed

overview) for the elements of Bj . Such variable selection methods have recently shown

promise in other Bayesian functional/image covariate applications (e.g., see Holan et al.

(2010); Wikle and Holan (2011); Holan et al. (2012)).

Finally, to facilitate model flexibility and conjugate computation, we specify Wishart

priors for Σ−1n`
∼Wn`

(VG,n`
, vG,n`

) and Σ−1ni
∼Wni(VG,ni , vG,ni), where VG,n`

and

VG,ni are specified scale matrices and vG,n`
and vG,ni are specified values of degree of

freedom. Specific choices for these hyperparameters depend on the particular applica-

tion (e.g., see the online supplement).

3 Soil Science Application: Spatial Prediction of Electrical Conductivity
Profiles

We present our motivating problem and data, followed by Bayesian estimation, and the

results. Discussion surrounding the specific model choices used for implementation and

sensitivity analysis is provided in the online supplement.
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3.1 Motivating Problem
Scientific understanding of soil properties and processes is important for many pur-

poses, including crop and hydrologic modeling, the improvement of sustainable agri-

cultural production systems, and possible remediation of atmospheric carbon dioxide

through carbon sequestration. Measurement of important soil properties traditionally

requires significant and laborious field work to collect samples as well as significant

laboratory time and often expensive methodologies to analyze the physical, chemical

and biological properties of those samples. Increasingly, proximal soil sensing tech-

nologies (Viscarra Rossel et al. (2012)) are being used to obtain high-resolution soil in-

formation for applications such as precision agriculture and digital soil mapping. A key

proximal soil sensing technology is optical diffuse reflectance spectroscopy (DRS) in

the visible and near-infrared (VNIR) wavelength ranges (∼400-2500mm), which can be

used to obtain a great deal of information quickly in the laboratory (Sudduth and Hum-

mel (1996); Sudduth et al. (2010)) or in-situ with mobile sensors (Christy (2008)). In

particular, VNIR-DRS can provide information about subsurface soil variation through

wavelength by depth maps (or images). It is of increasing interest to be able to use such

information as covariates in spatial and spatio-temporal models because it is relatively

inexpensive to obtain and mitigates the need for expensive and time-consuming labo-

ratory analyses. The purpose of the analysis presented here is to use functional/image

covariates obtained from the VNIR soil spectra depth profiles to predict functional (in

depth) response curves in space via the methodology described in Section 2.

3.2 Greenly Research Center Data
We consider soil data collected at 28 sites as shown in Figure 1. In general, we are inter-

ested in the spatial prediction of profile soil electrical conductivity measured with a soil

penetrometer (ECp) as a function of depth in terms of images corresponding to the VNIR

soil spectra depth profiles. At each location, ECp is measured at up to 48 depth segments

and the VNIR spectra are measured at wavelengths from 500 to 2,500 nanometers (nm)

for each depth segment as shown in Figure 2. We note that some locations have missing

information at the deeper depth segments. To retain as many locations as possible for

model building, we thus only consider the first 37 depth segments. Consequently, we

have 26 locations with complete covariate and response information and these are used

to fit the model in our analysis. The two discarded locations are missing most of the
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VNIR spectra information. The elevation at each spatial location in the domain is also

shown in Figure 1; this variable is used as a spatial covariate in the analysis to help

predict the ECp depth responses. The ECp response data at the 26 locations considered

here are shown in Figure 2.

Specifically, the soil profile measurements we consider were collected at the Uni-

versity of Missouri Greenly Research Center near Novelty Missouri, USA (Lat. 40.03◦,

Lon. -92.19◦) (see Myers et al. (2011) for a comprehensive description). The exact lo-

cations sampled within the study site are shown in Figure 1. Soil cores (4.5 cm x 1.2 m)

were obtained from each location for ex-situ measurements. Diffuse reflectance spectra

(500 x 2500 nm, FieldSpec Pro FR, ASD Inc., Boulder, CO) were measured at 2.54 cm

intervals along the core length. Soil profile electrical conductivity (ECp) was measured

in-situ using a Veris Profiler 3000 with an insulated shaft (Veris Technologies, Salina,

KS, USA) and interpolated to 2.54 cm intervals. Both in-situ and ex-situ measurements

were made in the late spring of 2007 (see Myers et al. (2010, 2011) for data collection

details).

3.3 Results
We first evaluated the ability to predict the ECp depth profiles through a leave-one-out

cross validation experiment. Figure 3 shows the out-of-sample posterior predictions of

the ECp depth profiles given the VNIR image predictors. Specifically, Panel (a) shows

the posterior predicted mean ECp depth profile for each of the 26 observation locations,

Panel (b) shows the associated posterior standard deviation, Panel (c) gives the observed

ECp depth profiles, and Panel (d) shows the associated residuals (posterior mean minus

the observed). In general, from visual inspection, the functional spatial model is able

to do a reasonable job in predicting the ECp depth profiles across the various locations,

and the residual variation is relatively small compared to the magnitude of the responses.

However, there are a few depth regions in some of the residual profiles that show coher-

ent model error/bias across depth. In some cases (e.g., locations 8 and 9), the predicted

standard deviation suggests this uncertainty. In other locations (e.g., 14 and 15) the

model predictive standard deviation does not indicate the issues shown in the residuals.

This could be due to the extreme variability in the ECp profiles (see Figure 2) at lower

depths, and the possibility that the image covariates are not always helpful in predict-

ing at those depths. These results also suggest that there should be spatially coherent

prediction errors in our spatial field predictions.

Statistica Sinica: Preprint 
doi:10.5705/ss.2013.245w



Bayesian Spatially-Dependent Multi-Dimensional Functional Models 15

We are primarily interested in predicting spatial fields of the response variable at

various depths. Figure 1 shows a prediction grid over the spatial domain of interest,

along with the observation locations. As an illustration, the posterior predicted mean

and standard deviation on this grid for ECp at depth level 16 are shown in Figure 4.

The spatial field is relatively smooth, as expected, based on the low-rank discrete kernel

convolution basis representation. Spatial variation in ECp is driven mainly by spatial

variation in clay content and soil density. Examination of predicted ECp at depth level

16 matches the known trends at this study location (Myers et al. (2010, 2011)). The key

trends affecting ECp are due to systematic variation in the depth to clay layers and dense

glacial deposits. Each of these soil features has a relatively large ECp response. Further,

the depth to these layers is related to spatial variation in elevation and geomorphology.

Elevation decreases generally from southwest to northeast, with a ridge surrounding the

area on the east and west edges. As expected, the northeast region of the plot indicates

material with small ECp (< 30 mS/m) at depth level 16. This region corresponds to

areas of coarse sediment deposition. These deposits have low electrical conductivity

and bury the more conductive materials. The eastern and western edges of the study

area are connected ridgelines that contain the study area. These areas have a relatively

shallow depth to large clay concentrations. This is reflected in the predicted ECp values

in the 40 to 50 mS/m range.

4 Discussion and Conclusion
Scientists are increasingly faced with very large data signals from new technologies and

they are interested in relating these “big data” signals to various types of responses.

We consider here a particular case where we have functional responses and so-called

“image” predictors. In this case, we use the term image loosely, and consider it to be

any two-dimensional continuous process, such as a time-frequency representation of a

time signal or a depth-wavelength representation of a spectroscopic profile. We take into

account here the additional complication that both the functional response and the image

covariates can be spatially-dependent. This brings together several areas of research in

functional data analysis, spatial statistics, and non-stationary time series analysis.

We develop a flexible, yet fairly easy to implement, methodology for the afore-

mentioned problem by considering several layers of basis expansions. In practice, these

expansions are truncated, leading effectively to a complex Bayesian mixed-effects mul-

tivariate multiple regression model. The major complication with implementation is the
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potentially large number of covariates (even in the basis expansion context), which is

not an issue in our motivating application, but may be mitigated by the use of stochastic

search variable selection priors on the parameters.

We demonstrate via an illustrative example that this methodology is useful in the

context of complex soil profile data. In particular, we consider a ECp depth profile re-

sponse variable as predicted by depth/wavelength images of VNIR measurements. The

leave-one-out predictions of these profiles were quite promising, and spatial field pre-

diction at a specific depth gave results that matched quite nicely with scientific insight.

Future extensions of this work include the consideration of additional covariates

that are spatially dependent, including those that lack depth information. A real strength

of this methodology will come from helping to suggest to practitioners where they

should take additional (image) observations in order to most improve the predictions

of the spatial distribution of the functional response. We will consider such optimal

adaptive spatial sampling design problems as an extension to the work presented here.
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Figure 1: Left Panel: Elevation surface of the study area (measured in meters). Spatial prediction
grid (stars) and observation locations (dots). Right Panel: The elevation surface (measured
in meters) of the study area. Numbers correspond to the 26 observation locations considered
in the analysis and stars are locations with missing image covariate information. The spatial
convolution kernel knot locations are given by circles, as selected by a space-filling design.
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Figure 2: Left Panel: The VNIR covariate wavelength by depth image from a randomly selected
data location. Wavelength is measured in nanometers, whereas each depth increment represents
2.5 cm. The color scale here represents decimal reflectance. Right Panel: ECp (measured in
milliSiemens per meter) as a function of depth (where each increment represents 2.5 cm) as
measured at the 26 locations shown in Figure 1.
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in soil science,” in Geostatistics Tróia ’92, (Edited by A. Soares), 805–816. Springer.

Gromenko, O. and Kokoszka, P. (2013), “Nonparametric inference in small data sets of

spatially indexed curves with application to ionospheric trend determination,” Com-

putational Statistics & Data Analysis, 59, 82–94.

Gromenko, O., Kokoszka, P., Zhu, L., and Sojka, J. (2012), “Estimation and testing for

spatially indexed curves with application to ionospheric and magnetic field trends,”

The Annals of Applied Statistics, 6, 669–696.

Holan, S., Yang, W., Matteson, D., and Wikle, C. (2012), “An approach for identify-

ing and predicting economic recessions in real-time using time-frequency functional

models,” Applied Stochastic Models in Business and Industry, 28, 485–499.

Holan, S. H., Wikle, C. K., Sullivan-Beckers, L. E., and Cocroft, R. B. (2010), “Model-

ing complex phenotypes: generalized linear models using spectrogram predictors of

animal communication signals,” Biometrics, 66, 914–924.

Kokoszka, P. (2012), “Dependent functional data,” ISRN Probability and Statistics,

2012.

Martinez, J. G., Bohn, K. M., Carroll, R. J., and Morris, J. S. (2013), “A study of Mex-

ican free-tailed bat chirp syllables: Bayesian functional mixed models for nonsta-

tionary acoustic time series,” Journal of the American Statistical Association, 108,

514–526.

Monestiez, P. and Nerini, D. (2008), “A cokriging method for spatial functional data

with applications in oceanology,” in Functional and Operatorial Statistics, (Edited by

S. Dabo-Niang and F. Ferraty), 237–242. Springer.

Morris, J. S., Baladandayuthapani, V., Herrick, R. C., Sanna, P., and Gutstein, H. B.

(2011), “Automated analysis of quantitative image data using isomorphic functional

mixed models, with application to proteomics data,” Annals of Applied Statistics, 5,

894–923.

Myers, D. B., Kitchen, N. R., Sudduth, K. A., Grunwald, S., Miles, R. J., Sadler, E. J.,

and Udawatta, R. P. (2010), “Combining proximal and penetrating soil electrical con-

Statistica Sinica: Preprint 
doi:10.5705/ss.2013.245w



Bayesian Spatially-Dependent Multi-Dimensional Functional Models 21

ductivity sensors for high-resolution digital soil mapping,” in Proximal Soil Sens-

ing, (Edited by R. A. Viscarra Rossel, A. B. McBratney, and B. Minasny), 233–243.

Springer.

Myers, D. B., Kitchen, N. R., Sudduth, K. A., Miles, R. J., Sadler, E. J., and Grunwald,

S. (2011), “Peak functions for modeling high resolution soil profile data,” Geoderma,

166, 74–83.

Ramsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis: 2nd ed, Springer-

Verlag.

Reiss, P. T. and Ogden, R. T. (2010), “Functional generalized linear models with images

as predictors,” Biometrics, 66, 61–69.

Ruiz-Medina, M. D. (2011), “Spatial autoregressive and moving average Hilbertian pro-

cesses,” Journal of Multivariate Analysis, 102, 292–305.

— (2012a), “New challenges in spatial and spatiotemporal functional statistics for high-

dimensional data,” Spatial Statistics, 1, 82–91.

— (2012b), “Spatial functional prediction from spatial autoregressive Hilbertian pro-

cesses,” Environmetrics, 23, 119–128.

Ruiz-Medina, M. D. and Espejo, R. M. (2013), “Integration of spatial functional in-

teraction in the extrapolation of ocean surface temperature anomalies due to global

warming,” International Journal of Applied Earth Observation and Geoinformation,

22, 27–39.

Sudduth, K. A. and Hummel, J. W. (1996), “Geographic operating range evaluation of a

NIR soil sensor,” Transactions of the ASAE, 39, 1599–1604.

Sudduth, K. A., Kitchen, N. R., Sadler, E. J., Drummond, S. T., and Myers, D. B.

(2010), “VNIR spectroscopy estimates of within-field variability in soil properties,”

in Proximal Soil Sensing, (Edited by R. A. Viscarra Rossel, A. B. McBratney, and B.

Minasny), 233–243. Springer.

Viscarra Rossel, R. A., Adamchuk, V. I., Sudduth, K. A., McKenzie, N. J., and Lobsey,

C. (2012), “Proximal soil sensing: An effective approach for soil measurements in

space and time,” Advances in Agronomy, 113, 237–282.

Statistica Sinica: Preprint 
doi:10.5705/ss.2013.245w



22 YANG, WIKLE, HOLAN, MYERS AND SUDDUTH

Wikle, C. and Holan, S. (2011), “Polynomial nonlinear spatio-temporal integro-

difference equation models,” Journal of Time Series Analysis, 32, 339–350.

Wikle, C. K. (2010), “Low rank representations as models for spatial processes,” in

Handbook of Spatial Statistics, (Edited by A. Gelfand and P. Diggle and M. Fuentes

and P. Guttorp), 107–118. Chapman and Hall/CRC.

Yang, W.-H., Wikle, C. K., Holan, S. H., and Wildhaber, M. L. (2013), “Ecological pre-

diction with nonlinear multivariate time-frequency functional data models,” Journal

of Agricultural, Biological, and Environmental Statistics, 18, 450–474.

Zhou, L., Huang, J. Z., Martinez, J. G., Maity, A., Baladandayuthapani, V., and Carroll,

R. J. (2010), “Reduced rank mixed effects models for spatially correlated hierarchical

functional data,” Journal of the American Statistical Association, 105, 390–400.

CSIRO Computational Informatics, QLD 4102, Australia.

E-mail: Wen-Hsi.Yang@csiro.au

Corresponding Author: Department of Statistics, University of Missouri, Columbia, MO

65211, USA.

E-mail: wiklec@missouri.edu

Department of Statistics, University of Missouri, Columbia, MO 65211, USA.

E-mail: HolanS@Missouri.edu

Department of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.

E-mail: MyersDB@missouri.edu

USDA-ARS-Cropping Systems and Water Quality Unit, Columbia, MO 65211, USA.

E-mail: SudduthK@missouri.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.2013.245w




